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ABSTRACT

The inversion of vertical electrical sounding (VES) is normally performed considering a stratified medium formed by homogeneous, isotropic and horizontal layers.
The simplicity of this geophysical model makes the inversion simple and computationally fast, and together with the main characteristics of the electroresistivity
method, it was greatly responsible to make VES one of the most popular geophysical method for groundwater exploration and engineering geophysics. However,
even in a sedimentary basin where the geology is more conform, the assumption of horizontal and homogeneous layers is not necessarily valid, limiting the
reliability of the inversion results.

In this paper we present a fast and robust 2D resistivity modeling and inversion algorithm for the interpretation of sets of VES. We consider three inversion
algorithms: the Gauss-Newton method of linearized inversion (LI), the genetic algorithm (GA), and a hybrid approach (GA-LI) that uses LI to improve the best model
at the end of each step of the GA. The medium parametrization consists of the partition of the domain into fixed homogeneous rectangular blocks such that their
resistivities are the only free parameters. The apparent resisfivity is evaluated by an iterative scheme that is derived from a finite-difference discretization of the
potential differential equation. We enhance the convergence rate of the scheme by adopting an incomplete Cholesky preconditioner.

Numerical results using synthetic and real 2D apparent resistivity data formed by sets of VES for the Schlumberger configuration illustrate the performance of the
hybrid GA-LI algorithm. The VES field data were acquired near Conceicdo do Coité, state of Bahia, Brazil. We compare the performance of the LI, GA and GA-LI
algorithms.

Keywords: Incomplete Cholesky, 2D resistivity modeling, geophysical inversion, genetic algorithms, linearized inversion, hybrid optimization.

RESUMO

Ainversto de uma sondagem elétrica vertical (SEV) normalmente assume que o meio é estratifcado e formado por camadas horizontais homogéneas e isotropicas.
A simplicidade deste modelo geofisico torna a inversio simples e com reduzido custo computacional. Esta simplicidade, junto as principais qualidades do método
de elefroresistividade, foi responsdvel por tornar a SEV um dos métodos geofisicos mais populares nos trabalhos de exploragto de dguas subterrdneas e geofisica
aplicada @ engenharia. Porém, mesmo em bacias sedimentares, onde a geologia é mais conforme, a hipdtese de camadas planas e homogéneas ndo é vdlida, o
que limita a confiabilidade dos resultados da inversdo.

Apresentamos neste artigo um algoritmo rdpido e robusto de modelagem e inversdo eletroresistiva para a inferpretacdo de conjuntos de SEVs. Consideramos trés
algoritmos de inversto: o método de inversdo linearizada de Gauss-Newton (LI), o algoritmo genético (GA), e uma abordagem hibrida (GA-LI) que usa a inversdo
linearizada para aprimorar o melhor modelo obtido o final de cada gerac@o do algoritmo genético. A parametrizagdo do meio consiste na partigio do domminio
em blocos retangulares e homogéneos, de modo que a resistividade de cada bloco é um parGmetro do modelo. A resistividade aparente é calculada com um método
iferativo baseado numa aproximagdo por diferencas finitas da equacdo do potencial elétrico. Um precondicionamento do tipo Cholesky incompleto é ufilizado para
acelerar a convergéncia do método.

Avaliamos a performance do método hibrido por meio de experimentos numéricos com perfis de elefroresistividades reais e sintéficos, formados por conjuntos de
SEVs obtidas com o arranjo Schlumberger. Os dados de campo foram coletados nas proximidades de Conceiciio do Coité, estado da Bahia, Brasil.

