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USING ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM TO
IMPROVE PARAMETER ESTIMATION IN SEISMIC PROCESSING:

EXTENDED RESULTS

José Ribeiro, Tiago A. Coimbra, Nicholas T. Okita,

Gustavo B. Ignácio, and Martin Tygel

ABSTRACT. Since the end of the 1990s, methods of imaging and inversion have been receiving systematic atten-
tion, through multiparametric traveltimes, such as the Common-Reflection-Surface (CRS) method, in its two versions
zero offset (ZO) and finite offset (FO), and the Offset Continuation Trajectory (OCT). Despite its superior quality to
traditional methods, OCT and CRS face the challenges of additional computation costs, which stem from the re-
quired multiparameter estimations. The problem of estimating the slope, curvature, and velocity parameters reliably
and efficiently has been drawing focus in the seismic literature. Mathematically, approaches to solve that problem
rely on global optimization techniques. The main challenges are robustness (small relative sensitivity to given initial
values) and convergence speed. The Differential Evolution (DE) has shown promising results. That method has a
welcome property of robustness, however also the drawback of undesired convergence speed. In this paper, we pro-
pose overcoming this problem upon applying the Adaptive Differential Evolution known as JADE. Qualitative results
from synthetic and real datasets show, for similar execution times, the fast convergence of JADE when compared
with that of DE. Therefore, JADE presents itself as a great alternative to DE, showing even more promising results
regarding estimating the parameters of OCT and CRS.

Keywords: seismic parameter estimation, adaptive differential evolution.

RESUMO. Desde o fim da década de 90, métodos de imageamento e inversão vêm recebendo atenção sistemática
através de tempos de trânsito multiparamétricos, tal como o método Common-Reflection-Surface (CRS), em suas
duas versões afastamento nulo (ZO) e afastamento finito (FO), e a trajetória para continuação de afastamento
(OCT). Apesar da qualidade superior quando comparado aos métodos tradicionais, o OCT e o CRS enfrentam os
desafios de custos adicionais de computação, que impedem a estimação dos parâmetros necesários. O problema
de estimar os parâmetros de inclinação, curvatura e velocidade de uma maneira confiável e eficiente tem atraído o
foco da literatura sísmica. Matematicamente, as abordagens para resolver esse problema contam com técnicas de
otimização global. Os principais desafios são robustez (pequena sensibilidade relativa a determinados valores inici-
ais) e velocidade de convergência. Differential Evolution (DE) mostrou resultados promissores. Esse método possui
uma propriedade bem-vinda de robustez, mas também a desvantagem de velocidade de convergência indese-
jada. Neste artigo, propomos superar esse problema com a aplicação do Adaptive Differential Evolution, conhecido
como JADE. Os resultados qualitativos dos conjuntos de dados sintéticos e reais mostram, para tempos de exe-
cução semelhantes, a rápida convergência do JADE quando comparado ao do DE. Portanto, o JADE se apresenta
como uma ótima alternativa ao DE, apresentando resultados ainda mais promissores em relação à estimação dos
parâmetros do OCT e do CRS.
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INTRODUCTION

In seismic data processing, reliable and accurate travel-
time approximations to reflection and diffraction events
play an essential role as stacking operators to gener-
ate initial sections or volumes from the given data. In
general, a finite number of parameters define such trav-
eltime operators. For each given data sample, a corre-
sponding set of parameters must be estimated by some
coherency analysis directly applied to the given dataset.
More specifically, given a sample from the seismic data
and a set of parameters, the corresponding traveltime
must be constructed, and the data must be stacked
along that traveltime. To compute this stacking’s en-
ergy, that is, the level of coherence obtained with the
given set, a semblance measure is used. In such a way,
semblance plays the role of the objective function, and
the set of parameters that maximizes it in the respective
sample is the set desired. We refrain from providing the
mathematical expression of semblance, but for a more
detailed explanation, the reader is referred to, e.g., Nei-
dell and Taner (1971).

In this paper, three traveltime operators are analyzed
through parameter-estimation experiments. These are
the Offset Continuation Trajectory (OCT) and the two
hyperbolic traveltimes Zero Offset - Common Reflec-
tion Surface (ZO-CRS) and Finite Offset - Common Re-
flection Surface (FO-CRS). We also refrain from pro-
viding the mathematical expressions of OCT, ZO-CRS,
and FO-CRS operators, referring the reader to the pub-
lications Coimbra et al. (2016), Jäger et al. (2001) and
Zhang et al. (2001), respectively. For each data sam-
ple, ZO-CRS depends on three parameters (being one
slope and two curvatures), FO-CRS on five parameters
(two slopes and three curvatures), and OCT on two pa-
rameters (one slope and one velocity).

