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ABSTRACT. In this work, we studied the correlation properties of seismic networks by analyzing the assortativity 
of worldwide and synthetic earthquake networks. We used data from the World Earthquake Catalog for the period 
from 2002 to 2016, considering earthquakes with magnitude thresholds 4.5 and 5.0. Shallow earthquakes (a depth of 
up to 70 km) and deep earthquakes (a depth greater than 70 km) were analyzed separately. Synthetic data were 
produced from simulations using a modified version of the Olami-Feder-Christensen model, which can reproduce 
several statistical characteristics of actual earthquakes. The study was carried out for two methodologies of connec-
tions between the network elements, where the correlation measures were calculated for all networks. The results 
for shallow earthquakes and synthetic data indicate: assortative correlation (locations with similar seismic activities 
tend to have a greater number of connections between them); mainshocks induce other mainshocks in both close and 
further away regions; the structure found has a type of “attracting dynamics”, where the places with a more intense 
seismic activity produce large numbers of connections in other locations around them. Deep earthquake networks 
are neutral and therefore do not have an explicit correlation type. Our findings agree with previous works for specific 
areas and contribute to better understand correlations between seismological regions. 
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INSTRUCTIONS 
We are surrounded by several systems that contain a 
huge number of components in which their elements 
have many kinds of interactions with each other. These 
systems belong to the category of “complex systems”, 
making it difficult to understand the dynamics of the 
entire system knowing only the behavior of the system 
elements, since the collective behavior is not trivial. In 
this framework, complex networks are in the heart of 
complex systems once they have the power to decode the 
interactions between the system elements, being a pow-
erful tool to investigate the topological structure and 
statistical behavior of complex systems. The science of 
complex networks has been successfully applied in 
many real-world networked systems, such as the Inter-
net, economic market, spread of diseases, solar flares, 

and social relationships (Watts and Strogatz, 1998; 
Barabási and Albert, 1999; Albert and Barabási, 2000, 
2002; Dorogovtsev and Mendes, 2003; Newman, 2003; 
Gheibi et al., 2017). 

In the last thirty years, several works have imple-
mented the concept of complexity in the study of earth-
quakes, aiming to better understand and characterize 
the seismological dynamics and properties (Bak and 
Paczuski, 1995; Roberts and Turcotte, 1998; Bak et al., 
2002; Watkins et al., 2016). The complex network theo-
ries started to be used in the seismological study in Abe 
and Suzuki (2004a, 2004b). The authors constructed 
earthquake networks for seismic data from California 
and Japan, taking into account spatial and temporal in-
formation of successive earthquakes. After Abe’s semi-
nal paper, several authors have been applying similar 
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complex network concepts to earthquake studies (Lotfi 
and Darooneh, 2012; Ferreira et al., 2014; Pastén et al., 
2016; He et al., 2021; Leon et al., 2022). It is noteworthy 
that over the years, other authors have also studied the 
earthquake phenomenon under the viewpoint of com-
plex networks, by using approaches different from Abe 
and Suzuki, such as the Baiesi-Packzuski model (Baiesi 
and Paczuski, 2004), the visibility graph model (Telesca 
and Lovallo, 2012), and the space-time influence do-
main (He et al., 2014). Despite the different network 
construction methods and analyses, the results found in 
the various models show that the earthquake networks 
have similar behavior to the ones of other networks 
found in nature for many different phenomena. 

A handy tool in studying earthquakes is the use of 
computer simulations. These simulations can be of the 
type “simplified”, where the models capture the main 
characteristics of the phenomenon, or of the type realis-
tic and more comprehensive, trying to describe the phe-
nomenon in a more detailed way. In statistical studies, 
it is common to use simplified models capable of gener-
ating large amounts of data without requiring substan-
tial computational capacity. The use of complex net-
works for the statistical study of earthquakes can be 
done by using actual earthquake data or by using syn-
thetic data generated through computer simulation 
models. One of the most used simplified models is the 
one created by Olami, Feder and Christensen (OFC 
model), which incorporates several characteristics of 
complex systems (Christensen and Olami, 1992a, 
1992b; Olami et al., 1992). A more detailed explanation 
of this model will be presented in the next section. 

