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SOME ASPECTS OF THE DEVELOPMENT OF THE PRONY
FILTERING METHOD

Igor B. de Oliveira 1 , Georgy M. Mitrofanov 2 , Viatcheslav I. Priimenko 1,3 ,

João Carlos P. S. Freires 1

ABSTRACT. Decomposition based on the Prony transform is widely used to solve various engineering and scientific
problems, representing a discrete dataset in the form of a linear combination of complex exponentials or damped
sinusoids. Each of these functions is determined by four real parameters: amplitude, attenuation, frequency and
phase. In this article, we propose a new workflow, based on the classic Prony and Matrix Pencil methods to determine
the damped signals considering their locality and frequency heterogeneity. After estimating the parameters a certain
procedure is constructed. This procedure selects the parameters using different criteria and can be called as Prony
filtering. We have demonstrated the capabilities of the proposed algorithms and workflow, which provide an optimal
set of damped terms for the Prony decomposition for an arbitrary window. The results obtained show good accuracy
in the selection of the decomposition components and posterior approximation of damped signals. The accuracy
of the results is guaranteed by the quasi-orthogonality of the basis functions of the Prony decomposition on finite
intervals.

Keywords: Prony’s method; Matrix Pencil method; Damped signals; Signal fitting.

RESUMO. A decomposição baseada na transformada de Prony é amplamente utilizada na solução de vários prob-
lemas de engenharia e científicos, representando um conjunto de dados discretos na forma de uma combinação
linear de exponenciais complexas ou sinusóides amortecidas. Cada uma dessas funções é determinada por qua-
tro parâmetros reais: amplitude, atenuação, frequência e fase. Neste artigo, propomos um novo fluxo de trabalho,
baseado nos métodos clássico de Prony e Matrix Pencil, para determinar os sinais amortecidos considerando sua
localização e heterogeneidade de frequência. Após estimar os parâmetros, um determinado procedimento é con-
struído. Este procedimento seleciona os parâmetros usando critérios diferentes e pode ser chamado filtragem de
Prony. Demonstramos as capacidades dos algoritmos e do fluxo de trabalho propostos, que fornecem um con-
junto ótimo de termos amortecidos para a decomposição de Prony em uma janela arbitrária. Os resultados obtidos
mostram boa precisão na seleção dos componentes da decomposição e posterior aproximação dos sinais atenua-
dos. A acurácia dos resultados é garantida pela quase-ortogonalidade das funções de base da decomposição de
Prony em intervalos finitos.
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148 PRONY FILTERING METHOD

INTRODUCTION

Currently, the Prony transform Prony (1795) and the
decomposition built on its basis are well known and
widely used in solving various engineering and scien-
tific problems starting from early works; see, for in-
stance, Marple-Jr (1987), Agha (1971), Box and Jenk-
ins (1970), Chuang and Moffatt (1976), Felsen and Mar-
cuvitz (1973), McDonough and Higgins (1968). There
are numerous mathematical algorithms that implement
this decomposition and allow us to represent discrete
data in the form of a linear combination of components,
which can be either complex exponentials or damped
sinusoids. Each of the components is determined by
four real parameters: amplitude, attenuation, frequency
and phase. The number of components in a linear com-
bination can be determined by the amount of discrete
data. In this case, we obtain an interpolation problem in
which, when finding the parameters of the components,
we try to approximate the available data as accurately
as possible.

Interpolation problems arise when it is required to
save data or when we know the model that produced
the data and it is necessary to accurately determine
the values of the parameters of its components. At the
same time, the model is often unknown, and data may
contain significant errors. Then it becomes necessary
to solve approximation problems. In these tasks, we do
not need to approximate the data as accurately as pos-
sible. However, it is important that the resulting math-
ematical model determines the essential components
of the real object with which the data are associated.
These approximation problems that are of great inter-
est in various applied research when it is necessary to
determine the values of the parameters of the studied
object or to predict its behavior. Seismic exploration and
reservoir characterization are one of these areas.