Parameter estimation

Concerning the parameter-estimation problem for the
2D ZO-CRS, which involves three parameters, Jäger
et al. (2001) proposed a scheme that consists of
a sequence of one-parameter searches in suitable
sub-domains of the data, followed by a local, three-
parameter search having the previously-obtained pa-
rameters as initial values. A generalization of that
scheme has been proposed in Garabito et al. (2001),
which is based on an auxiliary two-parameter (diffrac-
tion) traveltime operator. At first, the simulated an-
nealing (SA) method is applied to provide a simultane-
ous estimate of these two parameters, upon which a
(partial) stacked section is constructed. Next, an one-
parameter search is applied to that partial stacked sec-
tion to estimate the third parameter. In the same way
as before, a local three-parameter search is carried out
using the previous estimations as initial values.

From basic mathematical principles, sequential and
few-parameter (cheaper) searches in sub-domains, fol-
lowed by a final full-parameter local search are ex-
pected to provide less accurate estimations than that si-

multaneous, full-parameter, global (much more expen-
sive) searches. Bonomi et al., 2009 applied the global
conjugate direction optimization method (see Powell,
1964) to simultaneously estimate the eight parameters
that define the 3D ZO-CRS operator. Estimations based
on the global Differential Evolution (DE) method have
been recently reported in (Barros et al., 2015, 2019)
and Walda and Gajewski (2017).

In this work, we address the parameter-estimation
problem on given 2D datasets, using for that the OCT,
ZO-CRS, and FO-CRS traveltime operators. Our ap-
proach consists of applying the Adaptive Differential
Evolution (see, e.g. Zhang and Sanderson, 2009), re-
ferred to as JADE, which combines the excellent ac-
curacy and avoids the drawback of slow convergence
provided by DE algorithm, as following shown in the re-
sults section. This paper is also an extension of the ex-
panded abstract presented in the sixteenth International
Congress of the Brazilian Geophysical Society (Ribeiro
et al., 2019).

THEORETICAL REVISION

The methodology employed in our parameter estimation
problem consists of the use of two global optimization
metaheuristics, namely Differential Evolution (DE) and
its counter-part Adaptive Differential Evolution (JADE).
Also, a graphics processing unit (GPU) implementation
approach was followed to obtain better results in fewer
amounts of time.

Differential Evolution (DE):

Differential Evolution (Storn and Price (1997)), or sim-
ply DE, is a metaheuristic (i.e., a global optimization
method with no mathematical proof of convergence)
that tries to formulate the optimization problem as an
evolutionary process, in such a way that an initial popu-
lation P [0] (made up by solution-candidate individuals)
is subjugated to an iterative process (with Ng iterations),
in order to obtain a better population P [Ng] at the Ng-th
iteration.

For this initial population P [0], Np individuals must
be initialized, each one a D-dimensional vector in which
values randomly give each entry (parameter) from real
intervals. In this case, D represents the total number of
parameters related to the chosen traveltime, where DE
is applied. This first process is following described:

P [0][j][k] = frand(lowerPar[k], upperPar[k]),
j ∈ {1, ..., Np}

k ∈ {1, ..., D}
,

(1)

Here, P [0][j][k] specifies the j-th individual from the
initial population and your k-th parameter. Besides,
frand(a, b) gives a random real value from [a, b]
interval, lowerPar[k] holds the lower limitant and
upperPar[k] the upper limitant for the k-th traveltime
parameter.

Right after this first step, the iterative process takes
place. In each iteration i, pre-established rules called a
mutation, crossover, and selection are sequentially ap-
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plied over the P [i− 1] population to evolve it to the next
generation P [i]. For these three rules, a detailed expla-
nation is given below:

Mutation: For the mutation step, two (mutually differ-
ent) random indexes r1, r2 ∈ {1, ..., NP} are chosen
based on a uniform integer distribution in order to pro-
duce a mutant population V [i], as described by:

V [i][j][k] = P [i−1][j][k]

+F∗(P [i−1][r1][k]−P [i−1][r2][k])
j∈[1,Np]

k∈[1,D]

, (2)

Here, one mutant member has generated for each j
in the P [i−1] population, using for that a mutation strat-
egy very similar to the one referred to as "DE/rand/1",
that imposes that every mutant parameter has to be
composed by a linear combination of the randomly se-
lected elements, being F a fixed constant called scale
factor. Other mutation strategies are applicable, but,
given the promising results produced by ”DE/rand/1”,
they will not be considered in this work.