Previous works have analyzed seismological data 
(from actual and synthetic catalogs), performing some of 
the most common and fundamental features of complex 
networks, such as the degree distribution, the clustering 
coefficient, and the average shortest path. However, an-
other interesting characteristic to be studied in earth-
quakes is the correlation property. Correlation properties 
can be analyzed in complex networks using a network 
measure named assortativity, which indicates a type of 
connection preference that elements tend to have when 
connecting to each other. For example, in social net-
works, it is observed that people tend to relate to other 
people belonging to the same group as themselves (New-
man, 2003). However, the protein-interaction network of 
yeast has the opposite property. The proteins with more 
significant connections interact much more with small-
connected proteins (Jeong et al., 2001). In this way, the 
study of the assortativity correlation feature can help 
provide more complete information on the structure and 
dynamics of the system. The correlation property using 
the assortativity concept will be presented in the theoret-
ical background section of this paper. 

Therefore, in order to advance one more step to-
wards greater knowledge about the earthquake phe-
nomenon, we analyze in this paper the assortativity fea-
tures for the networks created from worldwide seismic 

events using two different models of connections for two 
different datasets: one for shallow earthquakes and the 
other for deep earthquakes. We differentiate the seismic 
events concerning their depths since shallow and deep 
earthquakes are mechanically different from each other 
(Frohlich, 1989, 2006). Still, deep earthquakes occur, in 
general, in subduction zones of tectonic plates (Frohlich, 
2006). On the other hand, shallow earthquakes are not 
only related to these zones, but they also happen in 
faults and plate slippage, making their occurrence more 
distributed in geographic regions around the world than 
deep seismic events. 

Therefore, we make the data division by depth to ob-
serve whether it would exist differences in the proper-
ties of the networks created with these two datasets. We 
adopted the division used in Frohlich (1989) and Spence 
et al. (1989): shallow earthquakes are those with a 
depth of up to 70 km, and deep earthquakes are the ones 
located deeper than this value. Furthermore, a network 
of connections was also created using earthquake data 
simulated with a modified version of the Olami-Feder-
Christensen model (Ferreira et al., 2015). The results 
were compared with those of the actual seismic events. 

This paper is organized as follows. First, we have a 
brief theoretical background on complex networks and 
the OFC model. The following section is dedicated to 
presenting information about our worldwide and syn-
thetic earthquake data catalogs. Then, the methods em-
ployed to construct our networks are described. Finally, 
we show and discuss the results obtained and present 
the conclusions. 

THEORETICAL BACKGROUND 
Aiming to make this paper self-contained, we present a 
brief review of theoretical topics considered important 
to the development of this article. 

Fundamental Concepts of Complex Networks  
Networks are commonly represented by graphs, where 
the elements are nodes (or vertices), and the interac-
tions are expressed by links (or edges) between the 
nodes. A fundamental property in networks is the de-
gree, 𝑘𝑘𝑖𝑖, of each node, 𝑖𝑖, which gives the number of links 
between the node 𝑖𝑖 and other nodes. The links in a net-
work can be directed (if the links have a specific direc-
tion, going from one node to another) or undirected (if 
there is no direction for the links between the nodes), as 
shown in Figure 1. In a directed network, there is a dis-
tinction between the number of incoming links, ex-
pressed by the incoming degree, 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖, and the outgoing 
links, given by the outgoing degree, 𝑘𝑘𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜. In this way, 
the total degree in directed networks is provided by 𝑘𝑘𝑖𝑖 =
𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑘𝑘𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜. Examples of directed networks are the World 
Wide Web (WWW), where the links point from one 
webpage to another, and an ecological web, where the 
directed links indicate which animal is a predator of the  
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(a)                                                                                        (b) 

 Figure 1: Examples of (a) an undirected network and (b) a directed network. The networks have 8 nodes 
and 9 links each one. 

 

 
other. Undirected networks can be exemplified by a sci-
entific collaboration, since if a scientist “A” collaborates 
with a scientist “B”, the scientist “B” also collaborates 
with “A”. 

For a mathematical description, the networks are 
usually described by adjacency matrices. If an un-
weighted network (i.e., all links have the same weight) 
has 𝑁𝑁 nodes, the links between them are represented by 
a 𝑁𝑁 × 𝑁𝑁 matrix, with elements: 
 

𝐴𝐴𝑖𝑖𝑖𝑖 = �1,            𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗
0,         𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗. 