Palavras-chave: fatoracio incompleta de Cholesky, modelagem bidimensional de resistividade, inversdo geofisica, algoritmos genéicos, inversdo linearizada,
otimizacgo hibrida.
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INTRODUCTION

Inversion of resistivity sounding is a non-linear problem that
estimates the spatial distribution of resistivities of the subsoil materials
from apparent resistivity data measurements. Local and global optimi-
zation algorithms have been reported in geophysical data inversion by
many authors (TARANTOLA; VALETTE, 1982; ROTHMAN, 1985; SEN;
BHATTACHARYA; STOFFA, 1993; CHUNDURU et al., 1997). In case we
begin the inversion using a starting model located near to a local or a
global minimum, gradient methods can be very useful to find an opti-
mal solution. Otherwise, global optimization algorithms such as simu-
lated annealing or genetic algorithms can be used. The major draw-
backs associated with local and global algorithms are the requirement
for a prioriinformation and the computational cost, respectively. Several
different hybrid optimization approaches can be proposed fo overcome
these drawbacks (CHUNDURU et al., 1997; PORSANI et al., 2000).

To develop an efficient hybrid optimization scheme, it is impor-
tant fo choose efficient global and local algorithms. For geophysical in-
version, successful attempts were made by several authors (CARY;
CHAPMAN, 1988; PORSANI et al., 1993; LIU; HARTZELL; STEPHENSON,
1995). Avery good explanation about the advantages and drawbacks of
local, global and hybrid algorithms was presented by Chunduru and
others (1997). Also to develop an efficient hybrid inversion algorithm
for 2D resistivity inversion, a fast forward modeling algorithm is re-
quired. For the 2D inversion of field resistivity sounding data we have
implemented a 2D finite-difference algorithm for computation of the
forward modeling that uses an incomplete Cholesky factorization scheme
(MEIJERINK; VAN DER VORST, 1977) coupled with the preconditioned
conjugate gradient method (GREENBAUM, 1997).

Electrical resistivity inversion methods aim to determine the dis-
tribution of subsurface resistivity by measuring the distribution of electri-
cal potential from a set of current electrodes at the earth surface. For a
Schlumberger configuration of electrodes, the apparent resistivity satis-
fies the equation

AB’
p,=T -
4MN 4

MN)A¢
- |7 (1)

where A¢ is the electrical potential difference between two electrodes
located at M and IV, and 1 is the current generated by two electrodes
located at A and B. The axis x is set along the electrodes.

The one-dimensional method of Vertical Electrical Sounding (VES)
for horizontally layered media is well known*. The free parameters of

this model are the resistivity p. (1 < 1 < n) and the thickness
h, (1 < i < n) of each layer, and are represented by the vector m.
The center of electrode configuration is fixed, and the spacing
s = AB/2 is the only independent variable. One can evaluate the
apparent resistivity p_(m, s)in closed form (KOEFOED, 1979).

The two-dimensional model accounts for both lateral and verti-
cal variations of resistivity. In this case, the apparent resistivity _also
depends on the position x where the VES is performed. We partition the
domain into V rectangular blocks. The components of the free param-
eter vector m are the resistivity of each block. Unlike the 1D model, the
apparent resistivities o_(m, x, s,) are approximated by a numerical
method. We employ a finite-difference method to evaluate the scalar
electrical potential ¢, as described in the following section.

FINITE-DIFFERENCE MODELING

Assuming that the electric conductivity o of the medium varies
only along the axis x and the depth z, the electrical potential generated
by a pointwise source at (x,0,0)isa solution of the Poisson equation

—V.[a(x,z)V¢(x,y,z)] = Ié(x—xf)é(y)é(z), 2)

where &(-) is the Dirac delta and V is the gradient vector operator. A
Fourier transform in the y direction yields

-V [0 (x.2) Vé, (x, z)] +ko(x,z)

- 1 )

B (2)=Lo(x—x, 502,

6, (v2) = [ 0(.y.2)cos (k) . @
¢(x,y,2)= f ¢kxzcos ky)dk . 5

Equation (3) is discretized using an Nx M non-uniform rectangu-
lar grid. We evaluate the finite-difference solution ¢, ; ~ ¢, (x,.,zj)
in its inferior domain of validity according to Dey and Morrison (1979):

Cllry +Cl b, +C6 o+ ©
+C{;’j¢§i,j+1 + Cinggi’j = ’
Rz

)= : 7)

0 L(ij)=(i,.1)

4 (f. Porsani and others (2001) and the references therein
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G =z 2] e, (ma =)
i 2(*{)[0 (2 =2+ 0 (210 =2))]
G = 2(zj__lzj,1)[ar i (5 =x) 010 (5 =) ®)
cil = (Zj; 17 » [0y (5 =2 ) 0 (5 =)

