doi: 10.1590/S0102-261X1997000300C

SOME LIMITATIONS FOR THE APPLICABILITY OF THE RAY
METHOD IN ELASTODYNAMICS

M. M. Popov' & S. Oliveira?

The ray method in the frequeney domain deseribes the asymplotic behavior of the wave field for
large [requencies which is not, in general, uniform with respect to the distance between the source
and the point of observation. This implies that one can face situations in which the results obtained
by the ray method may not be reliable for large distances from the source, if the dominant frequency
is not high enough, In this paper we present two examples of such a type of problem for rather
simple elastodynamic problems: a homogencous medium: and a constant gradient velocity medium
without interfaces, Por both cases, the sources are assumed to be represented by two successive
terms of the ray series, and therefore there are no point sources problems in our study. To this end
we employ the following criterion ol validity of the ray method: the absolute value of the ratio of the
second term of the ray series to the first one must be less than unity. This criterion turns out to be
sensitive to the radius of curvature of the initial wave front and to the initial distribution ol the
amplitude (or energy) along it. In the worst case of an initially planar wave front with nonuniform
distribution of the amplitude. the second term of the ray series increases very fast. This gives rise to
strong limitations (o the use of the ray method with respect to distance if the frequency is lixed, or
with respeet to frequeney for large distances. The depolarization phenomenon in both cases is
discussed as well.

Key words: Ray method; Elastodynamics; Validity of asymptotics.

ALGUMAS LIMITACOES A APLICABILIDADE DO METODO DO RAIO NA
ELASTODINAMICA - O método do raio descreve o comportamento assintético do campo de
onda para altas fregiiéneias. Em geral, este comportamento ndo ¢ uniforme eim relagdo a distancia
da fonte ao ponto de observagao, Isto significa que este método pode fornecer resultacos erroneos
caso a freqiicncia dominante ndo seja suficierenente alta para caleular o campo a grai 1des dis-
tanias da fonte. Neste trabatho sio apresentados dois exemplos envolvendo problemas simples de
propagagdo de onday eldsticas, onde o método do raio encontron a citada dificuldade de aplica-
gao. Exstes exemplos envolven wm neio homoséneo ¢ outro de gradiente constainte de velocidade,
ambog sem interfaces e onde consideranos o campo sendo gerado por wma frente de onda inicial e
e por wma fonte pontual. Para chegar a este vesultado, aqui foi aplicado o seguinte critério de
validade da teoria do raio: o valor abseluto du razéio entie o segundo termo da série do raio ¢ o
primeiro deve ser menor que a unidade. Tal critério é sensivel ao raio de curvatura da frente de
oneet inicial e distribuicdo de amplitudes (ow energia) ao longo deste. O pior caso se refere a frente
de onda inicialmente planar ¢ con distribuiedo frregnlar de amplitndes. Neste caso, o segundo
teento cresce muite rdpido, implicando.em severas limitagdes para o uso do método do raio com
refagdo a distdncia ¢ fonte, caso a fregiichcia seja fivaca, ou com respeito a freqiiéneia, se esta
distdneia for muito grande. O fendmeno de despolarizagdo também é discuticlo nos dois exemplos.

Palavras-chaves: Método do raio; Elastodindmica; Validade da aproximagdo assintdtica.
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INTRODUCTION

In anumber of geophysical applications, the ray method
is used in situations when the dominant frequency of a wave-
let is relatively small while the distance between the source
and an observation point is large. Even if the characleristics
of the inhomogeneous medium in such cases vary slowly as
compared to the wavelength, the results obtained by the ray
method may not be reliable. This conclusion follows from
the fact that the ray method (as well as Maslov’s and Gaussian
beam methods) describes the asymptotic behavior for high
frequencies, but are not uniform, in general, with respect to
distance. On the other hand there are few examples in geo-
physics when the exact solution to elastodynamic wave
propagation problems is available in closed analytical form.
For instance the point source problems for an unbounded
isotropic homogeneous medium as the center of dilation or
rotation, and concentrated force in general (Aki & Richards,
1981). These solutions have the form of several terms of the
ray series in 3-D and infinite asymptotic series for far field
in 2-D. For example, in the case of the center of delatation in
3-D, it consists of two terms of the ray series. In fact, these
solutions in the frequency domain depend on the product 47,
where £ is the wave number and r is the distance to the source.
Therefore, asymptotics of the wave field for large 4 turns
out to be uniform with respect to large . Though these ex-
amples are very specific, they are exceptions in wave propa-
gation theory, and tell nothing about more general cascs.
They give the idea that there are no limitations for the use of
the ray method with respect to the distance to a source. If,
however, one can find hints on the existence of such limita-
tions in literature they are supposed to be caused by the varia-
tion of the velocity along rays. In other words, limitations
may appear only in inhomogeneous media, see e.g. Cerveny
etal. (1977), page 204,