Crossover: Once the mutation part is finished, the
crossover takes place, where a child population U [i]
comes to life with exactly Np individuals, such that each
member j is composed partially by parameters from the
population individual P [i − 1][j] and from the mutated
individual V [i][j], as described by:

U [i][j][k] =

 V [i][j][k] if (frand() < CR) or (k == krand)

P [i− 1][j][k] otherwise.
,

(3)

In the above equation, CR is another fixed value
called crossover rate, frand() is a uniform random gen-
erator of real numbers in the real [0, 1] interval. Further,
krand ∈ {1, ..., D} is a random index chosen for each
individual j ∈ {1, ..., Np}, ensuring that at least one pa-
rameter of the mutant individual j will be passed on to
the child j.

Selection: This last step finishes the two previous
ones. With it, the new generation P [i] is created out of
populations P [i − 1] and U [i], in such a way that only
best fitted individuals of each index j ∈ {1, ..., Np} can
survive for the next population. This selection process
is following summarized:

P [i][j] =

 U [i][j] if f(P [i− 1][j]) < f(U [i][j]),

P [i− 1][j] otherwise.
, (4)

where, f(x) is a function that measures how much
individual x fits in the environment, or more contextu-
alized, how much the candidate set of parameters x is
suited for the traveltime operator at a specific seismic
data point.

Adaptive Differential Evolution (JADE):

Adaptive Differential Evolution (Zhang and Sanderson,
2009), or JADE, can be understood as a DE variant

since initialization of population P is the same, and
generation’s stages are similar. However, three new
changes are introduced: an adaptation of control pa-
rameters F and CR, another mutation strategy called
"DE/current− to− pbest/1", and an optional archive
population. Such modifications appear in the mutation
and crossover stages, in which the F and CR parame-
ters are not fixed anymore. Instead, they are generated
at each iteration i for each individual j in the population
P [i − 1], being respectively denoted by Fj and CRj ,
and given by

Fj = cauchy(µF , 0.1), and CRj = normal(µCR, 0.1). (5)

In the above equation, cauchy(µF , 0.1) means the
Cauchy distribution with location value 0.1 (fixed here
for simplicity) and scale value µF . In the same way,
normal(µCR, 0.1) means the normal distribution with
standard deviation 0.1 (also fixed) and mean value µCR.
The two parameters µF and µCR are initialized in the
beginning and then updated at the end of each genera-
tion by:

µF = 0.9 · µF + 0.1 · meanL(SF ), (6)

µCR = 0.9 · µCR + 0.1 · meanA(SCR), (7)

Here, SF and SCR denote the sets composed by
the successful parameters Fj and CRj , respectively,
both associated with the U [i][j] individual when the first
statement of Eq. 4 is applied. Moreover, meanL(SF )
and meanA(SCR) designate the Lehmer mean and
arithmetic average values of the sets SF and SCR, re-
spectively. We recall that the Lehmer mean reads

meanL =

∑
F ∈ SF

F 2

∑
F ∈ SF

F
, (8)

Integrated with the above modifications, a new muta-
tion strategy called /de/current− to−pbest/1 is used:
for a given percentage number p, with 0 ≤ p ≤ 1, the
100p% best individuals are selected to generate the mu-
tated individual V [i][j] according to the expression

V [i][j] = P [i− 1][j] + Fj ∗ (P [i− 1][jbest]− P [i− 1][j]) +

Fj ∗ (P [i− 1][r1]− P [i− 1][r2])

(9)

Here, the three indexes jbest ∈ [1, ⌈Np·p⌉], r1, r2 ∈
[1, Np], are chosen according to an integer uniform dis-
tribution. The population is previously sorted so that
the jbest individual, the one with the highest semblance
value, occupies the position 1 and the remaining ones
(until jbest position) occupy successive positions (in a
decreasing fashion) according to the semblance value.