Cc o= —[C,iv./ +C+C+C - szi’j]’

Ai,j = %[Ui—l,j—l (xi — X )(Z/ 7Zi—l)+o-i,j—1 (xi+l 7xi>(zj - Zj—l)
+0; (xm _xi)<z,41 _Zj>+0i Lj (x, X 1)(Zj>1 _Z/')] :
The boundary condition at the top layer is

0, .
T 8nJ =0. ©)

We strefch the grid in geometric progression near the lateral and
lower boundaries, imposing the following condition (DEY; MORRISON,
1979):

0 (x.k,z) K (kr

(k) - N
o +k X, (kr)gb(x,k,z) =0,

rt=x"+z",(10)

where K, ue the modified Bessel functions (ABRAMOWITZ; STEGUN,
1970). We employed growth factors of 2.529 and 2.215 in the horizon-
tal and vertical directions, respectively (WEDEIROS, 1987).

Lef X = (8111eeesGyys Borseos by ) O b= (b, by )
Equations (6)-(10) yield a linear system of the form Cx = b. The
capacitance matrix C is symmetric, positive definite, and satisfies
Cw:OifIi-jI #0,1, M.

The Cholesky factorization C = LLleads to a lower triangular
matrix L such that L, ; = 0 if |ij] <M in general. However, the
observed values of |L,.,j| are relafively small if - |ij| = 0,1, M . For
instance, Figure 1 displays the absolute values of the diagonals of L
resulting from the model with M = 10, N = 20, and a medium com-
posed of two homogeneous layers with the same thickness. The resistivities
of the upper and lower layers are p, =102m and p, = 50082m ,
respectively.

We consider an incomplete Cholesky factorization C » HH”

where H is a lower triangular matrix satisfying H, , =0

if i-j=0,1,M . Since H preserves the sparsity pattern of C, the
matrix HLH” is a suitable preconditioner for iterative methods for solv-
ing Cx = b (MEIJERINK; VAN DER VORST, 1977).
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Onee ¢, (xi,zj) is approximated, the electrical potential
qb(x,.,O,zj) is estimated by numerically integrating Equation (5)
according to Dey and Morrison (1979). We employ the following fre-
quency values: k = 0.001, 0.002, 0.004, 0.008, 0.015, 0.03, 0.06,
0.09,0.12, 0.15m". To evaluate the apparent resistivity, we place the
pofential electrodes at the surface nodes of the grid, so that the diffe-
rence of electrical potential needed in (1) can be computed from
¢(x,,0,0) (1<i < M) and a prescribed spacing s.

A Preconditioned Conjugated Gradient Algorithm

The incomplete Cholesky factorization approximates the solution
x of & = b by the solution x; of Hx,, where Hy = b. To further
improve this estimate solution we employ the preconditioned conjugated
gradient (PCG) method (GREENBAUM, 1997). In the following algo-
rithm, n,is the maximum number of iterations, ||| = (r,Tr,)l/Z,
and zol s the error tolerance.

Steps of the preconditioned conjugated
gradient algorithm

* calewlate r, =b — Cx,;
* solve H'z, =y forz, where Hy = r,, and set p, = z,,

efor/ =0,1,...,n

iter

("r, " 2 tol)

T
nz,

PzTCw '

- calevlate x,,, =x, +op,, where o, =

- calevlate 1, =1, — Gy

-solve H'z,,, =yfor z,,,,where Hy =1, ;