The main approach of this paper is to present some
clarifying examples in which the ray method in
elastodynamics faces serious limitations. For this aim we
employ a criterion of validity of ray series suggested by
Popov & Camerlynck (1996), and based on the theory of
asymptotic series. According to this criterion we have to
examine the absolute value of the ratio of the second term
of the ray series to the first one. If this ratio is less than
unity for given values of all the parameters of the problem,
the main term can be used for approximation of the wave
field; but not in the opposite case when the ratio is greater
or equal to unity.
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Unfortunately, this criterion is not easily applied, be-
cause the calculation of the second term of the ray series,
though not very difficult in principle, requires cumbersome
evaluations. Therefore we restrict ourservels to consider-
ations of rather simple models for which the necessary cal-
culations can be carried out almost analytically. Note that
the problem of validity of the ray theory has been studied
in the above mentioned paper by Popov & Camerlynck
(1996) for the reduced wave equation in 2-D but also for
more complicated models (wave-guide propagation).

In the first example we consider a 3-D homogeneous
medium and assume that the initial wave field is given in
the form of two terms of the ray series. The radius of cur-
vature of the initial wave front is denoted by R and may
vary in a wide range. Obviously, for an initially plane wave
front R = oo, The parameters involved are the following:
radius of curvature R of initial wave front, distance to the
point of observation, circular frequency w and distribution
of the amplitude (or energy) along the initial wave front.
We study the behavior of the second term as a function of
these parameters. It turns out that, in the case of the plane
wave front and non-uniform distribution of the initial am-
plitude along it, the second term increases proportionally
with the distance to a point of observation. This strongly
limits the use of the ray method with respect to distance if
the dominant trequency is not large, or with respect to low
values of frequency if the distance is large.

In the second example we consider a constant gradi-
ent velocity model without interfaces. Unfortunately, in this
case we had to study a 2-D problem because of the exten-
sive analytical calculations required. The parameters in-
volved are the same as in the first example. It seems that
here, the limitations to the ray method are even more se-
vere in the case of an initially plane wave front and a non-
uniform distribution of the amplitude along it.

We would like to emphasize that the two examples do
not correspond to the point source problem mentioned
above, in which the curvature of any wave front and the
amplitude on it are strongly connected. In our examples
both the curvature of the initial wave front and the ampli-
tude on it are independent parameters. This is different to
the problem considered by Vavrycuck & Yomogida (1995),
and their formula for the second term of the ray series in
the frequency domain can be obtained in our first example
for particular values of these parameters. However, point
source problems in inhomogeneous media are in broad use
in geophysics and its applications, therefore it would be
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very interesting to check the validity condition of the ray
method for those point source problems. Unfortunately, we
face the caustic problem in the very beginning of such in-
vestigations because even in the vicinity of a point source,
the integral in the expression for the second term of the ray
series (see Eq. (6)) becomes singular. Thus, some, regular-
ization procedure is required to compute the integral
(Babich & Kirpichnikova, 1974). Then, in order to calcu-
late the ray amplitudes on a given ray one needs to know
rays which form a narrow ray tube centred on that ray, so
the corresponding problem is actually local one. Therefore
our results are valid for an arbitrary wave front which is
locally spherical, i.e. is spherical in a vicinity of the given
point on it. However, in general cases not only the curva-
ture of the inicial wave front but also its derivatives influ-
ence on the second term of the ray series. We do not in-
volve these derivatives into consideration as additional
parameters of the problem in order to simplify calculations
and because they will not change significantly the results
obtained in this paper.