 

In an undirected network case, the adjacency matrix is 
symmetric, which means, 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑗𝑗𝑗𝑗. 

From the nodes’ degrees, it is possible to calculate 
the network’s degree distribution 𝑃𝑃(𝑘𝑘), which is the 
probability that a randomly selected node in the net-
work has a degree 𝑘𝑘. Since the functional form of 𝑃𝑃(𝑘𝑘) 
is deeply related to many properties in the network, it 
assumes an essential role in network studies. One re-
markable example is that if the degree distribution of 
nodes follows a power law, i.e., 𝑃𝑃(𝑘𝑘) ∼ 𝑘𝑘−γ (where γ is a 
positive constant), it represents a signature of an organ-
izing principle, called scale-free property. The presence 
of a power-law for the degree distribution, instead of a 
Poisson distribution, implies that the nodes are not con-
nected randomly; instead, they follow a preferential at-
tachment rule to connect to each other. It means that a 
scale-free network has several small degree nodes and 
only a few with high degree values. These last ones are 
named hubs. 

Another important feature of a complex network 
arises when every node is “close” to every other node, i.e., 
it is possible to go from one arbitrary node to another tak-
ing only a few “steps”. When it happens, these networks 

are called small-world networks. As proposed by Watts 
and Strogatz (1998), two important metrics to classify a 
small-world network are the clustering coefficient and 
the average path length. The clustering coefficient 
measures how likely it is that two elements connected to 
a node 𝑖𝑖 are also connected to each other. The average 
path length is the average of the shortest distances be-
tween all pairs of nodes in the network, where the dis-
tance between two nodes is the number of links between 
them, as exemplified in Figure 2. Small-world networks 
have a high clustering coefficient value compared to a 
random network with the same characteristics and a 
small average path length compared to the number of 
nodes in the network. 

Within this frame, the complex networks approach has 
been applied to seismological studies from many areas in 
the world, as Japan, California, Iran, Chile, Greece, and 
worldwide (Abe and Suzuki, 2004a, 2004b; Lofti and Da-
rooneh, 2012; Ferreira et al., 2018; Pastén et al., 2018; 
Chorozoglou et al., 2019). The results found in the previ-
ous works show the scale-free and small-world features 
in the networks built from the seismological data, where 
the degree exponents γ for the networks are within the 
usual range 2 ≤ γ ≤ 3, which is the range for several of 
the existing networks in nature (Albert et al., 1999; Bara-
bási, 2002; Ebel et al., 2002). As indicated by Abe and Su-
zuki (2006a), the presence of scale-free properties in 
earthquake networks indicates that, geographically, af-
tershocks associated with a mainshock tend to return to 
the locus of the mainshock, creating hubs similarly to the 
preferential attachment rule. Furthermore, the small-
world feature indicates that the earthquake network is 
significantly clustered, and the average distance between 
two arbitrary nodes (geographical regions where earth-
quakes have occurred) is very small.
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Figure 2: The highlighted links exemplify one possible 
path between nodes C and D. However, the shortest 
path between these nodes is the one that follows the 
nodes sequence C-B-E-A-D. 

 

Correlation Properties in Complex Networks 
In the last twenty years, the study of correlation properties 
in networks using assortativity has been implemented in 
many real-world networks (Newman, 2002, 2003; Catan-
zaro et al., 2004; Foster et al., 2010; Johnson et al., 2010; 
Piraveenan et al., 2010; Gheibi et al., 2017). Assortativity 
(or assortative mixing) refers to the tendency of nodes in a 
network to connect to other nodes with similar properties, 
making the links not to be placed between nodes com-
pletely at random, but depending in some way on the prop-
erty in question. Here, we focus on assortativity in terms 
of a node’s degree. The analysis of this property allows us 
to investigate the relation between the connectivity de-
grees of the nodes that link to each other. A statistical 
measure that is commonly used to analyze this preference 
is the nearest-neighbors average connectivity of nodes, or 
also denominated degree correlation function (Pastor-
Satorras et al., 2001; Vázquez et al., 2002; Barabási and 
Pósfai, 2016), expressed as 
 

𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) = �𝑗𝑗𝑗𝑗(𝑗𝑗|𝑘𝑘)
𝑗𝑗

 (1) 
 

where 𝑃𝑃(𝑗𝑗|𝑘𝑘) is the conditional probability that an arbi-
trary selected edge links a j-degree node with a k-degree 
node. This function considers the average degree of the 
neighbors of a node as a function of its degree 𝑘𝑘. If it is 
independent of 𝑘𝑘, the network has no obvious degree cor-
relation and is called neutral. When, however, 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) in-
creases with 𝑘𝑘, the network is assortative. It means that 
the hubs (nodes with high degrees) of the network tend 
to connect to other hubs and nodes with low degrees tend 
to be linked to other low degree nodes. On the other hand, 
if 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) decreases with 𝑘𝑘, the network is disassortative, 
i.e., the hubs prefer to link to nodes with low degrees 
(Barabási and Pósfai, 2016). 

Thus, the degree correlation function can help detect 
the presence or absence of correlations in real networks. 
However, a helpful way to capture the magnitude of the 
correlations present in the networks is using a unique 
number. This number can be computed from the fitting 
of the 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) plot or by calculating the degree correlation 
coefficient, defined as follows. 

The degree correlation coefficient, which is the Pear-
son correlation coefficient between the degrees found at 
the two ends of the same link, is a complementation of 
the analysis of the degree correlation function and pro-
vides us with a quantitative characterization. We calcu-
late this coefficient by 
 

𝑟𝑟 = �
𝑗𝑗𝑗𝑗�𝑒𝑒𝑗𝑗𝑗𝑗 − 𝑞𝑞𝑗𝑗𝑞𝑞𝑘𝑘�

𝜎𝜎2
𝑗𝑗𝑗𝑗

, (2) 

 

where 𝑒𝑒𝑗𝑗𝑗𝑗 is the probability of finding a node with degrees 
𝑗𝑗 and 𝑘𝑘 at the two ends of a randomly selected link; 𝑞𝑞𝑘𝑘 is 
the probability of existing a node with degree 𝑘𝑘 at the end 
of a randomly selected link and 
 

𝜎𝜎2 = �𝑘𝑘2𝑞𝑞𝑘𝑘
𝑘𝑘

− ��𝑘𝑘𝑞𝑞𝑘𝑘
𝑘𝑘

�
2

, (3) 
 

is the variance of 𝑞𝑞𝑘𝑘. The value of 𝑟𝑟 varies from -1 (perfect 
disassortativity) to 1 (perfect assortativity). If 𝑟𝑟 =  0, the 
network has no assortative (or disassortative) mixing 
and, therefore, is neutral. 

Previous works have considered the assortative mix-
ing approach to analyze the correlation properties in 
earthquake networks for some regions, such as Califor-
nia, Japan and Iran (Abe and Suzuki, 2006a; Lofti and 
Darooneh, 2012; He et al., 2021). These studies found an 
assortative behavior for the earthquake networks. 

The OFC Model 
The model created in 1992 by Olami, Feder and Chris-
tensen (OFC model) can reproduce several statistical 
properties of earthquakes (Olami et al., 1992). This 
model is widely used because, despite its apparent sim-
plicity, it can reproduce several characteristics found in 
actual seismological data, such as the Gutenberg-Richter 
law.  

Standard OFC model  
The standard OFC model can be represented by a bi-
dimensional square ℓ ×  ℓ lattice with 𝑁𝑁 = ℓ2 blocks 
(sites) interconnected to its first neighbors by springs. 
Each block is connected through a spring to a single 
rigid driven plate and by friction to another rigid fixed 
plate on which they stay. This blocks arrangement 
represents a regular topology of the lattice. Due to the 
relative motion between the plates (imposed by the 
model), all the blocks will be subjected to an elastic 
force which tends to put them in motion, and to other 
frictional forces, opposite to the first. When the result-
ing force in one of the blocks is greater than the maxi-
mum static friction force, the block slides and relaxes 
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to a position of zero force, and a fraction (α) of its tension 
is equally redistributed between its nearest neighbors. 
It produces a rearrangement of forces in its first neigh-
bors, which can cause other slippages and the emer-
gence of a chain reaction. The first block to move is the 
earthquake’s epicenter, and the magnitude 𝑠𝑠 of this 
earthquake is measured by the number of blocks that 
skidded.  

