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NEW ITERATIVE AND MULTIFREQUENCY APPROACHES IN
GEOPHYSICAL DIFFRACTION TOMOGRAPHY

Danilo Sande1, Amin Bassrei2 and Jerry Harris3

ABSTRACT. Seismic tomography is used in reservoir geophysics as an important method for high-resolution imaging. The classical Born approach, which is used in

single-frequency diffraction tomography under the condition of weak scattering, is limited by the requirement to know the background velocity in advance. We propose

tomographic inversion approaches within matrix formalism and the Born approximation conditions. These approaches are iterative (in the sense that the background

velocity field is updated at each iteration) and do not require knowledge of the true background velocity. In the first approach, a single-frequency that is kept constant

is used. In the second approach, several frequencies are also kept constant and are used simultaneously. In the third approach, in addition to the background velocity,

the working frequency is also updated. Finally, in the last approach, the multiple frequencies used simultaneously are updated throughout the iteration. The proposed

approaches were tested on a synthetic model containing a dipping layer and a paleochannel, with cross-well acquisition geometry, and the data were contaminated with

Gaussian noise. When compared to the standard, single-frequency non-iterative approach, the iterative process with the use of multiple frequencies generated results

with smaller RMS errors for model parameter, velocity and data.

Keywords: seismic inversion, seismic tomography, wave numerical modeling, reservoir characterization.

RESUMO. A tomografia sísmica é usada na geofísica de reservatórios como um método importante para obtenção de imagens de alta resolução. A abordagem clássica

de Born, usada na tomografia de difração de única frequência sob a condição de espalhamento fraco, é limitada pela necessidade de se conhecer antecipadamente a

velocidade do fundo homogêneo. Propomos abordagens iterativas de inversão tomográfica dentro do formalismo matricial e sob a condição da aproximação de Born.

Essas abordagens têm uma natureza iterativa, onde o campo de velocidade de fundo é atualizado em cada iteração, sendo que o conhecimento da velocidade verdadeira

do fundo homogêneo não é necessário. Na primeira abordagem é usada uma única frequência mantida constante. Na segunda abordagem são usadas simultaneamente

várias frequências também mantidas constantes. Na terceira abordagem, além da velocidade do fundo homogêneo, a frequência de trabalho também é atualizada.

Finalmente, na última abordagem, as múltiplas frequências usadas simultaneamente são atualizadas durante a iteração. As abordagens propostas foram testadas em

um modelo sintético contendo uma camada inclinada e um paleocanal, com geometria de aquisição poço a poço, sendo os dados contaminados com ruído gaussiano.

Quando comparado com a abordagem padrão não-iterativa de única frequência, o processo iterativo com o uso de múltiplas frequências gerou resultados com erros

menores de RMS para o parâmetro de modelo, a velocidade e o vetor de dados.
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INTRODUCTION

According to the wave equation, acoustic waves have scattering
properties. When the wavelength is of the same order as the
dimensions of the structure to be viewed, the energy is scattered,
which implies the waveform can be used to infer the physical
properties of the medium (Devaney, 1982); that is, the amplitude
of the observed wave can be used to estimate the velocity contrast
of the medium.

Diffraction tomography is an inversion technique that
allows the estimation of the velocity distribution in the
subsurface. Furthermore, this technique has applications in
imaging problems in several fields, such as medicine and
geophysics (Harris, 1987). The input data are the amplitudes of
seismic signals recorded in the receivers. One of the pioneering
works in diffraction tomography was published by Wolf (1969)
and geophysical problem extensions were performed by Devaney
(1982); Harris (1987); Wu & Toksöz (1987). These authors used
the filtered retropropagation approach, while a more recent matrix
approach was used by Lo & Inderwiesen (1994). The advantages
of the use of multiple frequencies have been presented by several
authors. For example, Harris & Yin (1994) used multifrequency
diffraction tomography in a sequential scheme, and Rocha Filho
et al. (1996) used it in a simultaneous scheme. Thompson et al.
(1994) proposed a numerical solution for nonlinear diffraction
tomography, avoiding the Born approximation, and Reiter & Rodi
(1996) studied the nonlinear case in a cross-well problem. The
question of the regularization of the inverse problem and the
search for the optimal normalization parameter was studied by
Santos & Bassrei (2007).

