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PRESSURE PREDICTION FOR A BLOCK OF THE 
JEQUITINHONHA BASIN, BRAZIL

Fernando T. B. Andrade, Lourenildo W. B. Leite, and Wildney W. S. Vieira

ABSTRACT. Pressure prediction in sedimentary basins is relevant for mapping and/or extending a productive reser-
voir characterized by a low-pressure zone, which is an important principle in hydrocarbon prospecting. A major
part of the efforts in this work was to structure a seismic-stratigraphic framework for modeling and imaging part of
the Jequitinhonha basin, that can be used to evaluate its characteristics and potential for producing oil and gas. In
practice, the main application of the method is to map a reservoir, as well as its lateral and vertical extensions. The
required information for modeling is the distributions of the seismic velocities VP and VS and density ρ. These pieces
of information can be based on velocity analysis, seismic-stratigraphic interpretations of migrated data, petrophysi-
cal data, and empirical models that can provide a relationship between velocities, density, and porosity, which can
also be incorporated. Our proposed model admits vertical gravity loading as the stress-deformation generator on
the geological formations, but it does not take into account the effects of curvatures, faulting, diagenesis, and lateral
tectonic events as loading mechanisms. The presented robust pressure prediction method was applied to a 3D inter-
polated model to map the low-pressure zones (possible reservoir) capped by a high-pressure zone, as a significant
petroleum geology application.

Keywords: pressure prediction, basin modeling, seismic velocity analysis.

RESUMO. A predição de pressão em bacias sedimentares é relevante para mapear e/ou estender um reservatório
produtivo caracterizado por uma zona de baixa pressão, princípio importante na prospecção de hidrocarbonetos.
A maior parte dos esforços deste trabalho foram em estruturar um quadro sismo-estratigráfico para a modelagem
e imageamento de uma parte da bacia do Jequitinhonha, que pode ser usado para avaliar suas características e
potencial para produzir óleo e gás. Na prática, a principal aplicação do método é mapear um reservatório, bem
como suas extensões laterais e verticais. O conhecimento necessário para modelagem são as distribuições de
velocidades VP e VS e densidade ρ. Estas informações podem ser baseadas na análise de velocidade, em inter-
pretações sismo-estratigráficas de dado migrado, dados petrofísicos e modelos empíricos que podem fornecer uma
relação entre velocidades, densidade e porosidade, os quais também podem ser incorporados. Nosso modelo ad-
mite a carga gravitacional vertical como gerador de tensão-deformação nas formações geológicas, mas ele não
leva em consideração os efeitos de curvaturas, falhamentos, diagênese e eventos tectônicos laterais como carga
forçante. O método robusto de predição de pressão apresentado foi aplicado a um modelo 3D interpolado, objeti-
vando mapear zonas de baixa pressão (possível reservatório) capeadas por uma zona de alta pressão, como uma
significativa aplicação na geologia do petróleo.
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INTRODUCTION

This paper describes a numerical experiment aimed
at basin modeling and pressure prediction, where the
main purpose is to map zones of low- and high-pressure
that act as natural pumps for fluid accumulation in sed-
imentary basins. For this purpose, we use six seismic
lines of the Jequitinhonha basin, located to the east of
the state of Bahia (Brazil), the marine side (see Fig.
1). The lines used were separated into two groups:
three lines in the NE-SW (L214-266, L214-268, L214-
270) and three lines in the NW-SE direction (L214-297,
L214-302, L214-303), to build what we call an empirical
3D model.

In principle, we need a 3D survey in order to con-
struct a consistent subsurface distribution of velocities
(VP and VS) and density (ρ). Since the surveyed lines
are independent, then we need to interpolate the re-
sults obtained for each time section to build a limited
block, but that can offer plausible geological informa-
tion. A precursor to the present paper describing the
basic and fundamental theory can be followed in Vieira
et al. (2017).

The methodology is composed of a sequence of pro-
cessing techniques starting with the CRS stack and mi-
gration (Mann , 2002; Cohen & Stockwell , 2005), inter-
pretation of reflectors (interfaces), time-depth conver-
sion, and construction of a controlled empirical model
for P- and S-wave velocities and density, necessary for
prediction of subsurface pressure; that is, to map zones
of low- and high-pressure. We classify the pressure
prediction modeling as a post-stack migration seismic
method.

