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NUMERICAL INVERSION OF TWO-DIMENSIONAL
GEOELECTRIC CONDUCTIVITY DISTRIBUTIONS FROM

MAGNETOTELLURIC DATA

H. F. de C. Velho & F. M. Ramos

In this paper, anew inversion technique, called the minimum first-order entropy (MinEnt-1) method,
is proposed for the reconstruction of two-dimensional geoelettric conductivity distributions from
magnetotelluric (MT) data. The method combines an iterative search with a regularization technique
based on the minimization of the entropy measure of the vector of first-differences of the unknown
conductivities. Numerical simulations, using synthetic data corrupted with gaussian noise, show
that the MinEnt-1 algorithm converges to excellent conductivity reconstructions, yielding in many
cases results that are superior to those obtained by the maximum entropy formalism, Unlike other
classical regularization schemes, which maximize smoothness for a given data, the proposed method
constrains the class of possible solutions into a restricted set of low entropy models, constituted by j
locally smooth regions separated by sharp discontinuities. This may be an effective approach for |
the incorporation of prior information about the local smoothness of the real physical model. |
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INVERSAO NUMERICA DE DISTRIBUICOES BIDIMENSIONAIS DE CONDUTIVIDADE ‘

GEOELETRICA A PARTIR DE DADOS MAGNETOTELURICOS - Neste trabalho, propoe-

(Minkint-1), para reconstrugdo de distribuioes bidimensionais de condutividade geoelétrica, a

partir de dados magnetotehivicos (MT)., O método combina uma busea iterativa com wma téenica

de regularizagdo baseada na minimizagdo da medida de entropia do vetor de diferengas primeiras

das condutividades a serem estimadas. Simulagdes numéricas, com a utilizagéo de dados sintéticos |

contaminados com ruido gaussiano, mostram que o algoritmo MinEnt-1 produz excelentes recons- |

trugoes de condutividade, com resultados melhores que os obtidos pelo método da maxima entropia.

Diferentemente dos outros esquemas cldssicos de regularizagiio, que maximizam suavidade para

um dado confunto de dados, o método proposto limita a classe de possiveis solugdes a um conjunto _:

restrito de modelos de baixa entropia, constituido por regives localmente lisas separadas por 1
|
|

se uma nove téenica de inversdo, chamada de método da minima entropia de primeira ordem |
I

descontinuidades abruptas. Esta abordagem pode ser bastante eficaz para incorporagéo de infor-
magdo a priori sobre a natureza da swavidade local do modelo fisico real,

i
Palavras-chave: /nversdo magnetotelirica; Otimizagdo; Regularizagdo entrépica. -l
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INTRODUCTION

The use of electromagnetic fields induced by natural
sources in the ionosphere and magnetosphere to determi-
ne the electrical conductivity of the earth’s subsurface has
a wide range of applications in geophysics. Appearing in
various areas such as petroleum prospection, mining and
search for groundwater, this inverse problem, also known
as inversion of magnetotelluric (MT) data, has special
relevance in the exploration of regions which are difficult
to probe with conventional seismic methods. These areas
usually involve either near-surface basalt layers, which
cause very strong reflections, or regions where tectonic
events have disrupted the sedimentary layer geometries
and greatly complicated the seismic signature (Madden &
Mackie, 1989).

Independently proposed by Tikhonov (1950) and
Cagniard (1953), the MT method is based on the
computation of transfer functions between the electric and
magnetic fields measured at the earth’s surface. These
transfer functions define a frequency dependent tensor
impedance which expresses an assumed linear relationship
between the geomagnetic field and the resulting electric
fields in the earth. The observation depth of a given
measurement is dependent upon the frequency of the
detected signal and upon the subsurface conductivity. Low-
frequency electromagnetic waves penetrate more deeply
than do high-frequency waves, whereas waves of a given
frequency penetrate deeper into resistive rocks than into
conductive rocks. The final step ina MT study is to interpret
the computed data in terms of rock type and geologic
structures as a function of position and depth. This
quantitative interpretation is based on the mathematical
inversion of impedance versus frequency into the resistivity
versus depth form.