Diffraction tomography is a nonlinear, ill-posed, inverse
problem that can be solved by several approaches. For example,
the Born approximation considers the scattered field to be much
smaller than the incident wavefield. This assumption linearizes
the inverse problem, after which the velocity of the scattering
medium can be obtained. The use of the Born approximation
in diffraction tomography is a viable alternative with a low
computational cost. However, it is a valid approximation only
for low velocity contrasts or small-scale heterogeneity. The
present work proposes some new extensions of the Born
approximation, making use of multiple working frequencies,
either iteratively or sequentially. The iterative aspect of the
proposed approaches allows for inversion without the advanced
knowledge of the medium background velocity. In addition,
the multifrequency method generated better results than the
conventional, single-frequency method.

INVERSE PROBLEMS AND REGULARIZATION

Inverse problems are usually ill-posed; that is, the solution may
not exist, and if it exists, it may not be unique and/or stable. A
linear, piecewise linear or linearized problem can be written as:

d=Gm, (1)

where d is the data vector, m is the vector of model parameters
and G is the M ×N matrix that relates the M elements of the
data parameter vector to the N elements of the model parameter
vector. Many inverse problems in geophysics are ill-posed,
and diffraction tomography is not an exception. Therefore,
it is necessary to adopt a regularization procedure, such
as regularization by derivative matrices, also called Tikhonov
regularization. The idea behind this technique is presented as
follows. Consider the objective function in the least squares
sense:

φ(m) = eTe+λLn, (2)

where e= d−Gm and Lnrepresents the additional constraint,
responsible for regularizing the solution, expressed as:

Ln = (Dnm)T (Dnm), (3)

where n is the order of the derivative matrix. Frequently, Ln

represents either the flattening or the roughness of the model
parameter when n = 1 and n = 2 respectively. The latter case
is used in this work, and the operator D2m can be expressed
as:


1 −2 1 0 . . . 0 0 0 0

0 1 −2 1 . . . 0 0 0 0
...

...
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. . .

...
...
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...

0 0 0 0 . . . 0 1 −2 1




m1

m2

...

mN

=D2m. (4)

λ is a positive constant known as the regularization parameter,
and its choice is a problem in itself. Minimizing the objective
function, we obtain the parameter vector of the estimated model:

mest = (GTG+λDT
n Dn)

−1GTd. (5)

The generalized cross-validation method (GCV) was proposed
by Craven & Wahba (1979) as a tool for choosing the value
of the optimal regularization parameter. The GCV estimate is
an extension of ordinary cross-validation, which is based on
the leaving-one-out concept. An element is removed from the
data vector, and the regularized solution minimizing the objective
function is calculated:

V0(λ ) =
1
M

M

∑
k=1

[dobs
k −dk(m

k
λ
)]2, (6)
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where the index k corresponds to the k-th element of the data
parameter vector that was removed. If the value of λ is optimal,
then the k-th element of the solution (vector of model parameters)
will predict the failure, that is, mk

λ
is the solution that minimizes

the error. The GCV function presented by Craven & Wahba (1979)
and Wahba (1990) is:

GCV (λ ) =
||dobs −d(mλ )||[
1
M Tr(I−B(λ ))

]2 , (7)

where B(λ ) is defined as:

B(λ ) =G(GTG+λDT
n Dn)

−1GT . (8)

Regin�ska (1996) proposed another method of choosing a
parameter related to the L-curve criterion. This method can be
easily adapted to any situation in which the smoothing parameter
is discrete. The method consists of finding the minimum of the
functional:

Ψµ(λ ) = ||dobs −d(mλ )||2||mλ ||2µ , (9)

where µ > 0 is the parameter to be defined. In this work, µ = 1
was adopted for the numerical experiments.

SEISMIC DIFFRACTION TOMOGRAPHY

The propagation of a perturbation through a medium with a
constant density and a variable velocity given by c(r) can be
modeled by the wave equation (Devaney, 1984; Harris, 1987; Wu
& Toksöz, 1987):

∇
2
Ψ(r, t) =

1
c2(r)

∂ 2Ψ(r, t)
∂ t2

, (10)

where Ψ(r, t) is the solution of the equation, usually
displacement or pressure, r is the position vector, t represents
the time and ∇2 is the Laplacian operator. Considering a
harmonic variation in time, one can find the solution to the wave
equation as follows (Lo & Inderwiesen, 1994):