BASIC FORMULA OF THE RAY METHOD

Consider a nonhomogeneous elastic medium with

Lame’s parameters A, zzand density p. The ray series in the
frequency domain is represented in the form

o} N
uﬂ

U= e—iw(l— 7)
;1:0(f0))'1

(M

where {/ means the displacement vector, u, is the ampli-

tude vector and ris the eikonal. The main term corresponds
to n =0 and the second one to n = 1.

From here on we shall consider P-waves and for
we have the following expressions

_ Wol(o. B)

g = appVT, Py ey

)

where,
2
S \{ﬂ. + 2u
y2)
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is the velocity of P-waves, J is the geometrical spreading

J = i D (..1'1. X3, X3
' D{r, a )

o

and the function y, (a, p) of the ray parameters o, S de-
scribes the distribution of the amplitude along the initial
wave front.

The second term u'l(o) has the form

iy =ag Vr + 40, (4)

where u’l(o) is orthogonal to V7 and because of this it is

called mixed term. It can be represented as follows

(0) a’ '

Wy = — M (up).

LT (o) (5)
The expression for ¢, is more cumbersome

.(0)

I (e /aJ .
N o | V1 @D = [ MG

+ L(iig), V1) dt]. (6)

To complete the formulas for the second term, we must

write down the expressions for the operators M and L.
For an inhomogeneous isotropic medium in Cartesian
coordinates, these formulas read

M(A) =+ p) [Vediv A+ V(4,V7))
+ pAAT + 2u(V,V) 4 + VA(A4,V7) )
+{V, [4,VT]] +2(V, Vi) 4

wh;re [Vu, [A4,V]] stands for the double vector product,
an

LA = +p) VdivA + uAAd + div AV

+[Vy, rot A]+2 (Y, V) A. ®)
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For details see Cerveny et al. (1977), and original
papers Karal & Keller (1959), and Alekseev et al. (1961).

Being rather cumbersome Eqgs. (5) and (6) require spe-
cial algorithms in order to apply them to geophysical mod-
els. An algorithm for computations of the second term has
been suggested by Kirpichnikova et al. (1994).

EXAMPLE 1: HOMOGENEOUS MEDIUM

Suppose that the inicial wave field is given by two
terms of the ray series with a spherical wave front of radius
R centered at the point X, =-R x,=x,=0,seeFig. I. We
consider the central ray of a ray tube which coincides with
x, axis and calculate the second term along this central ray.
To this end we actually have to study rays from the ray
tube around x axis and do not need to know the global
behaviour of the corresponding family of rays.

Let 0 and ¢ be the angles of the spherical coordi-

nates —g <0< %, 0 < ¢ <27, and let us introduce the

ray parameters o and B by the following formulae

AN X3

X1

Figure 1 —Initial wave front and ray parameters.

Figura I — Frente de onda inicial e pardémetros do raio.
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o= RO, B = Rep, 9)
so that they have the sense of length along the initial wave
front. Note that these parameters are suitable to study the
uniform transition from the spherical initial wave front to
the plane wave front, when R = « and the angles of the
spherical coordinates cannot be used as the ray parameters
anymore.

Then, the corresponding family of rays as a function
of the ray coordinates t, o, B takes the form

X = (R + ar) cos (%) cos (%) - R,

Xy = (R + ur) cos (%) sin (%),

(10)

x3 = (R + ur) sin (%}.

For the central ray of a ray tube we have =0, p =0
and o = 0, B = 0. By substituting Eq. (10) into (3) we get
the following expression for the geometrical spreading

(R + ar)2

a
J T cos (E)’ (n

where the eikonal t can be regarded as a function of the
coordinates x,, x, x,. Indeed, eliminating the ray param-
eters o and f3 in Eq. (10) we obtain

J" 2 2 2
/) + )" + x5 +x3 - R
= ! ‘ (12)
a

This allows us to further simplify the calculations. By de-

noting y(q,p) = ¥0(@P) we combine cos (ﬁ) in Eq. (11)
cos(Z) R

with an arbitrary function ¥, and present the function ¢, in

(2) in the following form

@y = R '/70 (a’ﬂ)
0 R+ ar \/a—p— (13)
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which is more convenient for the following calculations.