The MT inversion problem has been the subject of
several studies and two excellent reviews have been
published by Oldenbur (1990) and Raiche (1994). Inversion
algorithms of MT data usually involve a systematic search
for the earth model which best fits the observed data. The
inversion proceeds by minimizing an objective functional
which includes the difference between the observed and
the predicted data and a regularization function. The
regularization term expresses the p'rior assumptions about
the geology, and allows to reduce the presence of artifacts

in the conductivity models reconstructed from sparse, noisy
MT data sets. Constable et al. (1987), deGroot-Hedlin &
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Constable (1990), Smith & Brooker (1988, 1991),
Oldenburg & Ellis (1991) have used this approach to obtain
minimum structure conductivity models for the MT inverse
problem. In a formulation that resembles the regularization
method developed by Phillips (1962), Tikhonov (1963) and
Twomey (1963), minimum structure models are obtained
with the help of a “smoothing” operator which essentially
performs a numerical first or second derivative on the
conductivies, and explicitly suppress complexity from the
inverse solutions.

In this study, a new regularization approach is
introduced based on the minimization of the entropy
measure of the vector of first-differences of the unknown
parameters. The MT inversion is formulated as a
constrained nonlinear optimization problem and solved by
a quasi-Newtonian minimization algorithm. The
minimization of the first-order entropy measure of the
vector of parameters constrains the class of candidate
solutions into a restricted set of models composed by locally
smooth regions separated by sharp discontinuities. The next
section presents a brief presentation of the formulation of
the forward problem. This is followed by a description of
the proposed inversion method, and a discussion of the
numerical examples. The method is tested over two-
dimensional earth models embedded with conductivity
discontinuities, using synthetic data corrupted with
gaussian noise.

FORMULATION OF THE FORWARD
PROBLEM

The commom approaches for solving the forward
problem involve analytical methods, boundary or volume
integral methods, Fourier methods, finite difference
methods, finite element methods and hybrid techniques
(Jupp & Vozoff, 1977, Madden & Mackie, 1989). The
choice of a method is a matter of speed, accuracy, and
simplicity. In this study, to perform the forward calculations
required by the inversion scheme, a finite difference code,
based on the two-dimensional conductivity inhomogeneity
model proposed by Jones & Price (1970), has been used.

The mathematical formulation of the problem is given
by Maxwell’s equations in a two-dimensional region with
suitable boundary conditions. Schematically, the problem
domain is depicted in Fig. |, where Q+ and Q- correspond
to the conductive zone (z < 0) and the free-space zone (z >
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0), respectively. The oscillating field has period 27/w
sufficiently long to permit displacement currents being
ignored. The magnetic permeability is taken as unity. The
equations are therefore

V x H=4ncE )
and
Vx E=—iof, )

where the time factor exp (iwf) is assumed in all field
quantities, and o = o (y, z) is the electric conductivity.

y
- Zr
Q
By =1,
iz~ o) =fiz+ 220
ot V=i n o
Hi(z—~00) = 0

I

ﬁ(]y|-—oo)=ltlwe'"' i
Figure 1 - Geometry and boundary conditions of the
forward problem.

Figura 1 - Geometria e condigdes de contorno do proble-
ma direto.

Since H and £ are independent of the strike direction
x, Eqs. (1) and (2) take the form of two sets of equations

OH [0y -0H [0z = A4nck,

OH [0z = 4nok 3
—OH /9y = 4nok,
and
OF [0y —OE [0z = —iwH,
OE [0z = —iof “
—0E /0y = —ioH,

which can be solved separately.
Eliminating H, and H, from Eq. (3), the transverse

electric (TE) mode equations (E-polarization problem) are
obtained:
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O’E,

2 _ .2

VEs ot e B ®)
OE [0z = —iny (6)
and

—0E /0y = —ioH,, @)
where

" =4rnow. ®)

Similarly, eliminating E, and £, from Eq. (4), the
transverse magnetic (TM) mode equations (H-polarization
problem) are given as

_'H, O'H,

V’H, S in*H,, ©)
OH /oz = 47r0'Ey (10)
and

—0H /0y = 4nok,. (11)

MT data can be characteriged by TE and TM mode
impedances, given respectively by

Zv=q (12)
y

and

Zyx =%‘ (13)
g

or by apparent resistivities and phase of the form

1 2
|

Pa= ) |z (14)
and
¢ =arg (2), (15)

where Z refers to ny and Zyx for the TE and TM modes,
respectively.