Ψ(r, t) = e−iωtP(r), (11)

where P(r) is the wave amplitude. From the wave equation, we
obtain the Helmholtz equation:

∇
2P(r)+ k2(r)P(r) = 0. (12)

where k(r) is the wavenumber expressed as k(r) = ω/c(r).
The scattering problem consists of an incident wave PI(r)

propagating within a medium with a constant background

velocity, which is given by c0, as seen in Figure 1. The objective
of the problem is to obtain an image of the 2-D medium with a
velocity contrast c(r). Any part of the medium where c(r) 6= c0

acts as a secondary source and scatters the incident wavefield.
The total wavefield recorded at the receiver is PT (r), which is the
sum of the incident and scattered wavefields:

PT (r) = PI(r)+PS(r). (13)

For a constant density model, the Helmholtz equation describes
the propagation of the total wavefield:

∇
2Pt(r)+ k2(r)PT (r) = 0. (14)

The wavenumber associated with the constant background
velocity medium is:

k0 =
ω

c0
. (15)

Therefore, we can define k2(r) as:

k2(r) = k2
0 − k2

0M(r). (16)

In Equation (16), M(r) is the object function, expressed as:

M(r) =

[
1− c2

0

c2(r)

]
. (17)

From Equations (14) to (17), we obtain the Helmholtz equation
for Ps(r):[

∇
2 + k2

0(r)
]

PS(r) = k2
0M(r) [PI(r)+PS(r)] , (18)

for which solution can be obtained using Green’s functions (Lo &
Inderwiesen, 1994) as follows:

PS(r) =−k2
0

∫
A

M(r′)G(r|r′) [PI(r
′)+PS(r

′)]dr′, (19)

where G(r|r′) = i
4 H (1)

0 (k0|r − r′|) and H (1)
0 (�) is the

Hankel function of first kind and zero order. This solution,
based on Green’s function, is known as the Lippmann-Schwinger
integral equation. However, this equation has a nonlinear
relationship because the scattered wavefield PS(r) is present
within its integrand. The Born approximation, a way of linearizing
the Lippmann-Schwinger integral equation, is based on the
condition:

PS(r)� PI(r). (20)

Consequently, an approximate Lippmann-Schwinger integral
equation can be obtained:

PS(r)≈−k2
0

∫
A

M(r′)G(r′|r)PI(r
′)dr′. (21)
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Figure 1 – Representation of the incident field and the scattered field in a medium
with a scatterer point.

Since the primary source is a negative pulse located at rs, the
incident wavefield can be written by using Green’s function (Lo &
Inderwiesen, 1994):

PI(r
′) = G(r′|rs), (22)

so that

PS(rs,rr)≈−k2
0

∫
A

M(r′)G(r′|rs)G(rr|r′)dr′, (23)

where PS(rs,rr) is the scattered wavefield recorded in rr. The
above equation is the Lippmann-Schwinger integral equation
linearized through the Born approximation. However, it requires
weak scattering, which means small velocity contrasts through
the medium.

MULTIFREQUENCY DIFFRACTION TOMOGRAPHY

The Born approximation provides a linear relationship between
the scattered field PS(rs,rr) and the object function M(r):

PS(k,rs,rr)≈
k2

16

∫
A

M(r′)H(1)
0 (k|r′−rs|)H(1)

0 (k|r′−rs|)dr′. (24)

For the matrix formulation, it is necessary to subdivide the
integration area in a finite number of blocks, I (Rocha Filho et al.,

1996). As the acoustic velocity is constant within each block, the
same will occur to the object function M(r):

M(r) =
I

∑
i=1

miφi(r
′), (25)

where φi(r
′) is a basis function, defined here as φi(r

′)= 1 when
r′ is within the area i and as φi(r

′) = 0 when r′ is outside the
area. Substituting the expression for M(r) in the expression of
the scattered field gives:

PS(k,rs,rr)≈

k2

16

∫
A

I

∑
i=1

miφi(r
′)H(1)

0 (k|r′−rs|)H
(1)
0 (k|r′−rs|)dr′. (26)

Considering M sources located in rsm(1 ≤ m ≤ M), N
receivers located inrrn(1≤ n≤N) and L wavenumbers kl(1≤
l ≤ L) , the initial problem can be rewritten as the linear system
p=Wm, which can be written in tensor form as:

ps,lmn =
I

∑
i=1

Wlmnimi, (27)

where Wlmni is defined as follows:

Wlmni =
k2

l

16 ∑A φi(x′,z′)H(1)
0 (kl|(x′,z′)− (xsm,zsm)|) (28)

H (1)
0 (kl|(xrn,zrn − (x′,z′))|)∆x∆z.