Remark: The population diversity, that is, the
scheme that prevents the algorithm from being stuck in
local maxima, can be improved upon the introduction of
an archive population A, populated with the individuals
from population P [i − 1] that failed on Eq. 4 to provide
a semblance value greater than the one obtained by the
U [i] individuals. With the help of the archive A, the in-
dividual P [i− 1][r2] in Eq. 9 has its r2 index now rang-
ing from the [1, Np + |A|] interval, such that individual
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Algorithm 1 Pseudo-code for JADE
1: sizeA = 0;
2: pBest = ⌈p×Np⌉;
3:
4: Create an empty population A
5: Create a random initial population P [0] of size Np
6:
7: // Iterates through all Ng generations
8: for i = 1 to Ng do
9: meanSF = 0.0; meanSF2 = 0.0;

10: meanSCR = 0.0; meanSCR2 = 0.0;
11:
12: // Finds the pBest individuals with the greatest semblance
13: for j = 1 to pBest do
14: for k = j + 1 to Np do
15: if f(P [i− 1][k]) > f(P [i− 1][j]) then
16: Swap P [i− 1][k] with P [i− 1][j]

17:
18: // Updates each individual
19: for j = 1 to Np do
20: do Fj = min(1.0, cauchy(µF , 0.1));
21: while Fj ≤ 0
22:
23: CRj = min(1.0, max(0.0, normal(µCR, 0.1)));
24:
25: u = P [i− 1][j];
26: x1 = P [i− 1][irand(1, Np)];
27: xbest = P [i− 1][irand(1, pBest)];
28: r2 = irand(1, Np+ sizeA);
29:
30: if r2 ≤ Np then x2 = P [i− 1][r2];
31: else x2 = A[r2−Np];

32:
33: krand = irand(1, D)
34: for k = 1 to D do
35: if k == krand or frand(0, 1) < CRj then
36: u[k] += Fj × (xbest[k] − u[k] + x1[k] −

x2[k]);
37:
38: // Verifies lower boundary
39: if u[k] < lowerPar[k] then
40: u[k] = (lowerPar[k]+P [i−1][j][k])/2;

41:
42: // Verifies upper boundary
43: if u[k] > upperPar[k] then
44: u[k] = (upperPar[k]+P [i−1][j][k])/2;

45:
46: if f(u) > f(P [i− 1][j]) then
47: P [i][j] = u;
48:
49: meanSF += Fj ; meanSF2 += Fj × Fj ;
50: meanSCR += CRj ; meanSCR2 += 1.0;
51:
52: if sizeA < Np then
53: sizeA += 1; A[sizeA] = P [i− 1][j];
54: else
55: A[irand(1, sizeA)] = P [i− 1][j];

56:
57: if meanSCR2 > 0.0 then
58: µF = 0.9× µF + 0.1× (meanSF2 / meanSF );
59: µCR = 0.9 × µCR + 0.1 ×

(meanSCR / meanSCR2);

P [i− 1][r2] is replaced by P̃ [r2], according to

P̃ [r2] =

 P [i− 1][r2] if r2 ≤ Np,

A[r2 −Np] otherwise.
(10)

The maximum established size of the archive is set to 
be Np, and always when this limit is reached, an indi-
vidual is randomly removed from its population, using 
for that a uniform integer distribution. The implemen-
tation of JADE is described in algorithm 1. In it, it is 
assumed a vector notation for the population. Further, 
mutation, crossover, and boundary verification are col-
lapsed in one block (lines 31-39).

EXPERIMENTS

We considered two seismic datasets, DIFRAT and JE-
QUITI, being the first a synthetic and the second a real 
2D dataset. Their specifications a re d isplayed i n Ta-
ble 1. The midpoint and offset distances shown for the 
JEQUITI dataset are the mean value of all midpoint and 
offset distances since it is not a regular-grid dataset. 
Besides, JEQUITI is a marine two-dimensional (2D) line 
from the Jequitinhonha basin on the coast of Bahia, 
Brazil.

The estimation processes were executed on an In-
tel(R) Core(TM) i5-6400 CPU @ 2.70GHz, 4 Cores with 
15.6GB of CPU RAM, running with Ubuntu 16.04.4 and 
a graphics processing unit (GPU) GTX TITAN X, 12 
GB VRAM. The OCT, ZO-CRS and FO-CRS code im-
plementations, both for DE and JADE, were compiled 
with the g++ compiler in its version 7.3.0 and nvcc in 
its version 9.0, using on both the -O3 optimization flag. 
Furthermore, the programs were implemented following 
the Scalable Partially Idempotent Task System (SPITS) 
programming model by Borin et al., 2016, then executed 
using the PY-PITS run time by (Benedicto et al., 2017).