r/ .z
- wllate p,,, =2, + B, where 3, = L

Y,z

Asimilar algorithm has been used in 3D electroresistivity modeling
(ZHANG; MACKIE; MADDEN, 1995). Figure 2 compares the CPU process-
ing time of the PCG method above and a direct method based on the
Cholesky factorization (CF). The computations were performed in a RISC
6000 IBM and the model problem is the same as in Figure 1, with N =
100 and M =5, 10,..., 40. We set a folerance, fol = 107, for
the PCG method. In this example the PCG algorithm becomes a better
alternative when NXM is greater than 4000, which is a suitable reso-
|ution for two-dimensional inversion of real data.
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Figure 1 — Absolute values of diagonal (k = 1) and off-diagonal (k > 1) components of the matrix L.
Figura 1 — Valores absolutos dos componentes da matriz L, ao longo da diagonal (k= 1) e fora da diagonal (k>1).
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Figure 2 — Comparison of CPU times of Cholesky factorization (CF) and preconditioned conjugate gradient (PCG) methods.
Figura 2 — Comparagdo do tempo de CPU da fatoracdo de Cholesky (FC) e do méfodo de gradientes conjugados precondicionado (GCP).
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LINEARIZED INVERSION

let 1< p<2. The L, norm of an M-dimensional vector

M
V= (1.4 isgienby ], _[z|v,.|"] |
i—1

Let us introduce an iterative scheme to minimize the
objective function proposed by Scales and Gersztenkorn
(1986):

E(m):le;

==

P

P (X.5) =P, (m’xi’si)| ’

(1D

where p, (x,.s,) and p, (m,x,,s,) are the observed and theorefi-

cal apparent resistivities, respectively. Note that £(im) is the L, norm
of the error of the theoretical apparent resistivities to the power p. We
linearize p (m, x, ) by Taylor’s series about an estimate free pa-
ramefer vecfor m, :

p, (m,x,s,)~p, (m,x,s,)=

12)
0,(m,,x,s, (
—p, (mk,xi,si)Jr%(mmk) .

Let dk,,- =P, (xi’si)_ Py (mk’xi’si)’rk,i =
= 1Pa (xi’si)_ﬁa (m’sti)riz (1 Si< M) , and

9, (m.) 9, (my.,,)

dy, T 0 6m, 9,
Ad =| iR, = |G, = :

d’va 0 T apu (mk.\M,xM ) 6,,,; (mk.xM,,\M )

9, g

my

Substituting (12) info (11), we find a quadratic function of m,
whose minimum satisfies
(GI R,G,)Am = G[R,Ad, . (13)
Where Am = (m,__, —m, ). By using a regularization factor
A (MENKE, 1989) we compute the new solution m,__, as
T Lo
my,, =m +(G{RG, +»I) G{RAd, . (14)
In particular, the method with p = 2 and A = O corresponds fo
the plain least squares method. The row 7 of the sensifivity matrix G is

weighted by the i-th diagonal component of the matrix R , which is a
function of the deviation between the observed resistivity values, and

Brazilian Journal of Geophysics, Vol. 21 (3], 2003

the ones computed from current model m (PORSANI; NIWAS;
FERREIRA, 2001).

Toincrease the robustness of the algorithm, we apply a logarith-
mic scaling to the free parameters and to the field data (RIJO et al,,

1977). Moreover, given a folerance parameter &, we st 7, , = e”>

if

Py (‘xi’si)iﬁa (m"xi’si)| <e.
We employ a harmonic measure of fitness (PORSANI et al., 2000)

M
ZZ[pa (xi’si)pu(mk’xi’si)]
i—1
M ' 15
Z[pu (mk’sti>2 +h (x,.,sl.)z] ()
i—1
The ratio @ varies within [-1,1], and approaches 1 as

P(m, )=

p, (m,,x,,s,) approaches p, (x,,s,)(1 <i < M) .The compo-

nents of the sensitivity matrix are approximated by forward differences
(MCGILLIVRAY; OLDENBURG, 1990). We employ a conjugated gradient

method fo evaluate m,, from (14). let A = G[R,G, +AI.

We have that:
p/Ap, = p/G{R.G,p,+Mp| p, = 6
= quRkpz +7"pszl’ 9,=Gyq, ~

which motivates modifying the conjugated gradient algorithm to avoid
the computation of G R, G, :

Steps of the conjugated gradient
algorithm for L, inversion

* 5, =Ad, —G,x,;
*r,=GIR,s, —»x,;
*P=h and 9GP,

efor 7=0,1,.. .,ni,ey( r,||2tol),

X, =X+« here « _r,T—r,'
S TR TP WIS TR 4+ D,
S S TS g,

- r1+1GZRkS1+1 _7""1+1}

r’r
_ )
-P =6, 6P, where B, %?

r1+1rl

-q, =G,p,;;
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When A = 0, the algorithm designed by Gersztenkorn, Bednard
e Lines (1986) for 1D inversion of the acoustic wave equation is recovered.