Consider first the mixed term u'l(o) in Eq. (4). For ho-
mogeneous media it follows from (7), that

M (A= + @) [Vediv A +V (4, V)]
+ u[2(Vr, V) 4 + Aat), (14)

where we have to substitute 4 by g aVr.
Employing Eqs. (9)-(14) we obtain for the mixed term

0 _ ‘Ia R

/ ‘ Vi, (a, B),
i \p R+ar vy (o, B) (15)

where the gradient of W, has to be calculated with respect
to the coordinates x, i = I, 2, 3. Therefore, to complete

(15), we must regard V, as a compound function ofx, i=

da
A have to be computed on

the central ray of the tube, i.e. on the x, axis. We deduce

1, 2, 3 and the derivatives

from Eqs. (10) the following result for the desired deriva-
tives on the x, axis

| _al a4l R
o, —o P2y, -0 A3ly, =0 1R
P _®B _o B __ k(6
ékl Xy4=0 &3 Xy3=0 (362 X;3=0 %) & R

Taking into account Eq. (16) we obtain the final
expression for the mixed term on the central ray,

! 2 . =

ul(o’ = ”‘;a 4 ) Wo ¢y + oo ez}. (17)
\( P (R + xl) oo aB

where by ¢, (j= 1, 2, 3) we denote the basis vectors of the

Cartesian coordinates.

Consider further the function ¢, given by Eq. (6). We
have to apply the operator M in (14) to the mixed term

(15) and the operator L to . If follows from Eq. (8) that

L (u(]) = (7\, + ﬂ) div li() +ﬂA u() . (18)
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Then, we have to calculate the scalar product

(M (ul(o)) + L(ll'()), V1) on the central ray x, = x, = 0.
Being not difficult in principle, the corresponding
calculations turn out to be cumbersome. In order to reduce
the size of the paper we omit them and confine ourselves
to the following remarks for calculation.
1. In a homogeneous medium ¢, satisfies the trans-
port equation

2(Vr, V) + pAr=0,

which allows us to eliminate e.g. scalar product (Vr,
Vg,) in intermediate results.
2. By introducing the vector

ro= (R + xl)e| + X2(3.2 + X3é3

we can present the eikonal zin (12) in the form

I
r,”)2 =R
p= 0 =R (19)
a
which seems to be useful in calculations. U-
sing (19) one can, for instance, easily obtain

2
a(R+ar)"

a

3. The function ¥ (a, ) depends on the ray parame-
ters (9) and has to be regarded as the compound

function of the coordinates w (a(x, x, x), B(x,
x, x,)) in all intermediate calculations. It remains
constant along each ray what implies that every ray

belongs to a surface W = &, for a certain constant
value of k in the right-hand side. On the other hand,

it is well known that V7 is orthogonal to this sur-
face and therefore V7, is orthogonal to Vr di-

rected along the ray, i.e. (Vg, Vr) = 0. The lat-
ter identity provides simplifications in intermedi-
ate calculations.

4. In developing an expression with operator M (i I(O))

the following equality has to be taken into account:

R A

=0. 20
B By &y 20
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The proof of Eq. (20) follows by differentiating Eq.
(19),

8%r 8y (éj,';)(e)c,’;)
O 0%, o(r ey o @n
XjO0%k  a(r,r) a(r,r):

Then,

i o g, o
e Ox; Ox;Oxy 8xk
i rari 61 0wy, 76277 6%,
P 0Ox;, axk axj ox Ox ; Ox Ox,
- Vz,Vy
= (V2,9) (V2,V i) - V7V V0 @2)
a(r,r)
Ve,V
" (v 200/
a(r,ry:

Eq. (20) also provides simplifications.
Eventually, after some mathematics we arrive at the
following result

© L (0) ' B - R
(M) + L), Vo) = Jap | * -~ Ay

2ap 23)
(R + ar)2 =

where Ay, means Laplace operator in coordinates X, x
x, applied to the function .
In the last step we have to calculate the right-hand

side of Eq. (23) on the central ray & = 8= 0. Based on Eq.
(10) we obtain

Fa 3B
2 —0’ 2 _0!_/_]72,3
4 la=p=0 a=p=0

Further, using Eq. (16). we get

A —[52"’0(5“) Tl By
V’oazﬂ:o L 0.,'32 a2/ ta=p=0=
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R 52:// 0"21//
o R) P 7+ ﬂzola B=0- (24)

= (

Employing Egs. (11), (23), (24) we arrive at the following
expression for ¢, given by Eq. (6), on the central ray x, =
=0ora=f£=0:

= 0,0

Pla=p=o Jap(x; + R) {V/l( )
ax; [wy(0,0) R - (25)
w+R| R T2 (Bap¥0u = =0

where A denotes the Laplace operator,

afl

D o~ e
~_ Oy 9y

Vo = + x
RGN op*

Apparently, for ¢, on the central ray we have

w000 R
Og=p=0 ~ ‘/‘ R+x| (26)

Note that, to apply the criterion of validity of the ray

series we have to consider the ratio of the mixed term u.I(O)
and of ¢, over .. So the multiplier R/(R + x,) before brack-
ets should not be taken into account.

Based on the Eqs. (17), (25) and (26) we arrive at the
following conclusion.

If the distribution of the amplitude (or energy) along
the wave front is uniform, i.e. , does not depend on the
ray parameters o, £, the mixed term vanishes. Depolariza-
tion phenomena does not exist in homogeneous media.

From Eq. (25) for ¢, it follows that no serious limitations
for the use of the ray method appear. Indeed, the dominant

X
term R(R—J'rxl) in (25) tends to 1/R for large x, and does not

increase. By means of moderate values of circular frequency

w, the ratio |11}/ (@|uy|) can be kept less than unit for an
arbitrary distance from the initial wave front.

Suppose now that the amplitude is not distributed uni-
formly along the initial wave front and that the derivatives

of ¥0 with respect to the ray parameters do not vanish. In
this case we may observe a depolarization phenomenon,
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but its magnitude decreases with distance as 1/(x, + R)’
and depends on the radius of curvature R of the initial wave

front. In Eq. (25) for ®, the last term dominates and for
large distances it starts to depend upon R due to

X)
lim
x> x| + R

= R. The criterion of validity of the ray

series becomes sensitive to the radius of curvature of the
initial wave front.

[n the limiting case of an initially plane wave front (R
= o0) the situation changes drastically. The depolarization
takes place and its magnitude remains independent of the

distdnce x,. But for ¢, we get in this case

ap

Ollg oo = {Wl (0,0) - ;x| (A Vo) a=p=0 }(27)

and ¢, grows proportionally to the distance x, along the

ray because Aa/;l/7(), in the right-hand side of (27) is not
equal to zero. This leads to strong limitations for the use of
the ray method with respect to both distance and frequency.
For large distances, we have to use high values of frequency

in order to keep the ratio ‘/|/(@'1y)) less than unity; and
to study the depolarization phenomenon, we also have to
take into account the first term of Eq. (4), which contains
¢, and essentially limits the validity of the ray method.
Otherwise we can get wrong results in the case under con-
sideration.

As an illustration of these results, the behavior of the
ratio log ill'l(l);/fl/‘() , where u'l(') = a@ Vr, as a function
of the distance x and the radius R of the initial wave front
is depicted in Fig. 2. In the numerical computations we set
a=2500m/s. For convenience we assumey,, and y,, along
with the second derivatives of , to be equal to one on the
central ray under consideration, with oo = # = 0. Though
the latter option of y, and , may seem to be artificial, it
allows to demonstrate a trend in the behavior of this ratio.
Of course, we could impose other values for i, y, and the

derivatives of , on the central ray, but it will not influ-
ence the trend of the curve on Fig, 2, what can be deduced

from Egs. (26) and (27). Notice that, in principle, a source

of the wave field predetermines y; and y, as the function
of the ray parameters but their finding in the particular case
of the source may be a difficult task.
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Figure 2 — Evolution of log i with distance (in km) for
0

different radius R of initial wave front. Logarithm scale is
used in both axes.
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Figura 2 — Evolugdo de log | com a distancia (em km)
0

»
2
parafrente de onda inicial com raio R. Escalalogaritmica
¢ usada em ambos os ¢ixos.

EXAMPLE 2: CONSTANT GRADIENT
VELOCITY MODEL

Consider a 2-D inhomogeneous elastic medium with
the velocities a and b of the P and the S waves, respec-
tively, given in the forma = a, + x,a,andb=5b +x,b,. We
suppose that the density p=1 is constant and p= 1.

We assume that an initially cylindrical P-wave front
with radius of curvature R passes the origin of the Carte-
sian system with coordinates x , x,. The central ray of a ray
tube starts from the origin under the angle n/2 — 0 with the
x, axis, see Fig. 3.