In this direction, Sibiryakov et al. (2014) presented
the basic theory and Andrade F.T.B. (2018) detailed
results on which the present work was based. Pres-
sure prediction, in sedimentary basin modeling for oil
and gas exploration, is certainly a very attractive subject
for giving a complex geology a complementary under-
standing of the location of a borehole for a productive
well.

Seismic interpretation of the sections consisted of
recognizing textures existing between the main reflec-
tive patterns. For this step, four basic principles were
considered: resolution (vertical), continuity (horizontal),
texture (of the intervals between dominant events), and
frequency content (low, medium, high) Payton (1977).

According to Mello et al. (1994), the Regência
Petroleum System is responsible for all hydrocarbon oc-
currences in the Jequitinhonha Basin. Furthermore, we
propose that a rock is a reservoir candidate if it fulfills
the geomechanical condition of a low-pressure zone
capped by a high-pressure zone, and not only based
on pure geological criteria. This condition is what we
would like to explore in this work.

The modeling of a basin and petroleum system aim-
ing at hydrocarbon exploration involves several theo-
retical aspects related to geology, geochemistry, geo-
physics, and engineering, as described classically by

Hantschel & Kauerauf (2009). But, in this paper, we
apply a specific data-driven method based on the dis-
tributions of VP(x), VS(x), and ρ(x) as a priori knowl-
edge to map low-pressure zones in a 3D basin model-
ing, considered important to locate a successful drilling
area for oil and gas exploration.

Figure 1. Location of the six seismic lines of the Jequiti-
nhonha basin used in this work.

METHODOLOGY

The seismic data under study are presented in Figures 
2 and 3, which show the interpreted zero-offset stack 
sections with the common reflection surface (CRS) 
technology. The macro geometrical interpretation was 
based on reflections with clear lateral continuity of the 
reflector and on the texture of the macro intervals, 
where the sequences and structures are indicated by 
letters and numbers. Interpretation outlines basement
highs, the layered sequence displaying lateral varia-
tions, and specific textures. The flat top of the figures
shows clearly the contact water/sediments with similar
behaviors of a flatter platform followed by the marine
slope.

Mechanics of Solids

The main physical parameter governing pressure pre-
diction is the measure of discontinuity in the γ = VS

VP
ra-

tio across the geological interfaces, where VS is the S-
wave velocity and VP is the P-wave velocity. Sibiryakov
et al. (2015) deal with different aspects of this special
method, where it is described that, as a result of the γ
ratio behavior, an anticline is not necessarily the only
structural condition for potentiating a zone to be an oil
and gas accumulator (reservoir, collector).

Braz. J. Geophys., 38(3), 2020
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The proper physical description for the geology is ac-
cording to the mechanics of solids. Then, we consider
the rock formations as a set of continuous media, lin-
ear elastic, where the stress field, σij = σ(x, y, z),
and deformation field, ϵij = ϵ(x, y, z), are related by
Hooke’s law as tensors functions of space (x, y, z),
which are represented by nine components. Besides,
for the general anisotropic media, the tensors σij and
ϵij obey the spatial coordinate rotation by the relations
σij =

∑
k,l aijklσ

′
kl, and ϵij =

∑
k,l bijklϵ

′
kl, where the

coefficients aijkl and bijkl define a new plane with re-
spect to a reference system (see Fig. 4).

The elastic linear relationship between stress and
strain is given by the generalized Hooke’s law: σij =∑

k,l cijklϵkl. In this description, the first index (i) in σij

and ϵij represents the plane direction, and the second
(j) the component direction.

3

Figure 4. (Left) Illustration of the general stress tensor 
relative to an infinitesimal c ube r epresenting t he point 
Q. (Right) Rotation to any angle to satisfy the (geologi-
cal) structure for the normal stresses Davis & Selvadu-
rai (1996).

Stress state is represented at a point Q by a matrix 
S with elements σij (see Fig. 4), that can be decom-
posed into three parts, S = S0+SD+SN, which allow a 
physical interpretation, as described by Persen (1975). 
For the state S0, we have S0 = {PRδij }, where the 
diagonal PR = 1 (σxx + σyy + σzz) represents the sim-
ple average of the normal stresses (average or the first
stress invariant) which is used to define the so-called
rock (solid) pressure (similar concept to the hydrostatic
state and, therefore, taken as scalars).