Although true 2D inversion embraces both
polarizations (Jupp & Vozoff, 1977), for the sake of
simplicity only the H-polarization problem will be
considered in the following analysis.
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Boundary Conditions

It is assumed that the conductive inhomogeneities

embedded in Q+ are sufficiently small to permit the
medium to behave like a uniform conductor at large

distances of the discontinuities in o. Hence, as y — £ o
Eq. (9) becomes

O°H, _ .
52 =inH, (16)

and the field tends to zero for large positive values of z.

Therefore, the appropriate solution of Eq. (16) is

H, = Hye "™V, (7
Across the interfaces between Q+ and Q- (z = 0) and

between different media within the conductive region, H,

is continuous. Outside the conductor, where o= 0, H is

independent of y and z.

Numerical Formulation

Splitting the magnetic field into its real and imaginary

componentes, H=F+ iG, Eq. (9) can be written as

ViH = V2F + (VG = (—17°G) + i (itF) . (18)
and
VO = i*MD (19)
with

F 0 -1
d} = 4 M = .

G 1 0

Approximating Eq. (19) by finite differences over a
two-dimensional nonuniform grid of rectangular prisms,
each one having a uniform electrical conductivity o, the
resulting system of algebraic equations can be iteratively
solved by the Gauss-Seidel method (Hoffman, 1993, pp.
53-54).

A computer code was written based on the above
calculation procedure, and validated against the results
presented by Jones & Price (1970).

FORMULATION OF THE INVERSE PROBLEM

The vector of conductivities to be determined by the
inverse analysis is denoted by
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P= {p/' Py s Py P(_,} - {O-II’ Gyp s O one O.-IK}’

where g =J(k— 1)+, withj=1,...,Jand k=1, ..., K. The
MT inversion can be formulated as a nonlinear constrained
minimization problem,

minJ(p), [, <p <u,q=1,..,0, (20)
where
Ap) = R(P) A S(PY S, T 1S (), 20

S,and S, are regularization functions, y, and y, are positive

regularization parameters, and S, a normalization

constant. The bounds l,, and u, are chosen to allow the

inversion to lie within some a priori known plysical limits.
The misfit between model and data is given by

Ny M i
R(p) = ZZ[‘D,'/;/" . q’,(/’:m(l’)] ; (22)
/=1 m=I
with the superscripts £ and C denoting the experimental
and computed data, respectively. It is assumed that
measurements (D_i-";,,, are available at j =1, 2, ..., N,
horizontal positions and at @, m = 1, 2, ..., M, different
frequencies. Considering that the magnetic field for the
TM mode is constant at z = 0, the inversion algorithm is
fed with A values predicted by the forward model one
horizontal grid line below the earth’s surface. This is
equivalent of using a first-order finite difference
approximation of Eq. (10) for computing Z,atz=0.
The choice of the regularization function and of the
regularization parameters will be discussed in the next
section.

Minimum First-Order Entropy Regularization

It is well known that observational data is generally
insufficient to provide a unique and stable solution when
tackling an inverse problem. The recommended approach
in this case is the use of any regularization technique, in
order to assure that parameter variations are bounded to
such a degree that the final solution looks physically
reasonable (Pilkinton & Todoeschuck, 1991). Generally,
this rather vague notion of reasonable means in fact
smoothness. In other \:vords, classical regularization
techniques, such as Tikhonov’s regularization and the
maximum entropy formalism, search for global regularity
and yield the smoothest reconstructions which are
consistent with the available data.
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The maximum entropy principle was first proposed as
a general inference procedure by Jaynes (1957) on the basis
of Shannon’s axiomatic characterization of the amount of
information (Shannon & Weaver, 1949). The maximum
entropy principle has successfully been applied to a variety
of fields including radioastronomy (Gull & Daniel, 1978),
tomography (Smith et al., 1991), nondestructive testing
(Ramos & Giovannini, 1995), pattern recognition (Fleisher
et al., 1990) and crystallography (de Boissieu et al., 1991).