We can indicate the following specific characteristics
of seismic data and tasks that require the use of approx-
imate statements (formulations) and significantly com-
plicate their solution:

• Seismic data are very heterogeneous in the com-
position of the target signals and interference.
Moreover, the shape of the signals is often un-
known, and the characteristics of the interference
are unknown;

• Target models are known with great inaccuracy.
This is due to the incompleteness of knowledge
about the processes of interaction, propagating
elastic vibrations, with complex objects that have
significant scale heterogeneity. Thus, it is neces-
sary to solve problems with some uncertainty;

• Data and models have locality and significant fre-
quency dependence. It can be useful to solve real
problems aimed at predicting medium parameters.
The importance of locality to solve seismic prob-
lems is indicated by the fact that it contributes to

the appearance of wavelet analysis; see, for in-
stance, Goupillaud et al. (1984), Grossman and
Morlet (1984). Locality and frequency dependence
are manifested in one of the essential properties of
wavelets, namely, frequency-time resolutions; see
Chui (1992).

These features played a large role in the develop-
ment of the Prony filtering method and its application
to solve seismic problems in predicting the characteris-
tics of hydrocarbon deposits; see Soares Filho et al.
(2003), Mitrofanov and Priimenko (2011), Mitrofanov
and Priimenko (2015), Fomel (2013). In particular, un-
derstanding the importance of studying the local fea-
tures of the observed wave field and the medium, as
well as the need to ensure the time-frequency resolu-
tion, demanded that we use movable windows when es-
timating the Prony parameters.

One of the important elements of the modern spec-
tral analysis is to clarify the question of the orthogonality
of basis functions. In particular, such a study was car-
ried out by Daubechies (1988) for wavelet expansions,
where conditions for the orthogonality of basis functions
on a finite interval were determined, making possible to
decompose signals according to the corresponding ba-
sis functions, as well as organize the process of filtering
these signals in in order to separate some of the com-
ponents.

In this work, we propose a new workflow, based on
the classic Prony and Matrix Pencil methods, for the
Prony filtering of combined damped signals. The re-
sults obtained show stable recovery of the signal com-
ponents, including the attenuation parameter.

The paper is organized as follows. In Section we
discuss several specific characteristics of seismic data
and tasks that require for using approximate formula-
tions and that can significantly complicate their solution.
Section presents the classic Prony and Matrix Pencil
methods. In Section we formulate the new workflow
used for applying the Prony filtering. Section presents
a synthetic signal composed of three damped sinusoids
and also a case of modeled data with noise. In Sec-
tion we analyze the results of the application of the
Prony filtering to recover the Prony parameters of the
signal. In Section we present some conclusions, which
could be made after analyzing the results obtained in
this research. Finally, in Appendix we briefly discuss
the quasi-orthogonality of the basis functions used in
the Prony decomposition.

PRONY METHOD

A seismic signal can be presented using the Prony
transform as a sum of damped sinusoids that lists four
real parameters: amplitude, attenuation, frequency and
phase for each sinusoid.

After estimating these parameters, a certain proce-
dure can be constructed. This procedure selects the
estimated values based on different criteria and can be
called Prony filtering. The Prony filtering is analogous

Braz. J. Geophys., 39(1), 2021



OLIVEIRA ET AL 149

to bandpass filtering, built on the basis of the Fourier
transform, but instead of using only one parameter, in
this case frequency, the Prony filtering also considers
any of the parameters listed above; see, for instance,
Marple-Jr (1987). There is an important difference
between the Prony and Fourier transforms: unlike the
Fourier transform, where frequency is regularly sam-
pled, the Prony frequencies can have arbitrary values.

Classic Prony Method

Assume a time domain signal x[n] with N complex sam-
ples x[1], x[2], . . . , x[N ]. Prony’s classic method fits the
data, for example, the seismic trace, with the sum of M
complex exponential functions, given by Eqs.(1) or (2).

y[n] =

M∑
k=1

Ake
(n−1)(αk+2πifk)τs+iθk , n = 1, 2, . . . , N,

(1)
where i2 = −1 and τs is the sampling interval. The
objective is to estimate the amplitudes of complex ex-
ponentials Ak, damping factors αk, frequencies fk and
phases θk. If these parameters are determined cor-
rectly, then the original signal fits with a high degree
of accuracy.

The discrete signal (1) can be expressed in the fol-
lowing equivalent form

y[n] =

M∑
k=1

hkz
n−1
k , (2)

where hk = Ake
iθk and zk = e(αk+2πifk)τs are complex

parameters. The fitting of a designated signal is usually
accomplished by minimizing the total squared error over
the N data values:

δ =

N∑
n=1

(ϵ[n])
2
,

where

ϵ[n] = x[n]− y[n] = x[n]−
M∑
k=1

hkz
n−1
k

represents the complex error between the original data
samples x[n] and the linear approximation y[n]; see
Marple-Jr (1987) for details. This turns out to be a diffi-
cult nonlinear problem, which can be solved by the clas-
sic Prony method. If as many data samples are used as
there are exponential parameters, then an exact expo-
nential fit to the data may be made.