For the state SD we have that:

SD =


σxx − PR

1
2
(σxy + σyx)

1
2
(σxz + σzx)

1
2
(σxy + σyx) σyy − PR

1
2
(σyz + σzy)

1
2
(σxz + σzx)

1
2
(σzy + σyz) σzz − PR

 . (1)

Applying the symmetry property to the above matrix (1):
σxy = σyx, σxz = σzx, σyz = σzy, SD, results in a state
represented by:

SD =


σxx − PR σxy σxz

σxy σyy − PR σyz

σxz σyz σzz − PR

 , (2)

what places the deviatoric state along the diagonal
(normal stresses), where the “hydrostatic” state is sub-

tracted, remaining the non-hydrostatic state. Matrix SD

is generally called deviatoric state because it represents
the degree to which a certain state of tension deviates
from the “hydrostatic” state.

For the state SN, we have that:

SN =


0 1

2
(σxy − σyx)

1
2
(σxz − σzx)

1
2
(σxy − σyx) 0 1

2
(σyz − σzy)

1
2
(σxz − σzx)

1
2
(σyz − σzy) 0

 . (3)

Similarly, by applying the symmetry property, the state
SN is simplified to the null state, that is SN = [0 ].

For an isotropic linear elastic medium, the relation be-
tween stress and strain is represented by Hooke’s law

σij = λθδij + 2µϵij , (4)

where λ and µ are the Lamé elastic parameters, and
δij the Kronecker delta (δij = 0, if i ̸= j and δij = 1,
if i = j). The non-dimensional parameter θ represents
the cubic dilation and is given by the divergence of the
displacement vector u as θ = ∇·u = ∂ux

∂x +
∂uy

∂y + ∂uz

∂z .
Non-dimensional tensor components ϵij are defined

in terms of the displacement components ui in the fol-
lowing form: ϵij = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. Besides that, the lin-

ear shear-extensional tensor, a non-dimensional rota-
tion tensor, is also expressed as: φij =

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
.

We may observe that, once the displacement field is
known, the stress and deformation tensors can be cal-
culated by applying spatial derivatives.

Governing Equations

The system of differential equations that represents
static stress-state on a physical particle of the subsur-
face relates the involved forces in the following way:

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= px(x, y, z),

∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂z
= py(x, y, z),

∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂z
= pz(x, y, z),

(5)

where pj(x, y, z) for j = x and j = y may represent the
horizontal tectonic (external) stress-pressure fields ap-
plied on the block forming the basin. This system must
be integrated to obtain the displacement field, from
where the stress field can be calculated. For this, it
is necessary to define a model and boundary condi-
tions. For j = z, we have the vertical gravity load-
ing, pz = ρ(z)g(z), that can be further simplified to
pz = ρg constant for considered thickness column due
to small variation of the product ρg with depth, z. For
the present approach, the vertical gravity load is con-
sidered the only component responsible for the basin
stress field. Therefore, the horizontal tectonic compo-
nents are null, i.e., px(x, y, z) = 0 and py(x, y, z) = 0.

The present model is related to the wave propagation

Braz. J. Geophys., 38(3), 2020
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in a perfect linear elastic medium, where the elastody-
namic equations of motion have on the right-hand side
the term ρ

∂2uj

∂t2 in Eq. (5). To recall, the underlying
phenomenon of elastic wave propagation is described
by the system of equations (dynamic state) resumed to
the form:

∂σij

∂xj
= ρ

∂2ui

∂t2
. (6)

This means that the temporal-spatial stress variation
is related to the inertial forces (per unit volume), not
considering internal forces in this case. It should be
clear that we are not studying wave propagation in
pre-stressed media, but the case of static deformation,
which is analyzed based on the dynamic equation of
motion for the limit of frequency zero.

Basic seismic velocities (P and S) for elastic, homo-

geneous, isotropic media are given by VP =
√

λ+2µ
ρ

and VS =
√

µ
ρ , where µ is the shear modulus, λ is re-

lated to the bulk and shear modulus, and ρ is the vol-
umetric density. From the above relations, the mod-
ules can calculated by µ = V 2

S ρ, λ = V 2
P ρ − 2µ =

(V 2
P − 2V 2

S )ρ and the gamma ratio γ = VS

VP
=

√
µ

λ+2µ .