In this study, a new regularization approach is
introduced based on the minimization of the entropy
measure S, of the vector of first-differences of p. Adopting
the standard terminology (Tikhonov & Arsenin, 1977),
this regularization technique is called the minimum first-
order entropy method (MINENT-1). Similarly, the
maximum entropy method, which uses the zeroth-order
entropy measure S (p) as regularization function, is
hereafter denoted by MAXENT-0. Therefore, the
regularization functions in Eq. (21) are given by

0

Sa.(p) - _z Sq lOg(S(I), o= 01]3 (23)
q=1

where
¢

Sg=t,/ 7 (24)

g=1
and
Py if a=0

4= ‘pq—p(,_|b+g if a=1, (25)

€ being a small positive constant (say, £ = 10"'5) which
assures that the first-order entropy will always have a
definite value. The function S_ attain its global maximum
when all r, are the same, which corresponds to a uniform
distribution with a value of S, =log Q. On the other hand,
the lowest entropy level, S .= 0, is attained when all
elements r, but one are set to zero.

To illustrate the essential feature of the MINENT-1
method, Fig. 2 compares the normalized entropies
S, = S,/S,.. of three different 1D models, represented by
curves of normalized conductivity /g, _as a function of
i, where the index i refers to a depth z, Model a represents
a uniformly conductive model, while models b and ¢
contain each a resistive inclusion generated, respectively,
by a smooth gaussian curve and a square-wave function.
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The results show that, although models a, b and ¢ differ
strongly, their zeroth-order entropy measures are all very
close to unity. Looking now at the normalized first-
differences [0~ o, /o _of models a, b and ¢, shown in

max

Fig. 3, it can be seen that their normalized first-order
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Figure 2 - Normalized models a, b and ¢, and respective
normalized zeroth-order entropy values, S =1.000,

57=0.9969 and 5 ¢ = 0.9955.

Figura 2 - Modelos normalizados a, b ¢ ¢, e respec-
tivos valores normalizados de entropia de ordem zero,
§+=1,000, §/=0,9969 and §¢=0,9955.
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Figure 3 - Normalized first-differences of models a, band

¢, and respective first-order entropy values, 5 7 = 1.000,

§!=0.5958 and S¢=0.1502.

Figura 3 - Diferengas primeiras normalizadas dos mode-
los a, b e ¢, e respectivos valores normalizados de en-
tropia de primeira ordem, S = 1,000, §' =0,5958 and
§¢=0,1502.
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entropy values §, = §//S, present a much greater
variability: § 4=1.00, § %= 0.60 and § ¢=0.15. Moreover,
it is possible to note that the sharper the discontinuity
embedded in the model, the lower will be the value of its
first-order entropy.

Clearly, while the existing regularization schemes, such
as maximum entropy or Occam’s inversion, search for “the
smoothest model which fits the data to within an expected
tolerance” (Constable et al., 1987), the MINENT-1 method
looks for locally smooth regions separated by sharp
discontinuities. Any reconstruction sharing these features has
a high level of information and thus a low entropy content.
Many geophysically interesting properties and structures may
behave in a similar fashion.

The entropy concentration theorem (Jaynes, 1982)
provides a quantitative justification for the MINENT-1
method. According to this theorem, the vast majority of all
possible outcomes in a random experiment have frequency
distributions close to uniform. In other words, distributions
with low entroy levels are highly atypical. Therefore, if there
is prior evidence on the low first-order entropy content of a
geological structure in study, the MINENT-1 method leads
to a drastic reduction in the number of candidate solutions
(i.e., those which are consistent with the available data) to
be iteratively probed by the inversion algorithm.

The value of the regularization parameter, which plays
arole ofa Lagrange-multiplier, is problem dependent. Since
there is no general analytical method for determining the
optimal value for ¥, some numerical experimentation (¢rial-
and-error) is required. Sena & Toksoz (1990) suggest the
use of the total data error in each iteration as the
regularization parameter. As the iteration proceeds toward
convergence, y decreases. Another approach (Gull &
Daniel, 1978) is to select the regularization parameter that
approximates the statistics X, (@ - ®@f Y/c? to its
expected value, the total number of observations (Ny M),
assuming that the data have gaussian errors with standard
deviation o, Other methods for choosing the regularization
parameter, in the context of image restoration, are reviewed
by Galatsanos & Katsaggelos (1992).

Optimization Algorithm

The minimization of the objective function ./ (p) given
by equation (21), subjected to simple bounds on p, is solved
using a first-order optimization algorithm — EO4UCF
routine — from the NAG Fortran Library (1993). This
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routine is designed to minimize an arbitrary smooth function
subject to constraints (simple bounds, linear nonlinear
constraints), using a sequential programming method. For
the »-th iteration, the calculation proceeds as follows:

I. Solve the forward problem for p” and compute the

objective function J(p").
2. Compute by finite differences the gradient V J(p").