Consider the M -exponent discrete function

x[n] =

M∑
k=1

hkz
n−1
k . (3)

The M equations of (3) can be written in a matrix

form as
z01 · · · z0M
...

. . .
...

zM−1
1 · · · zM−1

M

×


h1

...

hM

 =


x[1]

...

x[M ]

 . (4)

Equation (4) is a linear system in hk, k = 1, 2, . . . ,M ,
with the Vandermonde matrix, which arises naturally
from the polynomial interpolation problem. Prony pro-
posed to define the polynomial that has zk as its roots,
see Marple-Jr (1987):

F (z) =

M∏
k=1

(z − zk). (5)

Equation (5) may be represented as

F (z) =

M∑
m=0

a[m]zM−m (6)

with a[m] ∈ C and a[0] = 1.
Shifting index in Eq. (3) from n to n −m, multiplying

by a[m] we get

a[m]x[n−m] = a[m]

M∑
k=1

hkz
n−m−1
k . (7)

Equation (7) can be modified into

M∑
m=0

a[m]x[n−m] =

M∑
k=1

hkz
n−M
k

(
M∑

m=0

a[m]zM−m−1
k

)
.

(8)
The right-hand internal summation in Eq. (8) may be
recognized as polynomial defined by Eq. (6), evaluated
at each of its roots zk yielding the zero result

M∑
m=0

a[m]x[n−m] = 0. (9)

Equation (9) is a linear difference equation with the ho-
mogeneous solution represented by Eq. (3).

The M equations, representing the exact values of
a[m] satisfied to Eq. (9), can be represented as an M×
M -matrix

x[M ] · · · x[1]
...

. . .
...

x[2M − 1] · · · x[M ]

×


a1
...

aM

 = −


x[M + 1]

...

x[2M ]

 .

(10)
Note that the matrix presented in Eq. (10), viewed as

a linear system in a[m], m = 1, 2, . . . ,M , is a Toeplitz
matrix. Using Eq. (10) we can separate the set of pa-
rameters hk from one of zk.

Thus, to find coefficients and exponential parameters
of Eq. (1), the Prony method can be implemented in
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three steps; see, for instance, Marple-Jr (1987), Mitro-
fanov and Priimenko (2011):

1. Solve Eq. (10) to find F (z) coefficients.

2. Solve F (z) = 0, defined by Eq. (6), to find roots
z1, z2, . . . , zM . Thus, attenuation factors αk and
frequencies fk are expressed by

αk =
1

τs
ln |zk| , fk =

1

2πτs
arctan

[
Im zk
Re zk

]
.

(11)

3. Solve Eq. (3). For known αk, fk this system is
linear. Therefore, amplitudes Ak and phases θk
are

Ak = |hk|, θk = arctan

[
Imhk

Rehk

]
. (12)

In real situations, the number of observed data N
usually exceeds the minimum number of points required
to obtain an exponential model, i.e., N > 2M . Follow-
ing Marple-Jr (1987), in this case Eq. (9) can be modi-
fied to the form

M∑
m=0

a[m]x[n−m] = e[n],

where e[n] is an estimate of the linear prediction error
and differs from the approximation error ϵ[n]. It can be
used to determine the parameters a[n] based on mini-
mizing the overall squared error

E =

N∑
n=M+1

|e[n]|2 . (13)

In the case of the least square error (13), the least
squares method can be used to solve the problem of
obtaining a complex normal equation with a matrix sim-
ilar to Eq. (4), namely:

x[M ] · · · x[1]
...

. . .
...

x[N − 1] · · · x[N −M ]

×


a1
...

aM

 = −


x[M + 1]

...

x[N ]

 .