When an earthquake finishes, the continuous rela-
tive movement between the plates will cause a force ac-
cumulation in all blocks. In this way, the slip of a block 
will occur after some time, and a new earthquake pro-
cess begins. The model assumes that the time interval 
between two earthquakes is considerably longer than 
the duration of an earthquake itself. 

Small-world-like OFC model  
As verified in Ferreira et al. (2015), a better agreement 
with real data is obtained when the lattice’s topology in 
the OFC model is not regular, but, instead of that, fol-
lows the rule of topology construction proposed by Ca-
ruso et al. (2006), based on the Watts–Strogatz mecha-
nism to generate small-world networks (Watts and 
Strogatz, 1998). Starting from the regular two-dimen-
sional topology, the rule of construction consists of tak-
ing each edge of the lattice (the spring that connects the 
blocks) and randomly reconnecting it to other blocks 
with probability 𝑝𝑝 (rewiring probability), keeping fixed 
each block’s original number of connections. That mech-
anism generates a small-world-like lattice for the OFC 
model, in which the resultant lattice has a topology be-
tween the regular and the random ones. 

The use of a small-world-like topology for the OFC 
topology makes the system more realistic since it allows 
more effective long-range interactions between the 
blocks, agreeing with several previous works which in-
dicate spatial and temporal long-range interactions be-
tween earthquakes (Kagan and Jackson, 1991; Stein, 
1999; Mega et al., 2003; Tosi et al., 2008; Toda and 
Stein, 2020). 

Thus, in our studies, we used the OFC model with a 
small-world-like topology to create synthetical data cat-
alogs to calculate spatial and temporal distributions 
and compare them to those produced by real data cata-
logs of earthquakes. 

DATA 
In this study, we used natural and synthetic earth-
quake data catalogs. 

Worldwide Earthquakes 
The dataset was obtained from the World Catalog of 
Earthquakes of the Advanced National Seismic Sys-
tem (ANSS)1, and it covers earthquakes from the en-
tire world between 2002 and 2016. We considered the 
magnitude types Mb (body-wave magnitude), ML (local 

magnitude) and Mw (moment magnitude). For the rec-
ord, we only considered earthquakes with magnitude 
(𝑚𝑚) larger or equal to 4.5 because, in that catalog, the 
events with magnitudes less than 4.5 are not completely 
registered for the whole world. The total of events is 
101746, of which 80520 are shallow earthquakes (earth-
quakes with a depth of up to 70 km), and 21226 are deep 
earthquakes (events occurred at depths greater than 
70 km). 

These data had a good agreement with the Guten-
berg-Richter law (GR) (Gutenberg and Richter, 1942), 
with a b-value exponent equal to 1.080 ± 0.003 for the 
shallow seismic events, and 1.080 ± 0.010 for the deep 
ones. In concordance with many previous works (Aber-
crombie, 1996; Kanamori and Brodsky, 2004; Ahmed et 
al., 2016; Fiedler, 2018), given that in our data we con-
sider only earthquakes with magnitude greater than or 
equal to 4.5, the b-value close to 1.0 is a consistent re-
sult for earthquakes worldwide. 

We have not distinguished mainshocks from after-
shocks in our data in this work. Helmstetter et al. 
(2005) and Marsan and Lengliné (2008) discuss in their 
studies the relevance of small earthquakes and after-
shocks in triggering other earthquakes, where it is ob-
served that these seismic events appear to be of major 
importance in the earthquakes interactions. Therefore, 
as we aim to study how earthquakes worldwide are cor-
related, it makes sense that we do not eliminate after-
shocks from our datasets. Moreover, this approach was 
also adopted in Bak et al. (2002), Davidsen and 
Paczuski (2005), and Abe and Suzuki (2006b). 

Synthetic Earthquakes  
For the process of earthquake nucleation (i.e., how the 
earthquakes are generated) we have used the small-
world-like OFC model, which generates a synthetic seis-
mological catalog. In our simulations, we have used 
non-periodic open boundary conditions. This condition 
imposes that all blocks in the OFC lattice have the same 
parameter α, independently of their location on the lat-
tice. With that condition, the blocks located at the lat-
tice boundary will have a more dissipative behavior 
than those in bulk since the elements in bulk are con-
nected to 4 neighbors, and the elements in the borders 
are connected to only 3 or 2. 