3. Compute a positive-definite quasi-Newton approxima-
tion to the Hessian H™:

~ bn (bn ) T Hn—lun (un )7' Hn—l
I .
H” . H” + (bn 7'un == (un)'l'Hn—lun
Where b= pn _ pn-/’
u’ = VJ(pu) _ VJ(pn-l)_
4. Compute the search direction d” as a solution of the
following quadratic programming subproblem:

Minimize (g’ d”+ }(d")" (H") d"
subject to l,-p'sd <u-—-p’
where g" = VJ(p").

5. Set p't! =p" + g d", where the step length 4" minimizes
J(p"+ pd).

6. Test the convergence: stop, if p satisfies the first-order
Kuhn-Tucker conditions (Powell, 1974) and g ]| d || <
Ve (1 +]| p I), where € specifies the accuracy to which

one wishes to approximate the solution of the problem;
otherwise, return to step 1.

NUMERICAL RESULTS

The numerical method presented in the previous
sections was tested over different earth models, using
synthetic data. In all simulations, the conductive half-space
(Q+, see Fig. 1) was eellularized into 8 x 11 blocks, with
Ay =10 km and Az varying from 1 to 10 km. MT data (real
and imaginary parts of H ) was generated by the forward
model, using the same mesh of the inversion scheme, at
1 stations at z = 0, and at 20 logarithmically spaced
frequencies ranging from 0.0001 to 0.01 Hz. To simulate
experimental errors, a one percent Gaussian noise was
added to the exact data. The computations were performed
until convergence was attained, by using a uniform
conductivity ot half-space as the starting model.

Results are presented in the form of two-dimensional
conductivity maps in logarithmic scale. The unknown
conductivity values were put into p by a vertical raster-




scan on the two-dimensional maps, starting from the left
top corner. The leftmost column (boundary condition) and
the topmost row (earth’s surface) are assumed to be known
and, therefore, were left out of the inversion procedure.

The MINENT-1 inversion method was first applied
to a structure consisting of a conductive prism ¢ and a
resistive prism €', both embedded in the half-space Q',
with a conductivity ratio of /"= 10and o’/c*=0.1.
Numerical results were computed considering the following
test cases: (1) no regularization; (2) MINENT-1
regularization; (3) and (5) MAXENT-0 regularization; and
(4) MAXENT-0 and MINENT-1 regularization. The values
of the regularization parameters have been set by numerical
experimentation.

Conductivity maps, in logarithmic scale, are displayed
in Fig. 4a through 4f, showing the true model used to
generate the synthetic data and the four cases. For each
test case, Tab. | also presents the number of iterations until

(a) True model (b)%=0,71=0

o
e oo

(c) 7% =0,7 =0.03 (d) % =10.03, 7, =0

(e) 70 = 0.03, v = 0.03

afot:

Figure 4 - Conductivity maps in logarithmic scale.

10

Figura 4 - Mapas de condutividade em escala logaritmica.
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final convergence l/, the normalized rms residue,
P = R(p)/R(p"), the normalized entropies §, and §, as
well as the normalized rms error defined by

172

0
en= Z (pq _ p:/'xuu )2 /(P{(,) _ p;’.\‘ucl )2 (26)
q=1

Figure 4c shows that the MINENT-1 inversion
algorithm properly recovered the conducdtive distribution.
The combination of both regularization techniques into an
hybrid approach, displayed in Fig 4e, entailed a slight
degradation of the solution when compared to the results in
Fig. 4c. On the other hand, the reconstructions 4b and 4d
were contaminated by artifacts. Particularly, Fig. 4d seems
to indicate that y, should be increased in order to improve
the MAXENT-O0 regularization. However, a bigger value for
the regularization parameter in this case only enhances the
filtering of low entroy structures in the inverse solution,
removing artifacts but also valuable information, as shown
in Fig. 4f. Even increasing considerably the level of noise
added to the data (from | to 8%), the MINENT-1 method
still yields good results, as seen in Fig. 5, illustrating the

robustness of the proposed inversion algorithm.

clot: 0.1 1 1N
Figure 5 - Conductivity map i logarithmic scale; y, =0 e
7, = 0.50, data with 8% gaussian noise (true model shown
in Fig. 4a).
Figura 5 - Mapa de condutividade em escala logaritmica;

% =0ey =0,50, dados com 8% de ruido gaussiano (mo-
delo exato apresentado na Fig. 4a).
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0.6355  0,0210 0285306

0.0078 0.0233  0.8791
03134 0.0222 09003

0.5095 0.0272 0.9160

0.8000 0.0280 0.9575

Table 1 - Numerical results for test cases of Fig. 4.