The matrix formulation allows the model retrieval by using
several frequencies simultaneously during the inversion, which
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increases the amount of information for the same number of
source-receiver pairs. In addition, the matrix approach allows the
arbitrary positioning of sources and receivers without the need
for uniform spacing.

METHODOLOGY

Obtaining the estimated model requires an initial background
velocity c0, which is not known in real cases. In this methodology,
we propose that the background velocity of the zeroth iteration can
be chosen arbitrarily, preferably using some a priori information.
Based on the average velocity of the estimated model resulting
from the initial background, a new background velocity can be
defined for the next inversion (iteration 1). The process continues
until the RMS relative deviation between consecutive iterations is
less than a threshold, for example, 0.5%. For the zeroth iteration,
the constant vector c0 = [c(0)

0 (1),c(0)
0 (2), . . . ,c(0)

0 (N)] is used
as background velocity in the forward modeling (Eqs. (17), (27)
and (29)). Then with the inverse procedure, the estimated model
mest(0) is obtained.

With the estimated model mest(0) we obtain the estimated
velocity c(0) using the relation:

c(0)
i =

√√√√ (
c(0)

0

)2

1−mest(0)
i

, i = 1,2 . . .N. (29)

The average value of the estimated velocity vector is calculated
as c(0) = 1

N ∑
N
i=1 c(0)

i and becomes the new background velocity
vector c(1)

0 ; consequently, a new estimated model mest(1) is
generated:

c(1)
0 =

1
N

N

∑
i=1

c(0)
i , (30)

Now using the vector c(1)
0 , the estimated model mest(1) is

obtained. With the new estimated model mest(1), we obtain the
velocity vector of the first iteration c(1) and calculate its average:

c(1)
i =

√√√√ (
c(1)

0

)2

1−mest(1)
i

, i = 1,2 . . .N. (31)

and

c(1) =
1
N

N

∑
i=1

c(1)
i (32)

If the average c(1) of the components of vector c(1) differs
from the previous average c(0) by less than a certain value,
for example, 0.5%, the iterative process stops. Otherwise, the
iteration continues:

c(1) = c(2) . . . (33)

If the initial choice c(0)
0 is not too far from the true value, which

may be reasonable with the use of some a priori information, the
result of the estimated model will approximate the true model,
thus reducing the associated errors.

The relative RMS error between the true and estimated
model parameters εm, between the calculated data and the
observed data εd and between the true and estimated velocities εv,
were used to evaluate the quality of the inversion. The expressions
are:

εm =

√
∑

N
i=1(m

true
i −mest

i )2

∑
N
i=1(m

true
i )2

×100%, (34)

εd =

√
∑

M
i=1(d

obs
i −dcal

i )2

∑
M
i=1(d

obs
i )2

×100%, (35)

εv =

√
∑

N
i=1(v

true
i − vest

i )2

∑
N
i=1(v

true
i )2

×100%, (36)

where the subscript i refers to the i-th element of the vector,
and the super-scripts true, est , obs and cal, refer to the true,
estimated, observed and calculated values, respectively.

NUMERICAL SIMULATIONS

The above iterative procedure will be applied on a synthetic
example with four extensions: (i) single-frequency; (ii)
multifrequency; (iii) sequential single-frequency and (iv)
sequential multifrequency. Each extension has some practical
aspects in the implementation that will be detailed with the
corresponding result.

The true model used in the simulations, which is presented
in Figure 2, has a vertical variation of 250 m, a horizontal
variation of 100 m and is composed of four layers of different
velocities that increase with depth with three main features: a
dipping layer, an approximately semicircular channel simulating
a paleochannel and a flat layer of a higher velocity. The velocity
variations are limited to 2%, allowing an adequate use of the
Born approximation. Although this is a small velocity contrast, in
several geological situations, such as reservoir characterization
and monitoring, the region of interest is surrounded by layers with
very similar velocities. The true model image presented in Figure
2 was discretized into 2.5 m ×2.5 m cells for better visualization.
However, all the inversions were performed by using a 5 m ×
5 m grid, to reduce the computational cost. In all inversions,
Gaussian noise of approximately 1% was added to the data. The
chosen frequencies varied according to the adopted approach,
always considering the dimensions of the model. Twenty-five
sources and 25 receivers were used in the well-to-well acquisition
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geometry, resulting in a total of 1250 equations, as the real and
the imaginary parts of the scattered field were separated. The
medium was parametrized into 50 × 20 = 1000 blocks with
distinct velocities, that is, 1000 unknowns, thus characterizing
an overdetermined problem.