QUALITATIVE RESULTS

For the given datasets, the parameter estimations pro-
vided by JADE and DE algorithms are compared and 
discussed. The cases for OCT, ZO-CRS, and FO-CRS 
are treated separately.

ZO-CRS: 
From the semblance panels shown in Fig. 1, only a 
small difference between JADE and DE can be seen, 
mainly when considering Figs. 1c and 1d, which are 
pretty similar. Nevertheless, from results 1a and 1b, 
obtained with 11 individuals mutated during 11 gener-
ations, it is notable the better JADE convergence when 
compared with DE. However, as long as JADE and DE 
preserve the randomness in their very nature, this first 
good result in favor of JADE may be due to some lucky 
shot. Aiming at eliminating possible random effects, 
we performed multiple experiments, as can be seen in 
Fig. 3. In this result, each point represents the root 
mean square of a semblance panel obtained after Z in-
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Table 1 Dataset specifications.

Name Midpoint Distance (m) Offset Distance (m) Number of Traces Number of time samples per trace Sampling interval (ms)

DIFRAT 20 40 2626 376 4

JEQUITI 11.17 90.18 58189 1751 4

(a) JADE NP=11, NG=11 (b) DE NP=11, NG=11

(c) JADE NP=21, NG=21 (d) DE NP=21, NG=21

Figure 1. ZO-CRS semblance comparison between 
JADE and DE in DIFRAT synthetic dataset.

(a) DE NP=11, NG=11

(b) JADE NP=11, NG=11

Figure 2. ZO-CRS semblance comparison 
between JADE and DE in JEQUITI real dataset.

dividuals had been mutated during Z generations 
(being Z a value belonging to the x-axis range). The 
pattern al-ready obtained is confirmed, where JADE is 
performing better with the chosen operator and given 
dataset.

Also, the same repeats in Fig. 2 and 4 related with 
the real dataset, where it is still possible to see the dif-
ference in semblance intensity between panels 2a - 2b. 
Also, Fig. 4 confirms this difference in semblance inten-
sity.

OCT: 
Now we present and analyze the OCT parameter-
estimation results. From Fig. 5 it seems that JADE and 
DE had similar results. However, when a zoomed per-
spective is considered in parts of Fig. 5a, and Fig. 5b, 
where a 21 by 21 result is presented, the advantages 
of JADE over DE become apparent. In this case, DE 
had problems with convergence in multiples regions, 
whereas JADE overcame the convergence issues that 
DE had problems with. This result is directly confirmed 
by Fig. 7, where a similar convergence than that of 
Fig. 3 is obtained.

When considering the real dataset results in Fig. 9, a 
more in-depth look must be taken to identify the regions 
where JADE performed better. Despite the subtlety, it 
is possible to see that difference exists, with JADE hav-
ing better or at least equal coherence in multiple points 
when comparing Fig. 9a and Fig. 9b. Also, Fig. 10 
shows the resulting stacked section for three different 
offsets related to the real dataset. Finally, the difference 
is more significant in the convergence panel in Fig. 8.

FO-CRS: 
The results from both JADE and DE for the FO-CRS 
case is analyzed now. Fig. 11 shows the sem-blance 
panel of two different offsets in DIFRAT dataset, while 
Fig. 13 shows these values for three other offsets in 
JEQUITI dataset.

Considering Fig. 11, notice that the increase in popu-
lation and generation numbers improves the semblance 
value using both DE and JADE, but again, JADE pro-
vided a better convergence (Fig. 11c), where a 21×21 
JADE is superior than the 21×21 DE (Fig. 11d). The 
same pattern repeats in Fig. 13, where a 21 by 21 DE 
(Fig. 13d) shows a worst result than a JADE (Fig. 13c). 
Also, Fig. 12 and 14 shows the differences in the stack-
ing results, as well as Fig. 15 and 16 shows the conver-
gence graphs for JADE and DE in DIFRAT and JEQUITI 
datasets, respectively.
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Figure 3. ZO-CRS convergence comparison 
between JADE and DE in DIFRAT synthetic dataset.

Figure 4. ZO-CRS convergence comparison 
between JADE and DE in JEQUITI real dataset.