Tabela 1 - Resultados numéricos para os casos leste da
Fig. 4.

(A) Case 1

-1
p’ € e L ot pl
I . .51
10
EETTTEIS: sla i i sy Lo vesys trela s piu ey sli s s ey gy
( 20 40 60 B0 100
iterations
(B) Case 2
1
p, € 10" — 2
- g2
10 ' }
r |
_;J.“n“ul.|n“n|I|“““1,I..|.|n|.||.|..-u.
0 100 160 200 260
iterations

Figure 6 - Error € and residue p versus the iteration
number for test cases 1 and 2.

Figura 6 - Erro € e residuo p em fun¢éo do niimero de
iteragdes para os casos teste | e 2.
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A comparison of entropy results in Tab. | indicates
that, while the zeroth-order entropy values span over a
relatively narrow range (0.85 < S < 0.96), the first-order
entropy figures have a much higher variability (0.41 < §
< 0.83), the lowest levels being associated to the best
reconstructions. This result suggests that the MINENT-|
regularization technique constrains the class of possible
solutions into a restricted set of low entropy models,
constituted by locally smooth regions separated by sharp
discontinuities.

Figures 6a and 6b display € and p as a function of
iteration, for test cases 1 (no regularization) and 2
(MINENT-1 regularization). In the absence of any
regularization, as iteration proceeds, the inversion
procedure overfits the data, degrading the inverted model
and, thus, increasing the value of €. In contrast, the
regularization scheme in case 2 assures a monotonic
reduction of the error. However, the converged value of p
is smaller in case | than in case 2 (see Tab. I), which
perfectly illustrates the trade-off between entropy and
residue performed by the MINENT-1 method.

To further compare the MAXENT-0 and MINENT-|
methods, two different configurations (models a and b)
were considered, respectively depicted in Figs. 7a and 7b.
Configuration a has relatively low zeroth-order entropy
content (S = 0.8558), and consists of a conductive prism
Q' embedded in a half-space Q', with o '/o " = 10. The
second model depicts a half-space Q" with a resistive
inclusion Q? (¥ a*=0.1). and, as opposed to the first test
case, has a zeroth-order entropy value close to its maximum
(5 )=0.9977). Both examples have low first-order entropy
levels (S = 0.5420 and 5= 0.1632).

As expected, the MAXENT-0 method gave an
excellent result (Fig. 7f) when applied to model b, the only
one with a high S level. Although the true model is still
evident in Fig. 7e, the reconstruction was heavily degraded
by spurious structures. As already seen in the previous
example (Fig. 4f), a further increase in the value of y, will
only lead to an unnecessary loss of resolution, without
enhancing the overall quality of the reconstructed model.
These results clearly indicate that maximizing § may not
be the best approach when looking for low entropy models.

In comparison, the MINENT-1 method properly
recovered models a and b, as presented in Figs 7c and 7d.

These results show that, when there is prior evidence about
the low entropy content of the true models, the MINENT-1

regularization scheme allows to introduce a certain degree




of roughness into the inverse solutions, while preventing
them to be contaminated by artifacts. This feature is not
shared by the classical regularization schemes, which
maximize smoothness for some tolerable level of misfit to
the data (Smith & Brooker, 1988; Gull & Daniel, 1978).
For instance, results similar to those displayed in Fig. 4¢
may only be obtained by Occam’s inversion if the exact
placement of the sharp discontinuities in conductivity is
known a priori (deGroot-Hedlin & Constable, 1990).

(b) true model

(a) true model

(d) 96 =0, 71 = 0.060

o
=
0

(e) 40 = 0.025, 31 =0 (f) %0 = 0.500, 9, = 0

alot: 0.1 L 10
Figure 7 - Conductivity maps in logarithmic scale.

Figura 7 - Mapas de condutividade em escala logaritmica.

Model  Figure ¥, Y

it Tc 0.000 0.025 43 0.0667 0.0157 08630 05925

Te 0.025 0.000 126  0.6533 00146 09026 09039

b 7d 0.000 0,060 100 09829 0.1190 09969 05190
m 0,500 0,000 200 05547 01019 09974 0.8465

Table 2 - Numerical results for test cases of Fig. 7.