Figure 2 – True model used for the numerical simulations. The color bar
represents the P-wave velocity in m/s.

ITERATIVE SINGLE-FREQUENCY

A single-frequency inversion with a central frequency of 500
Hz was performed and a good recovery of the true model was
obtained at the end of 4 iterations, as seen in Figure 3. We
have carried out several tests and concluded that velocity values
ranging from 40% above to approximately 40% below the average
velocity of the true model (≈ 4030 m/s) could be chosen for
this noise level. We report the numerical results with an initial
velocity of 2500 m/s, which is nearly 40% below the true average
velocity. For higher levels of noise, the choice of the initial
estimate becomes more sensitive. The reductions in the model
and data RMS errors were considerable along the iterations,
ending with a value of less than 6% for the model error in the
fourth iteration. Figure 4 compares the evolution of the model and
data errors using the GCV or Reginska method as the optimization
parameter search method. For the iterative, single-frequency case
in question, the GCV method presented better results and was
used for the evolution of the iterations.

ITERATIVE MULTIFREQUENCY

To incorporate more data into the inversion process, several
frequencies and different frequency steps (δ f ) were used
for the model recovery. Using 3 frequencies, we obtained
satisfactory results that were equivalent to those obtained with
more frequencies. The maximum frequency offset (∆ f ) ranged
from 0 to 30 Hz, as seen in Figure 5, which also shows
that the inversion with the 500 ± 15 Hz range presented the
best results with the noise level that was used. In general, the
multifrequency was satisfactory in the inversion; however, when
the maximum frequency offsets were wider than ± 30 Hz, the
model error was higher than that of the single-frequency case.
To define the best number of frequencies, the inversion was
performed in the same range, that is, 500 ± 15 Hz, but with a
higher number of frequencies. For example, for 5 frequencies,
we simultaneously used 485, 492.5, 500, 507.5 and 515 Hz. The
results are presented in Figure 6 and show that, when more than
3 frequencies were used simultaneously in the inversion, there
was no significant reduction in the model error. Therefore, we
adopted the use of 3 frequencies in the iterative multifrequency
approach. The models recovered along the iterations using
the iterative multifrequency approach are presented in Figure
7, which shows that the recovery of the model in the initial
iterations was not superior to the inversion results in the iterative
single-frequency case. However, the results were slightly better
for the last iterations.

SEQUENTIAL ITERATIVE SINGLE-FREQUENCY

In this approach, only one frequency was used at each iteration,
although the frequency value changed from iteration to iteration,
maintaining a constant wavelength. The wavelength should be
larger than the block size; in fact, a better result was observed
using a wavelength between one and two times the block size
(λ ≈ 7.8 m). Thus, the choice of the inversion frequency was
done based on its dependence on the recovered velocity, with the
wavelength constant at each iteration. Figure 8 shows the images
of the recovered model after 2 iterations using the sequential,
iterative, single-frequency approach. The improvement in the
image quality of the recovered model along the iterations is
notable. In this approach, few iterations were necessary to reach
a satisfactory result, and the relative RMS error in of the model
the last iteration was less than 2.5%, a superior result to those of
the previous approaches.
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(a) Iteration 0. (b) Iteration 1. (c) Iteration 2.

(d) Iteration 3. (e) Iteration 4.

Figure 3 – Models estimated by an iterative
monofrequency inversion using updated
background velocities: (a) 2500 m/s, (b)
3475 m/s, (c) 4240 m/s, (d) 4060 m/s, and (e)
4035 m/s.

Figure 4 – Data and model relative RMS errors along the iterations using the
Reginska and GCV methods to search for the optimization parameter.

Figure 5 – Model relative RMS error for inversion with 3 frequencies,
for different maximum frequency offsets, as a function of the parameter of
regularization.
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Figure 6 – Model relative RMS error of the multifrequency
inversion, for a constant maximum frequency offset and
different numbers of frequencies, as a function of the
regularization parameter.