NUMERICAL EXAMPLES
Inversion of synthetic data

We consider the model of a buried dike outlined in Figure 3. The
vertical electrical soundings are performed throughout 21 stations with
a set of 19 s-values. Noise is introduced when AB/2 = 17.5m,
47.5m, 87.5m and 107.5m.

The horizontal grid employs 252 nodes. Five nodes are distrib-
uted in geometric progression on both ends, while the increment be-
tween interior nodes is Sma. The vertical grid employs 26 nodes with
non-uniform spacing.

In the experiment it is assumed that the location and size of the
blocks are known. The initial solutio@0=p(l,l,l,l)7,

P =500Qm. Figure 4 compares the performance of inversions in the
norms L and L, without regularization (A = 0).

Figure 5 shows three VES corresponding to stations 1, 7 and 11,
inverted using L, and L, norms. We compare results of apparent
resistivities resulting from two extreme scenarios: when the dike width is
zero (p,) and when the width is infinite (p_). These scenarios yield
horizontally layered media, and can be considered as lower and upper
bounds of the influence of the dike; that is, o, does no fake the dike
info account, while p_ is driven by the resistivity of the dike and the
upper layer (FERREIRA, 1999).

Both inversions delivered exact block resistivities when outlier
noise is removed (note that @(m, ) = 1). Otherwise, the resistivities
were accurately computed in the L norm (Table 1).

10 mi

S2

520 S21

m=800m

p2 = 10000m

p1 = 150Qm

p3 = 1000Qm

Figure 3 — 2-D model represented by a vertical dike of resistivity value of 150 Qm intruded in a medium of 1000 Qm,
and covered by a layer of resistivity value of 80 Qm.

Figura 3 — Modelo bidimensional de um dique vertical com resistividade de 150 £2m incrustado em um meio de 1000 m,
e coberfo por uma camada com 80 2m de resistividade.

1t 1t B
0.95 4 0.95 - B
0.9 4 09 B
) L — @ L —
@ 0.85 - ! o 0.85 !
g L~ g L~
it 08r B it 08 r B
0.75 b 0.75 B
0.7 1 1 1 0.7 1 1 1 1
0 4 6 8 10 0 2 4 6 8 10

lterations

lterations

Figure 4 — Performance of linearized inversion algorithms on synthefic data according to equation (15) in both £ and L norms.
The results on the left employed the exact data, while the ones on the right employed data perturbed with outlier noise.
Figura 4 — Performance dos algoritmos de inversdo linearizada de dados sintéticos, medida de acordo com a equagdo (15),
nas normas L, e L, Os resultados & esquerda utilizaram pardmetros exatos, enquanto nos resulfados d direita os pardmeros

foram perturbados com rvido localizado.
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Table 1 — Results of linear inversion of resistivity considering

synthetic data

with outlier noise.

Tabela 1 — Resultados da inverso linear de resistividade
considerando dados sintéticos com ruido localizado.

m exact £ norm L, norm
p1 (Qm) 80.0 80.0 73.1
P2 (Qm) 1000.0 1000.0 1056.5
ps (Qm) 1000.0 1000.0 1056.5
P4 (Qm) 150.0 150.0 183.8
1000
— 100 . ]
£ b
£
9 pa(M. S, 5)
£ ol palSiin) o
Po
1 ! !
1 10 100 1000
AB/2 (m)
1000
— 100
g
E
g pa(M. Sz, 5)
< 4ol ﬁﬂ(S7:;U) o
Poc
1 ! !
1 10 100 1000
AB/2 (m)
1000
— 100 | 4 —
g T €
£ E
<} (M. Sy, 8) <}
& 10 L ﬁa(sll:;g <> | S
Pec
1 ! !
1 10 100 1000
AB/2 (m)

0o (Ohm.m)

Inversion of field data

solids.