Waves sample the elastic parameters in the subsurface
during propagation, and the parameters are considered
to vary only spatially, and not with the propagation time.

Density is usually admitted as a parameter that varies
slowly with depth, from the earth’s surface to the top
of the target interface; but, in some situations of com-
plex geology (for instance, presence of magmatic and
salt intrusions), the density discontinuity can be rela-
tively high. In the present case of vertical sections, the
density is modeled in 2D, ρ = ρ(x, z), and is integrated
into the calculation grid.

The system of differential equations to be integrated
corresponds to the description of the static problem [no
time variation, Eq. (5)]. These equations govern the
mechanics of solids under the influence of gravity only,
and they are summarized in the form ∂σ3j

∂xj
= ρg δ3j .

This means that the sum of the horizontal stress vari-
ations is zero, and the vertical component is controlled
by the gravitational load in the subsurface expressed in
terms of force per unit area and set to pz = ρg. There-
fore, the lateral tectonic stresses are not considered in
this model, besides we do not have such easy infor-
mation for the area. Also, for other specific cases the
quantities ρ and g may be considered as spatial func-
tions, i.e., ρ = ρ(x, y, z) and g = g(x, y, z).

Parameter Integration

We consider the geological medium as represented by
a model formed by plane-horizontal layers along the
sampling grid in the x-axis, and heterogeneous along
the vertical z-axis for each point of the profile. Equi-
librium equation for the linear elastic medium for each
layer is ∂σik

∂xk
= ρgi, that is simplified to the form ∂σzz

∂xz
=

ρg. This equation has an elementary solution given by:

σzz(z) = g

∫ z=z

z=0

ρ(z)dz, (7)

that measures the overload rock weight per unit area;
i.e., the vertical pressure due to the overload at any
depth z. It is clear that this summation is straightforward
as a discrete form, and considers a flat model in the dis-
crete space grid. Also, for our present data, we have a
sampling ∆x along the seismic line different from the
sampling in the transverse direction ∆y.

For the model presentation, we simplify the nomen-
clature. Vertical stress, σzz(z) is defined as due to
the overloading layer; i. e., σzz = PZ(z). On the
other hand, the horizontal stress σxx(z), considering
that σyy = σxx, is smaller than the vertical stress, σzz,
and we can demonstrate to be given by:

σxx(z) = PX(z) = PZ(z)[1− 2γ2(z)], (8)

where γ(z) = VS(z)
VP(z)

.

Scalar invariant field PR(z) was defined in the matrix
(1) as the average of the first invariant [I1 = σxx+σyy+
σzz], namely:

PR =
1

3
(σxx + σyy + σzz). (9)

Using Hooke’s generalized law, we can demonstrate
that PR = (λ + 2

3µ)θ, where θ(z) is the cubic dilation,
and λ(z) and µ(z) are Lamé’s parameters described
above. Condition of pure hydrostatic state PH is physi-
cally defined for fluids only; in the case of σxx = σyy =
σzz, then mathematically PR = PH , but that is not the
usual case for solids under the gravity loading.

Another important physical feature is the pressure
discontinuity at the interfaces between different layers
(∆P = P+ − P−, lower minus upper), at the depth
z (positive down), which exists if the velocity ratio γ
exhibits a discontinuity. Considering the case of a
medium formed by plane-horizontal layers, and Hooke’s
isotropic law, we show that the pressure discontinuity
∆P is given by:

∆P (z) =
4

3

(
γ2
1 − γ2

2

)
PZ(z) (10)

where γ1 is the upper layer and γ2 the lower layer pa-
rameter, across the interface positioned at the depth z,
which shows that the overload pressure can vary by
positive and negative jumps Sibiryakov et al. (2019).
This idea may seem a little strange for geological de-
scriptions, but it is a fact related to the non-elementary
behavior of stress in solids. As a partial conclusion,
interfaces should be the goals in the geological inter-
pretation of the seismic sections, whose examples are
shown in Figures 2 and 3.