Each ray from a ray tube can be specified by the angle
¥, see Fig. 3, but instead of y we use o = yR as the ray
parameter. The corresponding families of the rays can be
presented in the form

5
r(o)

xy = r(o) sin (7(;—) +0 +%) +C,

% = —r()cos(— +0 +%) +E (@),

(28)
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where s is the arc length along the ray, » is the radius of
curvature of the ray. It is well known that the rays are arcs
of circles. Apparently, x, = & (o) and x, = C are coordinates
of the centrum of the circle. Notice that £ does not depend
on the ray parameter.

R Y
o
O X,
.// 0 "‘a\
- L \
N

Figure 3 — Initial wave front and the ray parameters in 2-D
case.

Figura 3 - Frente de onda inicial ¢ pardmetros do raio no
caso 2-D.

For o = 0 we obtain the central ray of a ray tube,
which starts from the origin for s = 0. This implies that &
(0) =r (0) cos @and £ = -r (0) sin 6. All other rays from a
ray tube start when s = 0 from the initial wave front given
by the expression

x, = -Rsin@+ R sin (0+y),
x,=-Rcos 0+ Rcos (6+). (29)

Combining Eqgs. (29) and (28) for s = 0 we arrive at
the following formulas for » (o) and & (o).

Rcos(0 + q—) ~ Rcos@ -¢
r(a) = ,,,,,_,,‘,,,,,,,,R,_,,,75,,,,‘. o
sin (6 + =)
£ 60
é(a) = r(a) cos (09 + ER)+ R sin (0 + %) - Rsing.
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Thus, Egs. (28) and (30) describe the desired family
of rays, corresponding to the particular problem under
consideration. In this case we used s and o as the ray
coordinates instead of the eikonal rand a.

Eq. (2) for the main amplitude # of the P-wave holds
true in this case also, but the geometrical spreading (3) takes

the form
BELLICITE [N .7 {cos ©0+2
Dits:a) Rsin(0 + & i
R

€1y

s

+0+ g)}
r(a) R

—cos (

In order to derive an expression for the mixed term

u’l(o) we have to apply the operator M to the main ampli-

tude 2 given by Eqgs. (2) and (31). Though Eq. (7) for M
can be slightly simplified in the case under consideration,
corresponding calculations turn out to be bulky. By intro-

ducing the unit vector ,; orthogonal to the ray.

R

(o)

. o, - . s
n = cos ( +0+ e —sin(
r R r

o, -
(OL) + 0+ R)ez (32)

with ¢, ¢, being base vectors of Cartesian coordinates, and
after some algebric manipulations, the expression for the
mixed term can be written down in the form

il = — (4, nyn, 33)

4= 2b Vb - ave, + 26 o ¢y Va (33)
a a?
where V means the gradient in Cartesian coordinates. It
follows from Eq. (33) that the mixed term does not vanish
in this case even if the distribution of the amplitude along
the initial wave front is homogeneous, i.e. i, does not de-
pend on a.
To develop an expression for ¢, defined by Eqs. (4)
and (6), we had to use the software “Mathematica”and then
to carry out the numerical calculations for the final results.

In the computations we have used the following values for
the velocities a = (2500 + 0.104x,) m/s and b = (1750 +
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0.073x,) m/s. As in previous example, w, and the de-
rivatives of 1, with respect to the ray parameter were put
equal to unity.

(1)
iy

The evolution of log “with distance along the cen-

H(J;

tral ray, fixed by 0 = %, is depicted in Fig. 4 for different

values of the radius R of the initial wave front. In general,
the behavior of the ratio is similar to the case of a homoge-
neous medium (compare with Fig. 2). Thus, in this example
we also face the situation when restrictions for the use of
the ray method appear with increasing distance to the ini-
tial wave front.

We examine the depolarization phenomenon study-

ing the absolute value of the ratio of the mixed term 1(0)

to the main term #, for non-homogeneous distribution of
the amplitude along the initial wave front. The correspond-

—(1) T )
Uu
log —1710~
8 + R=100Km|
75 b -
“R=10Km
2L 4
6.5 |- o

10 50

Figure 4 — Same as Fig. (2) but for the constant gradient
velocity model. The distance along the central ray is
indicated on horizontal axis.