(a) Iteration 0. (b) Iteration 1. (c) Iteration 2.

(d) Iteration 3. (e) Iteration 4. (f) Iteration 5.

Figure 7 – Models estimated by an iterative multifrequency inversion using updated background velocities: (a) 2500 m/s, (b) 3200 m/s, (c) 5005 m/s, (d) 4305 m/s,(e)
4060 m/s and (f) 4030 m/s.
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(a) Iteration 0. (b) Iteration 1. (c) Iteration 2.

Figure 8 – Model estimated by a sequential iterative single-frequency inversion using background velocities and frequencies: (a) 2500 m/s and 319 Hz, (b) 4045 m/s
and 516 Hz, and (c) 4030 m/s and 514 Hz.

(a) Iteration 0. (b) Iteration 1. (c) Iteration 2.

Figure 9 – Model estimated by a sequential iterative multifrequency inversion using updated background velocities and 3 frequencies: (a) 2500 m/s and 318.5±0.5 Hz,
(b) 4050 m/s and 516 ±0.5 Hz, and (c) 4030 m/s and 513.5 ±0.5 Hz.

SEQUENTIAL ITERATIVE MULTIFREQUENCY

In this approach, several frequencies were used simultaneously
at each iteration, and these varied according to the background
velocity, maintaining the wavelength range constant. Figure
9 shows the tomograms obtained with this approach,
demonstrating that the results were also satisfactory with
fewer iterations. However, the model RMS error did not
improve significantly when compared to that of the previous,
single-frequency case.

COMPARATIVE TABLE

Table 1 summarizes the results of the presented approaches,
showing that the velocity error was similar among the four
approaches. The average velocity of the recovered model
converged to the average velocity of the true model at each
iteration in all cases. This is the reason for the low velocity errors
obtained at the end of the iterations. The data error presented
a behavior similar to that of the velocity error, whose value
was very close in the four approaches. On the other hand, the
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Table 1 – A comparison of the velocity, object function and data relative RMS errors of the four presented
approaches, referring to the last iteration and the number of iterations.

Approach Features εv εm εd Iterations

Single Constant frequency 0.041 5.487 0.038 4

Multi Constant multifrequencies 0.028 3.877 0.032 5

Single Sequential Variable frequency 0.016 2.146 0.036 2

Multi Sequential Variable multifrequencies 0.024 3.345 0.032 2

model error had the greatest disparity among the four approaches.
The sequential approaches proved to be more effective than the
constant frequency approaches, both with respect to errors and
the number of iterations required. This is because the chosen
constant wavelength was the one that best “viewed” the medium,
which was repeated in all iterations, different from the cases
of the constant frequency approaches. In addition, we noticed
that the use of multifrequency was more effective in the case of
constant frequencies, and we do not recommend its use when the
frequency varies at each iteration. When keeping the frequency
or the frequencies constant, the use of the multiple frequencies
improved the result. The additional information mitigated a little
bit the system ill-conditioning. In other words, the addition of
more frequencies implied in an information gain, and decreased
both on the RMS error between the true object function and the
estimated one (εm ) and RMS error between the true velocities
and the estimated velocities (εv).

CONCLUSIONS

In this work, we present several single and multifrequency
tomographic inversion approaches, investigating the iterative
aspect of the diffraction tomography method, as well as the
sequential aspect of the use of frequencies. The results of the
iterative, single-frequency method were satisfactory, especially
via the use of the GCV method to choose the regularization
parameter, which significantly reduced the RMS error of the
recovered model and allowed the use of an arbitrary initial
background velocity. To obtain a better model recovery, several
frequencies were introduced in the inversion with different
frequency steps. It was verified that the multifrequency inversion
presented the smallest errors. Another important aspect of the
approaches is the pitch of the frequency step, as it is unreasonable
to use a very wide pitch, since the frequency is related to the
wavelength, and in theory, only a certain wavelength range “sees”

the medium properly. This is based on the block dimensions with
which the interest region is discretized. We also noticed that the
use of variable frequencies, in both single and multifrequency
inversions provided a better recovered model and reduced the
number of iterations required. In summary, the approach with
the iterative and sequential Born approximation was satisfactory,
with a smaller model error than the conventional approach.
These approaches also made the inversion possible without the
knowledge of the true background velocity of the medium.
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