The intensity of the so-called tangential stress (PT ) is
a way of measuring the mechanical instability responsi-
ble for the condition of destroying the granular structure,

Braz. J. Geophys., 38(3), 2020
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to produce fracture in the solid rock. In this direction, the
following relation is obtained:

PT (z) =
1

2
(σzz − σxx) = γ2(z)PZ(z). (11)

Once more, this result also depends on the γ ratio.

Modeling Strategy

The modeling strategy for choosing the physical param-
eters of the reservoir has to consider a sequence of ge-
ological formations forming the stratigraphical units in-
terpreted in the seismic sections. For this purpose, we
follow the work of Gregory (1976) and described in de-
tail by Sibiryakov et al. (2019).

Gregory (1976)’s experiments allowed dividing rock
porosity into classes: (1st) the class where the velocity
behavior does not contradict qualitatively with Frenkel-
Biot theory, i.e., shear wave velocities decrease with
the increase of water saturation; (2nd) the class where
there is a qualitative contradiction with Frenkel-Biot the-
ory, i.e., shear wave velocities increase with the in-
crease of water saturation; (3rd) the class where the
velocity is pressure-dependent.

An important measure in the mechanics of solids re-
lated to pressure prediction and γ ratio is Poisson’s ra-
tio ν. Among several definitions present in the litera-
ture, Poisson’s ratio is simply the negative of the trans-
verse strain rate relative to axial deformation in an elas-
tic material subjected to axial stress, that is, ν = − dϵy

dϵx
.

In terms of Lamé’s parameters, Poisson’s ratio can be
written as ν = λ

2(λ+µ) , with a considered usual practi-
cal range of values −1 < ν ⩽ 0.5 Davis & Selvadurai
(1996). Therefore, the relations between Poisson and γ
ratios are given by:

ν =
1

2

(1− 2γ2)

(1− γ2)
, γ =

√
1− 2ν

2(1− ν)
, (12)

plotted in Figure 5, where we observe the points of dis-
continuity and the general behavior of these two rela-
tions, that are inverse of each other. These figures in-
tend to show the general mathematical behavior of re-
lations in Eqs. (12), and not laboratory or field exper-
iments. In other words, we open the possibilities that
field and laboratory measurements be different, and to
serve as physical bounds. In Figure 5 we highlight the
infinite discontinuity of the Poisson’s ratio, ν(γ), around
the value γ2 = 1 (it is not admitted γ < 0). On the other
hand, the gamma ratio, γ(ν), has a complex discontinu-
ity around the value ν = 1

2 , and an infinite discontinuity
around ν = 1; the range for 1

2 < ν < 1 gives the γ ratio
a complex value.

The most important Gregory (1976)’s result is the
experimental detection of abnormal high γ = VS

VP
ratios

for high porosity rocks. If this γ ratio exceeds 1√
2

≈
0.707, then, we have λ < 0, and as a result, Poisson’s
ratio has negative value (see Fig. 5). It has long been
considered that Poisson’s ratio can only have positive

values in the range between 0 and 1
2 . Negative values

of Poisson’s ratio, in particular, mean that stretching a
thin rod by its end faces does not decrease in thickness,
but on the contrary, its thickness increases.

Besides, Gregory (1976)’s result is not strange at all,
because it does not contradict the fundamentals of ther-
modynamics about the deformation of a body that de-
mands positive free energy F ; i.e., positive values cal-
culated according to the formula F = µ(ϵik− 1

3δikϵll)
2+

K
2 ϵ

2
ll. This means that positive values should be for µ

and K = λ + 2
3µ, but not for λ; hence, Poisson’s ratio

is not strictly given by positive values Sibiryakov et al.
(2019). Also, we are dealing with a dynamic measure
(wave propagation) and not a static measure (labora-
tory measurements).

Gregory (1976) found in dynamic measurements in
laboratory, and other authors in field experiments, ab-
normally high relationships of γ = VS

VP
up to 0.77. Static

measurements give positive values for the Poisson and
gamma ratios. But, there is no complete clearness con-
cerning reasons for such a phenomenon as described
by Sibiryakov et al. (2019). For this reason, we iden-
tified the reservoir formation with the value γ = 0.807
chosen arbitrarily.