Tabela 2 - Resultados numéricos para os casos leste da Fig. 7.
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CONCLUSIONS

The data from an electromagnetic experiment
constitute a blurred image of the earth structure (Oldenburg,
1990). In this paper, a new inversion technique, called the
minimum first-order entropy (MINENT-1) method, was
proposed for the reconstruction of two dimensional
geoelectric conductivity distributions from MT data. The
method combines an iterative search with a regularization
technique based on the assignment of an entropy measure
to the vector of first-differences of the unknown
conductivities.

Numerical simulations, using synthetic data corrupted
with gaussian noise, have shown that the MINENT-1
algorithm converged to excellent 2D earth models, yielding
in many cases results that are superior to those obtained by
the maximum entropy formalism. These results suggest that,
unlike other classical regularization schemes, which
maximize smoothness for a given data, the proposed method
constrains the class of possible solutions into a restricted
set of low entropy models, constituted by locally smooth
regions separated by sharp discontinuities. Many
geophysically interesting properties and structures may
behave in a similar fashion.

In summary, the MINENT-1 method is an effective
approach for the incorporation of prior information about
the local smoothness of the true physical model. Natural
extensions of the present work include the development of
an accurate three-dimensional forward model for dealing
with field data, and the improvement of the computational
efficiency of the algorithm,
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INVERSAO NUMERICA DE DISTRIBUICOES
BIDIMENSIONAIS DE CONDUTIVIDADE GEOELETRICA
A PARTIR DE DADOS MAGNETOTELURICOS

Campos eletromagnéticos induzidos por
fontes naturais da ionosfera e da magnetosfera
para determinar a condutividade elétrica da
Terra tém uma ampla aplica¢do em geofisica,
tais como prospecgdo de petroleo e de dgua no
subsolo, e mineragdo. Este problema inverso,
também conhecido como inversdo magneto-
telurica (MT), é particularmente importante em
regides em que a analise com os métodos sis-
micos convencionais € dificil.

Algoritmos de inversdo de dados MT
comumente envolvem uma busca sistemética
de um modelo de solo que melhor ajuste os
dados observados. O processo de inversido
consiste na minimizagio de uma fun¢éo obje-
tivo, que inclui a diferenga quadratica entre
os dados calculados pelo modelo numérico
(matemadtico) e os dados observados, e uma
fung¢do de regularizagdo. O termo de regulari-
zago expressa uma informagdo adicional so-
bre a geologia do sistema, o que permite esta-
bilizar a resposta do modelo inverso, pois pro-
blemas inversos sdo tipicamente instaveis, o
que pode ocasionar solugdes esplrias sob a
presenca de ruidos. Nos métodos cldssicos de
regularizagio, desenvolvidos por Phillips
(1962), Tikhonov (1963) and Twomey (1963),
solugdes otimas sdo obtidas com a ajuda de
um operador de swavizagdo, que essencial-

mente calcula a primeira e a segunda deriva-
das numéricas das condutividades.

Neste trabalho propde-se uma nova técni-
ca de inversdo, chamada de método da minima
entropia de primeira ordem (MINENT-1), para
reconstrugdo de distribuigdes bidimensionais
de condutividade geoelétrica, a partir de da-
dos magnetoteluricos (MT). O método combi-
na uma busca iterativa com uma técnica de re-
gularizagdo baseada na minimizagao da medi-
da de entropia do vetor de diferengas primei-
ras das condutividades a serem estimadas. Si-
mula¢des numéricas, com a utilizagdo de da-
dos sintéticos contaminados com ruido
gaussiano, mostram que o algoritmo MINENT-
I produz excelentes reconstrugdes de
condutividade, com resultados melhores que os
obtidos pelo método da maxima entropia. Di-
ferentemente dos outros esquemas classicos de
regularizagdo, que maximizam suavidade para
um determinado conjunto de dados, o método
proposto limita a classe de possiveis solugdes
a um cojunto restrito de modelos de baixa
entropia, constituido por regides localmente
lisas separadas por discontinuidades abruptas.
Esta abordagem pode ser bastante eficaz para
incorporagdo de informagdo «a priori sobre a
natureza da suavidade local do modelo fisico
real.
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