(14)
As a rule, the solution of Eq. (14) is not very diffi-
cult; see, for instance, Marple-Jr (1987), Osbourne and
Smyth (1995) for more details. By analogy with the dis-
crete Fourier spectrum we call {Ak, αk, fk, θk}k=M

k=1 as
the discrete Prony spectrum Rτ,T (M), i.e.,

Rτ,T (M) = {Ak, αk, fk, θk}k=M
k=1 ,

where real parameters τ and T define a time interval
where the Prony decomposition has been made up.
Here τ characterizes the position of analyzed time in-
terval and T = (N − 1)τs is its total wide with a sam-
pling interval τs. The parameters τ and T are impor-

tant in the Prony decomposition; see Mitrofanov and
Priimenko (2015).

For a detailed description of the Prony method and
its modifications see, for instance, Marple-Jr (1987),
Osbourne and Smyth (1995), Holmström and Peterson
(2002), Potts and Tashe (2010).

Matrix Pencil Method

Given two matrices Y1,Y2 ∈ Cp×i, the matrix set of
form Y2 − λY1 with λ ∈ C is known as the matrix pen-
cil; see, for instance, Rodríguez et al. (2018). To im-
plement the Matrix Pencil method (MPM), a rectangular
Hankel matrix Y is formed by the sign x[i], where, in
this method, P represents the pencil parameter:

Y =


x[1] x[2] · · · x[P ] x[P + 1]

x[2] x[3] · · · x[P + 1] x[P + 2]
...

...
. . .

...
...

x[N − P ] x[N − P + 1] · · · x[N − 1] x[N ]

 .

The matrix Y is used to create Y1 and Y2. Thus, the
matrix Y1 is constructed by deleting the last column of
Y, while Y2 is formed by deleting the first column of Y,
i.e.,

Y1 =


x[1] x[2] · · · x[P ]

x[2] x[3] · · · x[P + 1]
...

...
. . .

...

x[N − P ] x[N − P + 1] · · · x[N − 1]


and

Y2 =


x[2] · · · x[P ] x[P + 1]

x[3] · · · x[P + 1] x[P + 2]
...

. . .
...

...

x[N − P + 1] · · · x[N − 1] x[N ]

 .

Thus, zp values can be found from the following expres-
sion; see Rodríguez et al. (2018):

zp = Eigenvalues
(
Y+

1 Y2

)
where Y+

1 is the pseudoinverse matrix of Y1, defined
as

Y+
1 =

[
YH

1 Y1

]−1
YH

1 .

Finally, with zp values, the attenuation, frequencies,
amplitudes and phases can be calculated according to
Eqs. (11)–(12), by changing the index k to p.

WORKFLOW

The new workflow developed in this work for applying
the Prony filtering consists of six main steps, as de-
scribed in Fig. 1. All computational implementations
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were performed using the Python programming lan-
guage.

The first step of the workflow consists of signal mod-
eling, described in more detail in Section .

Then, the signal is separated into several windows,
according to the definition of two parameters: the win-
dow size and stride, which regulates the window shift.
In this work, a 248 ms window and a 50 ms stride were
chosen, as an example. Thereafter, for each signal win-
dow, the following steps are applied:

• Prony decomposition: this consists of the applica-
tion of the Matrix Pencil method, described in Sec-
tion , to estimate the four Prony parameters - at-
tenuation factor, frequency, amplitude and phase.
In this work, the number of terms, or M complex
exponential functions, was calculated through an
optimization process, where for each window the
number of terms was defined as the value that min-
imizes the RMS error between the modeled and
the estimated signal;

• Prony approximation: where the signal is approxi-
mated according to the parameters estimated dur-
ing the Prony decomposition;

• Selection of Prony parameters: step where the
Prony filtering is applied, by selecting the esti-
mated parameters that most closely match the
modeled ones;

• Graph and table elaboration: it constitutes the ex-
port of graphs and tables with the results.

Table 1. Parameters used for creating three damped
sinusoids

Sinusoids Attenuation α Frequency f Amplitude A Phase θ

Sinusoid 1 -3 10 1.0 −π/2

Sinusoid 2 -6 25 1.7 0

Sinusoid 3 -5 15 1.3 π

SIGNAL MODELING

Initially, using Eq. (15), three damped sinusoids were
created, considering the parameters given in Table 1.
Each signal starts its propagation at a different time: 0
ms, 100 ms and 200 ms, respectively, and the time step
is 2 ms:

s(t) = Aeαt cos(2πft+ θ). (15)

Then, the sum of the three sinusoids was calculated
to obtain the modeled signal (without adding any noise),
extending from 0 ms to 398 ms, as shown in Fig. 2.