(a) JADE NP=21, NG=21 (b) DE NP=21, NG=21

Figure 5. OCT semblance comparison between 
JADE and DE in DIFRAT synthetic dataset.

(a) JADE NP=21, NG=21 (b) DE NP=21, NG=21

Figure 6. OCT stack comparison between JADE 
and DE in Difrat synthetic dataset.

Figure 7. OCT convergence comparison between 
JADE and DE in DIFRAT synthetic dataset

Figure 8. OCT convergence comparison 
between JADE and DE in JEQUITI real dataset.

(a) DE NP=21, NG=21

(b) JADE NP=21, NG=21

Figure 9. OCT semblance comparison between 
JADE and DE in JEQUITI real dataset.

Braz. J. Geophys., 38(3), 2020
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(a) DE NP=21, NG=21

(b) JADE NP=21, NG=21

Figure 10. OCT stack comparison between JADE 
and DE in JEQUITI real dataset

(a) JADE NP=11, NG=11 (b) DE NP=11, NG=11

(c) JADE NP=21, NG=21 (d) DE NP=21, NG=21

(e) JADE NP=31, NG=31 (f) DE NP=31, NG=31

Figure 11. FO-CRS semblance comparison 
between JADE and DE in DIFRAT synthetic dataset

(a) DE NP=31, NG=31

(b) JADE NP=31, NG=31

Figure 12. FO-CRS stack comparison between JADE 
and DE in DIFRAT synthetic dataset.

Braz. J. Geophys., 38(3), 2020
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(a) JADE NP=11, NG=11 (b) DE NP=11, NG=11

(c) JADE NP=21, NG=21 (d) DE NP=21, NG=21

(e) DE NP=31, NG=31

(f) JADE NP=31, NG=31

Figure 13. FO-CRS semblance comparison 
between JADE and DE in JEQUITI real dataset.

(a) DE NP=31, NG=31

(b) JADE NP=31, NG=31

Figure 14. FO-CRS stack comparison between 
JADE and DE in JEQUITI real dataset.

Figure 15. FO-CRS convergence comparison 
between JADE and DE in DIFRAT synthetic dataset.

Figure 16. FO-CRS convergence comparison 
between JADE and DE in JEQUITI real dataset.
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PERFORMANCE RESULTS

Analyzing and comparing both DE and JADE algo-
rithms, it becomes clear that the population sorting
(on lines 13-16 in Alg. 1) is the most significant part
that could impact JADE performance since it is a sim-
ple selection sort with worst-case performance equal to
O(n2). However, as long as n is never greater than 10%
of Np (in this work is a value fixed as n/Np ≤ 0.1), this
part becomes almost negligible when compared with all
the other operations executed during the iterative pro-
cess, mainly when the semblance calculation for each
individual is considered, which is by far the most expen-
sive section of both DE and JADE algorithms.

Therefore, even though JADE has elements that
could slow it down at the point of losing its good con-
vergence speed, the results from every experiment per-
formed in this work have shown very similar execution
times for both JADE and DE, revealing that the good
results obtained by the adaptive algorithm must not be
invalidated if performance time is being considered.

For instance, each parameter estimation was exe-
cuted three times. The average time obtained from
each set of three executions was computed and shown
below. Tables 2, 4 and 6 presents the average execu-
tion time of each traveltime chosen, maintaining fixed
the synthetic dataset DIFRAT. From those three tables,
JADE performed 1.0528x slower than DE. However,
when a bigger dataset is considered, JEQUITI, related
with tables 3, 5 and 7, the performance difference be-
tween JADE and DE becomes almost negligible, being
JADE only 1.0039x slower than DE. We conclude that
not only JADE generated better results for the three
cited traveltime and two selected datasets, but it also
had almost the same performance as DE.

Table 2. ZO-CRS execution time: DIFRAT 
synthetic dataset.

Population Number of Execution Time
Size Generations JADE (m) DE (m) JADE / DE (%)

11 11 0.01 0.01 86.88
21 21 0.03 0.03 111.56
31 31 0.04 0.04 113.99

Table 3. ZO-CRS execution time: JEQUITI real dataset.

Population Number of Execution Time
Size Generations JADE (m) DE (m) JADE / DE (%)

11 11 0.42 0.40 104.02
21 21 1.09 1.05 103.15
31 31 2.40 2.34 102.84

Table 4. FO-CRS execution time: DIFRAT 
synthetic dataset.