RESULTS

Input and Calculated Parameters

Distributions VP and γ ratio, used as input parameters,
are based on controlled empirical models with values
presented in Table 1. In a real and practical case, where
a good velocity analysis can be performed, empirical
models are less important; as a matter of fact, veloc-
ity and density estimations are the main challenges in
seismic processing.
VP sections displayed in Figure 6 have the main lay-

ers indicated by letters and numbers in the following or-
der: S9 represents the water layer (dark blue), S4 the
layer above the reservoir (light blue), S3 the layer that
includes the reservoir (light green), S2 the layer that in-
cludes the source rock (yellow), and S1 the basement
(dark red).

In each layer, VP was defined by the formula VP (z) =
VP0+kP z with a small linear gradient kP . The γ ratio is
also defined as a linear function, γ(z) = γ0 + kgz, with
also a small gradient kg. For the density ρ, we used the
classical empirical relation ρ(z) ≈ 1.741V 0.25

S (z) pro-
posed by Gardner et al. (1974), which represents an
average on different types of rock, but that should attend
Birch’s law. These empirical models were applied to the
interpreted seismic-stratigraphic sections of the Figures
2 and 3, along the z-axis and in each point of the x-axis,
producing 2D maps for distributions VP (x, z), VS(x, z),
ρ(x, z) and γ(x, z).

The initial information for the pressure prediction is
the sections of the velocity VP and γ ratio, from where
the other parameters are calculated (see Figs. 6, 7, 8,
and 9). To obtain these sections of parameter distribu-
tions, we started from the CRS migrated and interpreted
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Figure 5. Graphs of the relationships (12) between Poisson and gamma ratios for a range of theoretical values. We 
marked the reservoir (S3), the source rock (S2), and the Poisson’s solid values in both graphs. The light gray and 
white areas correspond, respectively, to practical and purely theoretical values.

seismic sections, where the source and reservoir for-
mations were defined b ased o n s ome p rior geological 
information.

It is important to mention that the data was format-
ted in a matrix form. Therefore, we can apply a simple 
change of scale from time (t) to depth (z) using a con-
stant average velocity value (in this case V = 1 m/s). 
In other situations, we can use the data matrix resulting 
from another process like migration.

The VP empirical models are mixed, i.e., composed 
of jumps and smooth linear trend variation as displayed 
in Figure 6, where the gradient varied as 0.01 < kP < 
0.075. A similar formulation was applied to the γ(z) 
distribution, but with an even smoother gradient, with 
kP = 0.001 (see Fig. 7). Having defined the VP (x, z) 
and γ(x, z) distributions, VS(x, z) was calculated as 
shown in Figure 8. As a consequence, the other desired 
parameter distributions (ρ, µ, λ, ν, K) can be automat-
ically calculated, followed by the desired pressure sec-
tions. Figure 9 shows the density distributions, ρ(x, z), 
which also followed the mixed pattern similar to VP ; that 
is, with jumps and smooth vertical gradients.

Maps and Cubes of the Pressure Predictions

Maps
The following figures show the section maps for PZ , 

PX , PT , and PR, where we focus our attention on the 
low- and high-pressure zones. Figure 10 shows the 
pressure PZ (x, z) (vertical load), which presents a very 
smooth behavior as expected. Figure 11 shows the 
pressure PX(x, z) (horizontal component), which ex-
hibits a very differentiated and special behavior for each 
seismic section, where zones of low negative pres-

sure contrast can be seen for each layer interpreted 
as the reservoir (light green range between 2000 and 
4000 meters). Figure 12 shows the deviatoric pres-
sure PT between vertical and horizontal stress com-
ponents, with a very special behavior for the low- and 
high-pressure zones, and clear information that the ver-
tical pressure exceeds the horizontal pressure in gen-
eral. Besides that, it is interesting to observe that part 
of the basement presents zones of intermediate pres-
sure.

Figure 13 shows the rock pressure PR, where 
it is clearly modeled the low-pressure zone (central 
blue stripe), located between two high-pressure zones 
(weaker above and stronger below).