Since in the real world we always have a noise com-
ponent present in the data, we created a second experi-
ment by adding Gaussian noise with zero mean and 0.1
standard deviation, as illustrated in Fig. 3.

RESULTS AND DISCUSSION

The two modeled signals mentioned above were some
of the many experiments performed to test the con-
sidered computational methods, in particular, the Ma-
trix Pencil method (MPM). In these experiments, when
forming model traces, three types of damped sinusoids
were taken with different parameters and time delays
from the beginning of the record. This determined the
complexity of the model structure with the presence of
two discontinuities at times of 100 and 200 ms; see
Figs. 2 and 3. It was interesting to check how the tested
method deals with the approximation of such functions.

The length of each time interval was 248 ms, that is
the duration of the window with which the correspond-
ing segment of the model trace was cut, as described
in Section . The step (or stride) for the windows was
taken equal to 50 ms. Thus, we obtained four different
windows to cover the entire modeled signal: [0, 248],
[50, 298], [100, 348], and [150, 398] ms.

Figures 4 and 7 show the results obtained, comparing
the modeled signal for each window (dotted curve) and
the Prony approximation (continuous curve).

As shown in these figures, especially in the case with-
out noise, using the Matrix Pencil method provides an
ideal approximation based on the Prony expansion with
zero RMS error, approximately. It can be noted that in all
four windows there are features of the simulated burst-
type signal. Consequently, it is not the presence of such
features that leads to some inaccurate signal approxi-
mations, but their location within the analyzed interval.
Therefore, changing the window position can improve
the accuracy of the approximation.

Let us note one more interesting point revealed dur-
ing the performance of these experiments. It is con-
cerned with optimizing the number of terms in the Prony
approximation that provides the best accuracy. For ex-
ample, for the first experiment, the best fit was achieved
using 54, 56, 54, and 30 terms, respectively, for each
of the above windows. This number of complex expo-
nential functions was automatically determined by the
method developed and implemented here, through an
optimization function, which analyzes the distribution of
the RMS error according to the variation of the number
of terms.

As presented in the workflow, after the Prony approx-
imation, we performed the selection (or filtering) of the
estimated parameters that most closely match the mod-
eled ones through an analysis of the joint absolute error
between the Prony parameters, attenuation factor and
frequency, modeled and estimated. Figures 5 and 8
show that parameters are given in pairs since we are
approximating the real-valued signal using complex ex-
ponential functions.

Thus, we apply Prony filtering to the results obtained
using tens of terms, selecting only six terms or three
pairs of the parameters to reconstruct the modeled
ones. Tables 2–9 show the values of these parameters
for each window, where, for compactness, the values
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Figure 1. Prony filtering workflow

Figure 2. Modeled signal without noise

are presented with precision to the fifth decimal place.
Comparing the results obtained for the modeled sig-

nals without noise and with noise, we observed that the
MPM approximated both data very well, with RMS er-
ror close to zero; see Figs. 4 and 7. In addition, for the
approximation built from the three pairs of filtered pa-
rameters, the best fit was found for the case with noise,
indicating that the presence of noise worked similarly to
a stabilization factor for the method; see Figs. 6 and 9.

Analyzing Figs. 5 and 8, as well as the parameters in
Tables 2–9, mainly the two parameters of our greatest
interest (frequency and attenuation) we notice that the
frequency parameter was successfully extracted, very
close to the simulated values. Furthermore, the atten-

Figure 3. Modeled signal with noise

uation parameter was also estimated with some accu-
racy for some windows, both for the case without noise
and with noise. This difficulty in getting it right can be
explained by the time shifts of the modeled sinusoids,
which introduce greater complexity in the shape of the
signals, with the presence of discontinuities.

The appearance in Tables 2, 3, 6–8 of positive val-
ues of the attenuation coefficient is associated with the
complexity of the analyzed signal and the position of the
moving window on the time axis. As we can see from
Tables 4, 5, and 9, in the case when the moving win-
dows are shifted to the right along the time axis, all the
attenuation values become negative.
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Figure 4. Comparison between modeled signal without noise and approximate signal using the Matrix Pencil method
for four different time windows: [0, 248], [50, 298], [100, 348] and [150, 398] ms

Figure 5. Comparison between the Prony parameters used in signal modeling and those selected from the parame-
ters estimated by the Matrix Pencil method for four different time windows of modeled signal without noise