Population Number of Execution Time
Size Generations JADE (m) DE (m) JADE / DE (%)

11 11 0.03 0.03 109.34
21 21 0.09 0.08 109.07
31 31 0.14 0.12 111.03

Table 5. FO-CRS execution time: JEQUITI real dataset.

Population Number of Execution Time
Size Generations JADE (m) DE (m) JADE / DE (%)

11 11 0.04 0.04 99.88
21 21 1.11 1.12 98.76
31 31 2.42 2.45 98.84

Table 6. OCT execution time: DIFRAT synthetic dataset.

Population Number of Execution Time
Size Generations JADE (m) DE (m) JADE / DE (%)

11 11 0.15 0.14 102.80
21 21 0.36 0.35 101.90
31 31 0.58 0.58 100.99

Table 7. OCT execution time: JEQUITI real dataset.

Population Number of Execution Time
Size Generations JADE (m) DE (m) JADE / DE (%)

11 11 2.32 2.31 100.61
21 21 6.50 6.53 99.57
31 31 13.83 14.43 95.86

DISCUSSIONS

Based on the results, it becomes clear the advantage
of JADE over DE. However, it is still uncertain the re-
liability of those experiments, and once when dealing
with metaheuristics, multiple factors can interfere in the
quality of the results. Aiming to diminish this possible
distrust, we discuss the expanded abstract presented
at the 16th International Congress of the Brazilian Geo-
physical Society. In it, a completely different imple-
mentation was considered, where the central process-
ing units (CPUs) were the main focus, with some par-
allelism being explored only with the SPITS structure
(Benedicto et al., 2017). As opposed to this context,
a new implementation using graphics processing units
(GPUs) was glimpsed, and a new parallelism strategy
had to be explored in order to obtain faster results in
this work. Despite the differences, both implementa-
tions produced pretty similar and consistent quality and
performance results.

Robustness is revealed by reaching similar results
found in the literature (Barros et al., 2015, 2019) when
using different implementations, starting from varying
DE and JADE control parameters, like crossover rate
(CR) and scale factor (F). For the OCT and ZO-CRS
traveltimes, optimal CR and F are 0.9 and 0.8, respec-
tively, while for the FO-CRS traveltime, both optimal
control parameters are 0.5.

Contrary to the results obtained with DE, JADE has
shown a more significant dependency on its control pa-
rameters (which are not few). The ones that interfered
mostly in the quality of results were the presence of an
archive population and the initialization of µF and µCR

parameters. Regarding the archive population, it was
noted that, in general, it helped improving convergence,
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but the maximum size of that population varied depend-
ing on the traveltime operator. For instance, a maximum
size of Np for the archive was used when OCT and ZO-
CRS traveltime was being used, and Np/2 when FO-
CRS was considered. Also, the values that produced
the best results for the control parameters µF and µCR

were 0.5 and 0.7, respectively when FO-CRS was set
as traveltime operator. When OCT was used, µF and
µCR were set to 1.0 and 0.8. Furthermore, regarding
the use of ZO-CRS, µF and µCR were fixed in 0.8 and
0.7.

From those two observations, it is impossible to guar-
antee the complete superiority of JADE over DE yet,
mainly when considering the heuristic nature of both al-
gorithms and the fact of JADE being more susceptible
to be stuck on local maxima. However, from consistent
results, JADE has been proving its value and can be a
good alternative when convergence speed becomes an
issue.

CONCLUSIONS

In this work, two metaheuristics were implemented to
maximize the semblance objective function when es-
timating the parameters for seismic processing algo-
rithms OCT, ZO-CRS, and FO-CRS, namely DE and
JADE. It is well known that DE is a robust solution. How-
ever, its convergence can take many iterations, mak-
ing the final results unsatisfying or computationally ex-
pensive. On the other hand, JADE could be used as
an alternative, improving convergence time and qual-
ity. The results showed that both metaheuristics for the
ZO-CRS program were able to converge properly, with
slightly higher semblance values by JADE when using
the same number of individuals and generations. A
similar result could be noticed for OCT traveltime, with
again JADE performing better than DE.

Nevertheless, in a more complex program, such as
FO-CRS that needs to estimate five parameters, JADE
offered considerably better convergence. Furthermore,
for the same number of population individuals and gen-
erations, the program execution time remained close.
Finally, it is clear that JADE is an acceptable alternative
to the commonly used DE, given its faster convergence
and time performance.
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