Our next experiment concerns field data acquired near Conceido
do Coité, Brazil (PINHEIRO NETO, 2000). This area has an aquifer whose
average yield is 1.78 m/h with up to 7278mg/1 of total dissolved

Twenty VES were acquired, and they are shown in Figure 6(a).
In order to fit data to the finite-difference grid, we interpolated the VES
curves to evaluate the apparent resistivity with an initial spacing
AB/2 ="7.5m and uniform increments of 5.

The media parametrization is based on a partition into 27%5
blocks. We estimated the thickness of each layer by the average thick-

1000 ¢
100 | ]
a
Fa(mk:;wﬂg @
o 8] @
10 E sl 4
Poc
1 1 1
1 10 100 100
AB/2 (m)
1000
100 E
b
Fn(mk:gwﬂg ( )
o 8] @
10 ? 7ﬁ0 """
foc
4 ‘
1 10 100 100
AB/2 (m)
1000
100F g E
(c)
foc
10 | g
4 ‘
1 10 100 1000
AB/2 (m)

Figure 5 — VES on stations 1 (a), 7 (b), and 11 (c) obtained from the inverted models in the £ norm (leff) and the £, norm (right).
The theoretical apparent resistivity values when the dike width is zero (o) or infinite (p_) are also shown.

Figura 5 — SEVs nas estagdes 1 (a), 7 (b), e 11 (c) obtidas dos modelos invertidos nas normas L, (esquerda) e L, (direita).

Mostramos também os valores tedricos da resistividade aparente quando a largura do digue é zero (p,,) ou infinita (p_).
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ness calculated at each station by using 1D VES inversion. The initial
model had p = 40€2m in the first four layers and p = 300Qmz in
the bottom layer. The horizontal grid was similar to the horizontal grid
used in the synthetic model. We employed 3029 nodes.

We performed 10 iterations of linearized inversion in the norms
L, and L, vith the same regularization factors A = 0.001 and
A =0.1inthe L and L, norms, respectively. The percent relative

s10

S1 S2 83 S4 S5 S6 87 S8 s9

AB/2 (m)

300 400 500 600

Distance (m)

s1 82 83 s4 s5 S6 S7 S8 s9 s10

Depth (m)

500 600
Distance (m)

s1 82 83 sS4 S5 S6 S7 S8 89

Depth (m)

o
3

H
Y
S

500 600
Distance (m)

s12

s12

700 900

errors with respect to the interpolated data were similar and under 45%
as illustrated in Figure 7.

The region of low resistivity near station S5 of the computed
models (Figure 6) is consistent with the presence of a water well near
this station. The low resistivity between stations S14 and S16 is consist-
ent with the evidence of salinization between stations S12 and S17.

(a)
700 800 900 1000 1100 1200
S14 s16 si8 s19 S20
(b)
T
900 1000 1100 1200
S14 s16 si8 s19 S20
(Ohm.m)
1200
1120
1040
960
880
800
720 (C)

1000 1100 1200

Figure 6 — Pseudo-section of apparent resistivity values generated by 20 unevenly spaced VES (a). The symbols (+) below each
VES indicate the AB/2 position where the measurements were performed. Contours of the apparent resistivity values generated
from linearized inversion in the £, norm (b) and Z, norm (c).

Figura 6 — Pseudo-secdo de valores de resistividade aparente gerados por 20 SEVs com espagamento ndo-uniforme (a).

Os simbolos (+) abaixo de cada SEV indicam a abertura AB/2 com que as medidas foram feitas. Pseudo-secdo de valores
de resistividade aparente gerados por inversdo linearizada nas normas L, (b) e L, (c).
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Soundings

AB/2 (m)

(Error %)
15

(a)

Soundings

Ss9 510 s12

(Error %)
45

(b)

Figure 7 — Pseudo-section of percent relative error of the theoretical apparent resistivity values with respect
fo the observed apparent resistivity values for the linearized inversion algorithm in the £, norm (a) and the L, norm (b).
Figura 7 — Pseudo-secdo do erro relativo dos valores tedricos de resistividade aparente gerados por inversdo linearizada
nas normas L, (a) e L, (b) com respeito aos valores de resistividade aparente observados.