Previous studies showed that for the OFC model to 
have a lattice with small-world-like features and criti-
cal behavior, the rewiring probability 𝑝𝑝 must be in a 
range of values [10−3, 10−2] (Caruso et al., 2006; Fer-
reira et al., 2015). Thus, our analysis was conducted us-
ing 𝑝𝑝 =  0.001 for a lattice of size ℓ = 400, a dissipation 
coefficient 𝛼𝛼 = 0.20, and the number of events generated 
was 2 × 107 after the transient regime. It is relevant to 
highlight that we have excluded the earthquakes with 
magnitude 𝑠𝑠 = 1 from the construction of the network 
because these events seem to obey their own statistics 
(Grassberger, 1994). 
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METHOD 
The earthquake prediction is one of the goals of a seis-
mological research. However, before that, it is necessary 
to better understand the earthquake dynamics and pos-
sible correlations between different earthquake events 
and locations. Accordingly, it makes sense to look for in-
teractions due to long-range correlations since, as men-
tioned earlier, several authors have pointed out in pre-
vious works the existence of this kind of interaction, 
meaning that this characteristic cannot be neglected 
when studying seismological data. 

Therefore, intending to study and search for possible 
correlations in global earthquakes, Ferreira et al. (2014) 
constructed a network of worldwide epicenters. Similar 
to the studies for specific regions, they found that the 
global network is also scale-free and small-world, show-
ing evidence of long-range correlations across the 
planet. 

To construct the network of global epicenters, follow-
ing the definition used in Ferreira et al. (2014), we di-
vided the planet in this work into equal square cells 
(sites) of size 𝐿𝐿 × 𝐿𝐿, with 𝐿𝐿 = 20 𝑘𝑘𝑘𝑘. A cell becomes a 
node of the network every time the epicenter of an 
earthquake is located therein. Besides that, we used the 
two methods described below to create the links be-
tween the nodes. 

Successive Model 
This methodology was created by Abe and Suzuki 
(2004a, 2004b) and employed in Ferreira et al. (2014). 
It consists of connecting a node to its successive one in 
the temporal order by a directed link. Thus, in this 
model, the construction of the network considers that 
each earthquake is related to the one that happens right 
after it in the temporal series, regardless of the time dif-
ference between them.  

Time Window Model 
In Ferreira et al. (2018), a refined model, called the “time 
window” model, was created to construct networks of ep-
icenters from all around the globe, which improves the 
previous successive methodology, and showed evidence of 
being a better approach to building networks of earth-
quakes than the successive one. It consists of defining a 
time window, with size T, placed on the chronologically 
ordered data to create the links between the nodes, where 
the nodes correspond to the cells where the epicenter of 
an earthquake has occurred. In this way, the first node 
inside the window is connected to all other nodes within 
that window by directed links. After that, the window is 
moved forward to the next event, and the connections 
procedure is repeated. Figure 3 illustrates an example of 
this process. As it can be seen, the time window T works 
as a temporal filter to connect the nodes. 

 
Figure 3: Example of the network’s construction for 
the time window model. The time windows are rep-
resented by wi, where i is the window number, and 
all the time windows must have the same value (in 
this example, T = 2, in arbitrary units). Events in 
the same window are connected, as explained in the 
text. We can see that there are 8 earthquakes (A, B, 
C, D, E, F, G, H), but the epicenters network has 
only 7 nodes (CA, CB, CC, CD, CE, CF, CG), because 
CG = CH. It can also be observed that the link be-
tween CG and CH is a self-link. 

 

We built networks using both the successive and the 
time window models for the shallow and deep earth-
quakes collected. The time window values were T = 
3800 s for shallow seismic events and T = 16500 s for 
deep earthquakes. These values are the same calculated 
and used in Ferreira et al. (2018, 2020), respectively. 

Regarding the data generated with the OFC model, 
each epicenter was defined as a node. We constructed a 
network using the successive model of connections, as it 
was done in Ferreira et al. (2015). 