Figura 4 — Grdfico correspondente ao da Fig. (2), mas
para o meio com gradiente constante de velocidade. A dis-
tdncia ao longo do raio central é indicada no eixo hori-
zontal.
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Km

ing results are depicted in Fig. 5. For moderate values of R,
the ratio declines with distance along the ray, while for
large R and an initially planar wave front it remains almost
independent of the distance. However, precisely in those

cases the first item # 2

=ap V1 of the second term (4)
has to be taken into account due to its dominant role in the

regulation of the applicability of the ray method itself.

0
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Figure 5 — Depolarization phenomen on. Evolution of log
() )
¥

‘ ¥ . with distance along the central ray for different
U
values of radius of the initial wave front.

Figura 5 — Fenémeno da despolarizagdo. Evolugdo de log
i i (0) |

I

i com a distdncia ao longo do raio central para dife-
g |

rentes raios de curvatura da fiente de onda inicial.

CONCLUSION

It follows from the examples discussed above that se-
rious restrictions to the ray method in elastodynamics may
appear even for rather simple models. In the cases under
consideration, the validity of the ray theory is sensitive to
the distribution of the amplitude along the initial wave front
and its radius of curvature. But are they the only param-
eters which strongly influence the behaviour of the second
term of the ray series? The worst situation is observed for
the initially planar wave front and a nonhomogeneous dis-
tribution of the amplitude along it. Even for small varia-
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tions of the amplitude in the lateral directions the second
term grows proportionally to the distance between the ini-
tial wave front and the point of observation. Thus, to keep

the value of the ratio 1, /(@ u, ), which regulates the ap-
plicability of the ray method, less than unity we have: ci-
ther to increase the low limit of frequency with increasing
distance, or if the frequency is bounded {rom above, to
limit the value of the distance. We stress once again that
for both examples the well-known validity conditions of
the ray theory, such as small variations of the medium along
a wavelength, and of a gradient of the amplitude compared
to the amplitude itself are fulfilled. Nevertheless, the ray
theory may be out of the range of its validity. This proves
that being rather heuristical, those conditions cannot be
regarded as sufticient and therefore reliable in every case.

We could and would like to suggest the following in-
terpretation to these resulls.

If we consider the ray theory only to the first approxi-
mation, taking into account only the main term n =0 of the
ray series (1), we can construct a beam of the wave field
which propagates along the central ray without spreading.
The whole energy of the wave field will remain in this beam
because the energy propagates along ray tubes and there
are no transversal diffusion of it across the ray tubes.

Indeed, in the first example we have family of rays
paralell to the x, axis originally emanated from the initial
plane wave front. Varying the amplitude, exactly the func-
tion ¢,, along the initial wavefront this ray field can be
bounded in the lateral directions. To this end ¢, should be
non-zero only in some domain on the initial wave {ront
and then it has to be extended smoothly to zero values in
the rest of the initial wavefront. Thus, the obtained wave
beam does not spread in the lateral directions at all be-
cause the geometrical spreading is constant everywhere.
The energy of the initial wave field will propagate with
this beam without transversal diffusion, and no limitations
with respect to the distance of propagation of this beam
appear.

Itis, however, apparent from the physical point of view
and from experiments as well, that such view and from
experiments as well, that such type of propagation phe-
nomenon cannot exist. We know from mathematics that a
source of finite geometrical dimensions gives rise to a
spherical wave for large distances from it in 3-D, but not
for the beam above described. Evidence for that exists also
in the ray theory itself, but we have to take into account the
second term n = | in the ray series (1). Exactly in this case
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the second term increases with distance what sets up a limi-
tation for the existence of such a beam with respect to dis-
tance. Thus, we can conclude that the ray method fails in
these particular cases because it does not describe properly
the transversal diffusion of the energy of the wavefield.