GENETIC AND HYBRID ALGORITHMS

Genetic algorithms (GA) employ the concepts of survival of the
fittest, crossover, and mutation o generate a set of free parameter vec-
tors that progressively approach field data. These methods fit info the
class of global, probabilistic optimization methods. Genetic algorithms
are based on the principle of natural selection and genetics. Detailed
descriptions of GA are given by Holland (1975) and Goldberg (1989),
and theory and examples of geophysical applications can be found in
Sen and Stoffa (1995). Basically, in the GA the model free parameters
are coded in binary form. The algorithm starts with an ensemble of ran-
dom models, and a new ensemble is generated similarly to the biologi-
cal mechanism of reproduction that exists in nature. The models are

Brazilian Journal of Geophysics, Vol. 21 (3], 2003

chosen for reproduction with a probability proportional to their fitness
value, and pairs of models are selected at random and exchange part of
their binary chain. The crossover points are selected af random and all
the bits to the right side are interchanged with a crossover probability,
generating new models. To assure genetic variability in the population,
a mutation process is adopted by changing at random a bit inside the
binary chain based on a fixed probability. The new set of models are
accepted with an update probability by comparing them with the models
in the previous generation. The process of selection, crossover and muta-
tion is applied until the fitness values converge, i.e., until the mean
fitness approaches the highest fitness value in the population.

We start by randomly selecting a set (or population) of free pa-
rameter vectorsm ., 1 <j< P, and g=0. We refer to each m
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as a model. In the second step, we evaluate the fitness ®(m ) of

each model according to equation (15). Then, we perform the following

genetic operations.

* Selection: we select a limited number of models in pairs for
reproduction. They are selected by a non-uniform probability function
given by

exp[@( )/T]

P(m,  |=
s( g,/) Zj exp[ ( )/T]
where 7' = T is associated wnh the temperature in the simulated
annealing method. The temperature is used to de-emphasize the differ-
ences in the fitness values of the models in the initial generations and to
exaggerate their differences at later generations (STOFFA; SEN, 1991).
* Crossover: each pair exchanges free parameter data with a fied
probability P; two new models are generated. Each component
my, (1<i< M) of a model m__is restricted fo  prescribed
resolution; that is,

a7

m (18)

mjg/ € {mi’min > min+Am; ""’mi’mwc}
* Mutation: a random change with fixed probability P may take place
in each member of all pairs. Mutation helps to preserve the population

diversity and leads to new search regions.

* Update: each new model m, is compared with o randomly chosen

wiient model m, ,If &(m;)>®(m, ), then m__is

replaced by m;, according fo a fixed probability P .

These steps create a new generation m, , (1< j < P). We
can go back to the second step, and repeat the process until the g-th
generation has o model m_such that 4’)( . ,) is sufficiently close
to one, or until g reaches the maximum number of generations NG.

We combine the genetic with the linearized inversion methods,
generating a hybrid (GA-L1) algorithm (PORSANI et al., 1993). As shown
in Figure 8, the hybrid algorithm starts with an initial ensemble of ran-
domly selected 2D resistivity models. Synthetic 2D VES corresponding to
each model are computed and compared with the data to generate the
fitness function for each model. The fitness functions from the current
generation are compared to those from the previous generation and kept
subject to an update probability. We next find the best model in each
generation and apply the LI method. At the end of each G4 iteration, we
sef

m,=m,,, @(mg'j):max{é(mg), ISjSP}, (19)

apply the iterative method (14) to m, and if the resulting model m,
satisfies ®(m,) > ®(m, ), itis accepted info the population re-

Initial Generation
Random Distribution of Models

l

[ Generate Synthetic Data }

l

%[ Evaluate the Objective Function}

l

generation

next ‘ Linearized Inversion
Using Best Model

l

stop at last

[ Update Ensemble } generation

l

— [Apply Genetic Operators]

Figure 8 — Flow chart for the combined GA and LI algorithm.
Figura 8 — Hluxograma do algoritmo GA combinado com LI.
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placing m, . The algorithm then proceeds as in AG. The genefic opera-
tors of selection, crossover and mutation are applied to the models to
provide the next generation of 2D resistivity models for evaluation.