Cubes

Pressure cubes were constructed by linear interpola-
tion of the six seismic lines used with the arrangement 
already shown in Figure 1. The lines form two groups 
(NW-SE and NE-SW), where each group is formed by 
three parallel lines. Initially, the pressure maps (rock, 
tangential, and horizontal) were bounded to equalize 
the sizes of the lines. Then, we established an equal 
spatial sampling along all six lines (∆x = 25 m) and 
built a cube for each group. After that, the cubes 
were decimated by 20 points and then merged into a 
single cube. The matrix representing the cube had 
84×84×120 points, and its 3D grid had the spatial sam-
pling ∆x = 504.8 m, ∆y = 144.6 m, and ∆z = 58.6 m. 
The cube gives the possibility to rotate it, navigate in-
side, and do different cuts, which produces a more con-
venient image for interpretation and to follow the con-
tinuation of the reservoir inside the cube. Nevertheless, 
the structural analysis must consider the limitations of
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Table 1. Parameter values used in the empirical models.

Value S9 S8 S7 S6 S5 S4 S3 S2 S1

γ0 0 0.677 0.677 0.677 0.677 0.687 0.807 0.677 0.570

VP0 1500 1900 2200 2350 2500 3000 3440 4200 5200

kP 0 0.01 0.01 0.01 0.05 0.02 0.025 0.075 0.2

kg 0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

It is interesting that the imaging process for mapping 
low-pressure zones, corresponding to a proposed (or 
productive) reservoir, can have a spatial extension that 
can be updated with further seismic, stratigraphic, and 
structural information of the sedimentary basin. This 
means that pressure prediction is a systematic inter-
active process in basin modeling so here defined, be-
cause a real knowledge of VP , VS , and ρ is the greatest 
want of all seismic research.

Rock “hydrostatic” pressure, defined as an average of 
the normal stresses, corresponds to a convenient def-
inition based on the first invariant for the stress-strain 
state of solids. Therefore, although it does not have 
real physical meaning, it represents a powerful concept 
and has strong mathematical reasoning.

Furthermore, we showed that the concept of a seal-
ing cap rock does not need to be associated with litho-
logical and structural considerations, but mainly with the 
condition of low- and high-pressure zones related to 
the present geological environment. Namely, a reser-
voir tends to be a low-pressure zone and the cap-rock 
a high-pressure zone. This fundamental conclusion is 
a reality of the physics of solids, but that can sound 
strange to geologists as we found from our experience 
during oral presentations.

In conclusion, a further continuation of this method 
requires combined data from 3D seismic surveys with 
borehole, geochemical, geological information, to com-
pose a more realistic 3D model for pressure prediction 
and, therefore, show a possible new reservoir or to ex-
tend a productive reservoir.

asymmetric sampling.
Figure 14 shows an important 3D cube constructed 

for the rock pressure, PR(x, y, z). This cube highlights 
the zone interpreted as a reservoir (dark blue in the 
middle of the cube), which corresponds to the lowest 
pressure zone. This image helps us to extend three-
dimensionally the zone containing the possible produc-
tive reservoir.

Figure 15 shows the 3D cube constructed for the 
horizontal pressure PX(x, y, z), where we can notice 
the spatial distribution of the low-pressure zones across 
the intermediate part of the cube. Figure 16 shows 
the 3D cube constructed for the tangential pressure 
PT (x, y, z), where the highest deformations that can 
take place are located along the orange-red zones.

CONCLUSIONS

Our purpose in this work was sedimentary basin model-
ing through methods of pressure prediction to map low-
and high-pressure zones that act as natural pumps for 
fluid accumulation, and more specifically for oil and gas 
exploration. Low-pressure zones mapped in the subsur-
face should serve as targets for the location of important 
drilling as an aid to geological decisions.

The seismic data were processed using the CRS 
technology because it showed to be more effective for 
the geometrical delineation of interfaces (reflectors). 
Stacked and migrated sections resulting from the CRS 
processing were used to build empirical models of ve-
locity and density. Besides, the work is a demonstration 
that it is possible to map low- and high-pressures zones 
using the seismic information of velocities VP and VS , 
and density ρ.
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Figure 6. P-wave velocity distributions VP (x, z).
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Figure 7. Gamma ratio distributions γ(x, z).
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Figure 8. S-wave velocity distributions VS(x, z).
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Figure 9. Density distributions ρ(x, z).
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Figure 10. Maps of vertical pressure PZ (x, z).
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Figure 11. Maps of horizontal pressure PX(x, z).
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Figure 12. Maps of deviatoric pressure PT (x, z).
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Figure 13. Maps of rock pressure PR(x, z).
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