Braz. J. Geophys., 39(1), 2021



154 PRONY FILTERING METHOD

Figure 6. Comparison between modeled signal without noise and approximate signal using only the Prony parame-
ters selected from those estimated by the Matrix Pencil method for four different time windows

Figure 7. Comparison between modeled signal with noise and approximate signal using the Matrix Pencil method
for four different time windows

Braz. J. Geophys., 39(1), 2021
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Figure 8. Comparison between the Prony parameters used in signal modeling and those selected from the parame-
ters estimated by the Matrix Pencil method for four different time windows of modeled signal with noise

Figure 9. Comparison between modeled signal with noise and approximate signal using only the Prony parameters
selected from those estimated by the Matrix Pencil method for four different time windows

Braz. J. Geophys., 39(1), 2021
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Table 2. Selected parameters for modeled signal with-
out noise, [0, 248] ms window

Function Attenuation α Frequency f Amplitude A Phase θ

1 -2.18439 -9.98239 0.49583 1.62027

2 -2.18439 9.98239 0.49583 -1.62027

3 -4.38270 25.35830 0.53224 -0.33859

4 -4.38270 -25.35830 0.53224 0.33859

5 9.59525 -16.22191 0.01516 -1.12839

6 9.59525 16.22191 0.01516 1.12839

Table 3. Selected parameters for modeled signal with-
out noise, [50, 298] ms window

Function Attenuation α Frequency f Amplitude A Phase θ

1 -2.66025 -10.11340 0.46685 -1.62990

2 -2.66025 10.11340 0.46685 1.62990

3 -5.97282 24.99800 0.62669 1.57670

4 -5.97282 -24.99800 0.62669 -1.57670

5 7.12121 16.91443 0.03466 -0.63073

6 7.12121 -16.91443 0.03466 0.63073

Table 4. Selected parameters for modeled signal with-
out noise, [100, 348] ms window

Function Attenuation α Frequency f Amplitude A Phase θ

1 -5.03235 -10.24423 0.59931 1.73967

2 -5.03235 10.24423 0.59931 -1.73967

3 -5.98212 24.73287 0.48464 -2.80396

4 -5.98212 -24.73287 0.48464 2.80396

5 -2.76875 -16.00921 0.21379 1.15595

6 -2.76875 16.00921 0.21379 -1.15595

Table 5. Selected parameters for modeled signal with-
out noise, [150, 398] ms window

Function Attenuation α Frequency f Amplitude A Phase θ

1 -4.90086 -9.72909 0.42292 -1.90043

2 -4.90086 9.72909 0.42292 1.90043

3 -5.67434 -24.99353 0.32679 1.54622

4 -5.67434 24.99353 0.32679 -1.54622

5 -6.62032 -15.44908 0.36686 2.06826

6 -6.62032 15.44908 0.36686 -2.06826

CONCLUSION

Modern computational methods provide a good approx-
imation of fairly complex signals using the Prony de-
composition. These signals can be the result of the in-
terference of several simple pulses with different Prony
parameters and initial times. Meanwhile, when perform-
ing such an approximation, a large number of terms