INVERSION OF FIELD DATA

This section illustrates the improvement of the hybrid approach
over genetic algorithms. We consider the same settings as in the experi-
ment with linearized algorithms.

linearized inversion algorithm, under the L, norm. Notice that the hybrid
approach led to a considerable decay of the relative error (Figure 9). The
best models of genetic and hybrid algorithms are shown in Figure 10.

Table 2 — Parameters that define the resolution of each model component for
the experiment with field data according o equation (18).
Tabela 2— Pardmetros que definem a resoludo de cada componente do
modelo para o experimento com dados de campo,
de acordo com equagdo (18).

The probabilities associated with the genetic algorithm are set Loyer Blodks M Q0) | 00 ( Q) | Am(Qi)
similarly to earlier cases (CHUNDURU et al., 1995; SEN; STOFFA, 1995): 213 L HA'f'S]S 2 38000 2
. - eI 0
P = 0.6,.Pm = Q.Ol and P, = 0.95. The resolution of the free 73 Right o1 S15 200 2000 0
parameters is shown in Table 2. Moreover, 77, = 5 and y = 0.98. ] Al 5 800 5
Both algorithms employ 200 generations with a fixed population 5 Al 250 800 10
of 250 models. The hybrid algorithm performs ten iterations of the
s1 S2 S3 sS4 S5 S6 S7 S8 s9 S10 s12 s14 sl6 si8 S19 S20
0 \\/ |
=0 [ (Error %)
E « L %
2 ., S = S
500 Dlstaérf;::e (m)/f', 800 900 1000 1100 1200
20 f (Error %)
2 . T o

T T T T
300 400 500 600

Distance (m)

T
800 900 1000 1100 1200

Figure 9 — Pseudo-section of percent relative error of the theorefical apparent resistivity values with respect
to the observed apparent resistivity values for the genetic algorithm (a) and the hybrid GA-LI algorithm (b).
Figura 9 — Pseudo-secdo do erro relativo dos valores tedricos de resistividade aparente gerados pelo algoritmo
genético (a) e pelo algoritmo hibrido GA-LI (b) com respeito aos valores de resistividade aparente observados.
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Figure 10 — Contours of the apparent resistivity values generated from the inverted models by using the genetic algorithm (a) and the hybrid GA-LI algorithm (b).
Figura 10— Secdes de valores de resistividade aparente resulfantes dos modelos invertidos pelo algoritmo genético (a) e pelo algoritmo hibrido GA-LI (b).

DISCUSSIONS AND CONCLUSIONS

This article extends previous work in 1D resistivity inversion for
2-D inversion of sets of vertical electrical sounding. We incorporate the
linearized inversion approach into a genetic algorithm. The best model,
found at the end of each generation of the GA, was improved by using
the LI method. By doing so, we found that a combined GA-LI approach
performs better than a pure GA, and better than a pure LI run. The
hybrid algorithm was tested to simultaneously invert families of syn-
thetic and measured VES data using a 2D resistivity model. The GA-LI
algorithm accelerates the convergence to the global optimum.

Our experience using the hybrid GA-LI algorithm indicates that
employing linearized inversion on initial steps of the GA-LI algorithm
may overemphasize a local search, specially if the best models are near
local optima. On the other hand, a typical GA performance curve grows
faster in the first generations, which suggests that this method is effi-
cient on identifying the neighborhood of the global optimum. The growth
is slower in the following steps and tends to saturation. Therefore LI
refinement is more appropriate in later steps. A key question is when
linearized inversion should take place. Another question is whether hy-

brid methods can be improved with more complex local search methods
(for instance, multiple re-weighted least-square methods). These ques-
tions contribute to a deeper understanding of 2D inversion of geophysi-
cal problems.
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