It would perhaps be an exciting task just to check
whether numerous applications of the ray theory in geo-
physics have been carried out in frames of the validity of
the theory. Unfortunately, this task will require extensive
studies of the second term of the ray scries and develop-
ments of the corresponding computer codes.
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O método do raio ¢ uma lerramenta para estudos de pro-
pagagio de onda largamente usado na sismica ¢ na sismologia.
I:ste método ¢ empregado particularmente em situagoes onde
a velocidade do mcio varia lentamente comparada com o com-
primento de onda dominante ¢ em que ¢ necessirio caleular o
campo a uma grande distancia, medida em comprimentos de
onda, da lonte. Porém, mesmo se a velocidade variar muito
suavemente, os resultados obtidos pelo método do raio podem
niio ser conlidveis para a situagdo descrita anteriormente, ista
conclusiio ¢ conseqiiéneia de que o método do raio fornece
resultados que sdo assintoticos com relagdio ds allas freqiiénei-
as, mas cstes, em geral, ndo sdo uniformes com relagiio a dis-
tancia. Contudo, na literatura, tais limitagoes a aplicabilidade
deste método sio estudadas a luz de critérios heuristicos, lor-
mulados em (ermos da variacio da velocidade ao longo do
raio ¢, portanto, aparentemente, sO aparceeriam em meios he-
terogéneos.

O objetivo deste trabatho ¢ apresentar alguns exem-
plos esclarceedores nos quais o método do raio, aplicado a
propagag¢do de ondas clasticas, encontra sérias diliculdades.
Para este propdsito nds empregamos um critério de valida-
de que € consistente com a Leoria das séries assinloticas. De
acordo com esle critério, ¢ necessario que se examine como
se comporla a razio entre o scgundo termo da série do raio
com relagdo ao primeiro termo desta séric. Sc esta razio for
menor que um. o primeiro ¢ principal termo pode ser usado
como uma aproximagio do camp de onda. Caso esla razio
seja maior que um, o termo principal ndo pode ser conside-
rado uma aproximag¢io valida para o campo. Inlclizmente,
este critério ndo ¢ facil de aplicar, pois a obtengido do sc-
gundo lermo, embora simples em principio, requer longos ¢
tediosos céaleulos. Devido a isto, nos restringimos a mode-
los simples, para os quais os calculos puderam ser feitos
quasec todos analiticamente. Outra dificuldade aparcce no
caso de fontes pontuais. Para cstas, o cdleulo do segundo
termo requer regularizagdo devido a singularidade que sur-
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ge no local da Tonte. Para cvitar csta complicagio extra,
consideramos o campo sendo gerado a partir de uma frente
de onda inicial,

No primeiro exemplo, foi considerado o problema do
campo de ondas P sendo gerado por uma frente de onda ini-
cial eslérica em um meio homogéneo. O comportamento do
scgundo termo foi estudado com relagdo aos scguintes
parametros: raio de curvatura R da frente de onda inicial,
distincia a um ponto de observagio, fregiiéneia angular o, ¢
distribuigio de amplitudes (ou energia) ao longo da [rente de
onda inictal. Neste exemplo, foi observado que, no caso da
[rente de onda inicialmente planar (R = o) com distribuigio
irregular de amplitudes, @ componente de despolarizagio do
scgundo termo (que ¢ ortogonal a dire¢do de propagagiio)
mantém-se independente da distiincia da frente de onda ao
ponto de observagio, ao passo que a componente do segundo
lermo, na dircgiio de propagagdo, cresee proporcionalmente
com a distdncia ao ponto de observagdo. Este fato limita for-
lemente o uso do método do raio com respeilo a distincia, sc
a [reqtiéncia ndo lor suficientemente alta, ou com respeito a
baixas lreqiiCneias, caso a distancia da frente de onda ao ponto
de observagdo scja grande. Este exemplo também deixa cla-
ro que limitagdes ao método do raio podem surgir alé mesmo
em meios homogéneos,

No scgundo exemplo, nés consideramos um meio onde
a velocidade ¢ uma fungdo lincar da profundidade. Para
minimizar os cdleulos, nos restringimos ao caso 2-D, em que
o campo ¢ gerado por uma [rente de onda inicial cilindrica.
Os pardmclros envolvidos foram os mesmos do primeiro
exemplo, porém as limilagoes encontradas foram ainda mais
severas. Em vista destes resultados, [ica claro que ¢ impor-
tante checar se as numerosas aplicagdces do método do raio
estdo de acordo com a validade da teoria. Esta tarela requer o
estudo intensivo do segundo lermo da série do raio. Paraisto,
¢ neeessario que se desenvolvam algoritmos cficientes para
o caleulo deste termo.
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