Table 6. Selected parameters for modeled signal with
noise, [0, 248] ms window

Function Attenuation α Frequency f Amplitude A Phase θ

1 -3.44483 -9.74029 0.58894 1.46579

2 -3.44483 9.74029 0.58894 -1.46579

3 2.89959 -25.48776 0.15993 0.47543

4 2.89959 25.48776 0.15993 -0.47543

5 -2.72651 -18.73164 0.14092 1.22228

6 -2.72651 18.73164 0.14092 -1.22228

Table 7. Selected parameters for modeled signal with
noise, [50, 298] ms window

Function Attenuation α Frequency f Amplitude A Phase θ

1 -2.36816 -10.22075 0.46624 -1.31115

2 -2.36816 10.22075 0.46624 1.31115

3 -2.76234 -24.97824 0.36447 -1.68889

4 -2.76234 24.97824 0.36447 -1.68889

5 3.18433 -15.70503 0.07244 -0.53802

6 3.18433 15.70503 0.07244 0.53802

Table 8. Selected parameters for modeled signal with
noise, [100, 348] ms window

Function Attenuation α Frequency f Amplitude A Phase θ

1 -3.18666 -10.27012 0.44211 1.83448

2 -3.18666 10.27012 0.44211 -1.83448

3 -4.72431 -24.89936 0.39781 2.98451

4 -4.72431 24.89936 0.39781 -2.98451

5 1.71798 -15.87428 0.08820 1.04556

6 1.71798 15.87428 0.08820 -1.04556

Table 9. Selected parameters for modeled signal with
noise, [150, 398] ms window

Function Attenuation α Frequency f Amplitude A Phase θ

1 -6.23142 -9.97466 0.50574 -1.71763

2 -6.23142 9.97466 0.50574 1.71763

3 -6.25736 24.84385 0.36939 -1.43325

4 -6.25736 -24.84385 0.36939 1.43325

5 -4.96550 -15.44495 0.26344 2.09705

6 -4.96550 15.44495 0.26344 -2.09705

are used, each of which has its own set of parameters.
Among them, there are also target values correspond-
ing to the simulated signals, but they are hidden by the
parameters of other components. Due to the peculiari-
ties of the Prony transform, it is the sharp and discontin-
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uous elements of the interference signal that form addi-
tional components with high frequency, attenuation, and
amplitude. The elimination of such components can be
realized by analyzing and selecting the resulting sets of
the Prony parameters. This selection we called Prony
filtering. Thus, as a result of the Prony filtering, the tar-
get components of the analyzed signals can be simulta-
neously selected and the elements distorting them can
be eliminated.

In this paper, we have demonstrated the capabilities
of the proposed workflow, which provides an optimal set
of conditions to the Prony decomposition for an arbitrary
window. In our experiments, we used these windows
with different positions concerning the signal of interest.
The workflow also made it possible to demonstrate the
fundamental possibility of separating individual damped
components that form the simulated signal, i.e., the pos-
sibility of implementing the Prony filtering procedure.

During the experiments, we noticed that in addition to
the window position, the accuracy of approximation and
selection of the damped components can be affected
by the interval duration, i.e., the window width. Thus,
further research is needed to find an optimum window
width with the optimization of the number of compo-
nents and the most accurate determination of the target
pulses. This definition will also allow us to select target
pulses at an unknown location on the time axis.
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APPENDIX A.

Let us consider one important property of damped si-
nusoids, which does not depend on the method of
their estimation and characterizes the degree of quasi-
orthogonality of the Prony decomposition components
on a finite interval. Equation (1) can be considered as
an expansion in basis functions, which are damped co-
sine waves. According to Marple-Jr (1987), this equa-
tion for real-valued signals can be rewritten as

y[n] =

M∑
m=1

Ameαm(n−1)τs cos (2πfm(n− 1)τs + θm) .

Then vector y = (y[1], y[2], . . . , y[N ])∗, where ∗ means
transposition, can be represented as a linear combina-
tion of vectors bm = (bm[1], bm[2], . . . , bm[N ])∗ with
bm[k] defined as follows:

bm[k] = eαm(k−1)τs cos (2πfm(k − 1)τs + θm)

Where k = 1, 2, . . . , N . Thus, we get

y =

M∑
m=1

Ambm.

If vectors bm are linearly independent, then they can be
considered as basis vectors. To make full use of linear
algebraic constructions, we need to study two points:

• linear independence of vectors;

• degree of orthogonality of vectors among them-
selves.

The linear independence of bm can be determined
by considering the corresponding matrix, and the de-
gree of their orthogonality is determined by the values of
the angle between these vectors. To simplify this anal-
ysis, in Mitrofanov and Priimenko (2015) was made the
transition to continuous functions associated with vec-
tors bm. Such transition allowed us to determine the
scalar product of the basis vectors in an integral form.
As the result, it was possible to construct a general ex-
pression for the cosine of the angle between vectors in
the following form:

cos (bi ∧ bj) ∼=
I
(1)
ij√

I
(0)
i · I(0)j

, (A1)

where

I
(1)
ij =

∫ T

0

e(αi+αj)t cos (2πfit+ θi) cos (2πfjt+ θj) dt,

I
(0)
i =

∫ T

0

e2αit cos2 (2πfit+ θi) dt.

These integrals are calculated explicitly, which makes it
possible to study the relationship between vectors bm

depending on the values of α, f, θ, T , where T = N · τs
determines the interval for y and bm. Equation (A1)
allows us to estimate the degree of orthogonality of the
basis vectors; see Mitrofanov and Priimenko (2015) for
more details.
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