RESULTS  

Degree Correlation Function 
From equation (1), we calculated the degree correlation 
function of our networks, using the degree 𝑘𝑘 of the 
nodes. Figure 4 shows a comparison between the net-
work of shallow earthquakes (𝑚𝑚𝑡𝑡ℎ = 4.5) built using the 
successive model and the time window model. It is ob-
served that in both distributions the nearest-neighbors 
average connectivity of nodes, 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘), increases linearly 
with 𝑘𝑘, which means that these networks are assorta-
tive. Therefore, the nodes with a high degree connect on 
average to nodes with a high degree. This result was the 
same found in networks of earthquakes from California 
and Japan (Abe and Suzuki, 2006a), which makes sense 
since most earthquakes that occur in these areas have 
depths of up to 70 km (shallow earthquakes). 

However, the network constructed with the time 
window model is more assortative than the one built 
with the successive model. It is interesting because  
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(a)                                                                                  (b) 

 Figure 4: Nearest-neighbors average connectivity of nodes 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) for the network of shallow earth-
quakes, for 𝑚𝑚𝑡𝑡ℎ = 4.5, using (a) the successive model and (b) the time window model. It can be 
observed that both distributions follow a crescent linear fit (red line). These plots show that both 
networks have assortative mixing, being the network constructed with the time window model 
much more assortative. 

 

 
Ferreira et al. (2018, 2020) showed that the time win-
dow model gives results that make more sense than the 
successive model (e. g., it naturally identifies the world’s 
places with more occurrence of seismic events). The 
high assortative value found implies that areas of the 
world with intense shallow seismic activity are not only 
correlated but strongly correlated. 

It is also interesting to note that in Figure 4 the lin-
ear growth does not hold for high degree-nodes. This be-
havior is expected in scale-free networks, like ours, 
since the system is unable to sustain assortativity for 
high-degree because there are only a few nodes with 
large values of degree (hubs). The same happens for 
other real networks, as citation networks. 

Moreover, in the global catalog from which we col-
lected our data, there are several events with a “fixed 
depth” equal to 10 km,2 when there is no certainty about 
the actual focus depth. Thus, to analyze if this value of 
depth is biasing our results for the shallow earth-
quakes, we removed them and plotted the nearest-
neighbors average connectivity of nodes 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) for the 
successive and time window models for the remaining 
data. As we can see in Figure 5, both distributions have 
a behavior very similar to those considering all depths 
(Figure 4), which means that the assortative behavior 
of the networks of epicenters for shallow earthquakes is 
not dependent of this value of depth, being, in fact, a 
property of shallow earthquakes. 

We have also analyzed the shallow seismological 
data in respect to its magnitude threshold 𝑚𝑚𝑡𝑡ℎ to check 
if the consideration 𝑚𝑚𝑡𝑡ℎ = 4.5 is satisfactory and if this 
value influences our results. Figures 6(a) and 6(b) show 
the nearest-neighbors average connectivity of nodes, 
𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘), for the successive and time window models, re-
spectively, using 𝑚𝑚𝑡𝑡ℎ = 5.0. The distributions show a 
linear growth between 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) and 𝑘𝑘, similarly to what 
we have found when considering 𝑚𝑚𝑡𝑡ℎ = 4.5. Therefore, 

these networks are assortative, independently of the 
minimum magnitude value adopted. 

The results for the networks of deep earthquakes 
with 𝑚𝑚𝑡𝑡ℎ = 4.5 are shown in Figure 7. In both cases, suc-
cessive and time window models, the networks are neu-
tral, i.e., 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) is independent of 𝑘𝑘. It means that the 
world’s geographical regions with greater deep seismic 
activity are correlated both with each other and with 
areas of less occurrence of deep earthquakes, without 
preference. 

Following the same analysis for the shallow seismo-
logical data, we analyzed the epicenter networks’ as-
sortativity of deep earthquakes using 𝑚𝑚𝑡𝑡ℎ = 5.0. For the 
network created using the successive model of connec-
tions, no correlation was observed between 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) and 
𝑘𝑘; thus, this network is neutral (Figure 8[a]), as it was 
found when considering 𝑚𝑚𝑡𝑡ℎ = 4.5 (Figure 7[a]). On the 
other hand, in the case of the network constructed with 
the time window model, 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) increases linearly with 
𝑘𝑘, indicating that this network has assortative mixing 
(Figure 8[b]), which differs from the result obtained for 
𝑚𝑚𝑡𝑡ℎ = 4.5 (Figure 7[b]). However, when comparing the 
distributions presented in Figures 7 and 8, we note a 
significant reduction in the number of nodes for the net-
work built using 𝑚𝑚𝑡𝑡ℎ = 5.0 (this decrease in the number 
of nodes can also be seen in Table 1). Then, in this case, 
the results found for deep earthquakes with 𝑚𝑚𝑡𝑡ℎ = 5.0 
cannot be considered very consistent since the low num-
ber of nodes does not allow us to perform good statistics. 

Finally, as shown in Figure 9, we found that the 
nearest-neighbors average connectivity of nodes 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) 
for the network of earthquakes simulated with the mod-
ified OFC model has an increasing behavior with 𝑘𝑘, in 
agreement with the results found for shallow earth-
quakes. Similar results were also found in a previous 
work conducted for networks built using the standard 
OFC model (Peixoto and Prado, 2006).
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(a)                                                                                 (b) 
Figure 5: Nearest-neighbors average connectivity of nodes 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) for the network of shallow earth-
quakes, for 𝑚𝑚𝑡𝑡ℎ = 4.5 and without depth equal to 10 km. The networks were constructed with (a) 
the successive model and (b) the time window model. Both distributions follow an increasing linear 
fit (red line), which means that these networks are assortative. Again, the network constructed 
with the time window model is much more assortative. 

(a)                                                                                 (b) 
Figure 6: Nearest-neighbors average connectivity of nodes 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) for the network of shallow earth-
quakes, for 𝑚𝑚𝑡𝑡ℎ = 5.0, created with (a) the successive model and (b) the time window model. By the 
crescent linear relation between 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) and 𝑘𝑘 (red line), these networks have assortative mixing, 
being the time window network much more assortative. 

(a)                                                                                 (b) 
Figure 7: Nearest-neighbors average connectivity of nodes 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) for the network of deep earth-
quakes, 𝑚𝑚𝑡𝑡ℎ = 4.5, constructed with (a) the successive model and (b) the time window model. No cor-
relation between 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘)and 𝑘𝑘 is presented in the distributions, which means that both networks are 
neutral. 
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(a)                                                                                (b) 
Figure 8: Nearest-neighbors average connectivity of nodes 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) for the network of deep earthquakes, 
𝑚𝑚𝑡𝑡ℎ = 5.0. In (a) the network was constructed with the successive model. No correlation between 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) 
and 𝑘𝑘 is presented, showing that this network is neutral. (b) presents the 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) distribution of the 
network created using the time window model. The distribution shows an increasing behavior, indicat-
ing that this network is assortative. The explanation of this difference is in the body of the text. 

Figure 9: Nearest-neighbors average connec-
tivity of nodes 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) for the network of earth-
quakes generated with the modified OFC 
model using the successive model. This net-
work has 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) linearly increasing with 𝑘𝑘 (red 
line); therefore, it is assortative. 

Degree Correlation Coefficient
In addition, to obtain a quantitative result from equation 
(2), we have calculated the degree correlation coefficient 
(𝑟𝑟) for each of our networks, and the values are shown in 
Table 1. As seen by the positive values obtained, the net-
works of shallow events (for both successive and time 
window models) are assortative in all cases, i.e., consid-
ering data for 𝑚𝑚𝑡𝑡ℎ = 4.5 with all depths; for 𝑚𝑚𝑡𝑡ℎ = 4.5 ex-
cluding the fixed depth of 10 km; and for 𝑚𝑚𝑡𝑡ℎ = 5.0 with 
all depths. For these three cases, considering each model 
separately, the values of 𝑟𝑟 are very close. Moreover, once 
again, we have noticed that the network of shallow earth-
quakes constructed with the time window model is much 
more assortative. It is noteworthy that the 𝑟𝑟 values found 
for this network are consistent with a similar finding for 
Japan data, using a different technique from ours (Tenen-
baum et al., 2012). As the Japan region has a predomi-
nance of shallow earthquakes, our results make sense. 

The networks of deep earthquakes with 𝑚𝑚𝑡𝑡ℎ = 4.5 
for both models, successive and time window, present 
𝑟𝑟 ≈ 0, indicating that they are neutral, as found in the 
nearest-neighbors average connectivity of nodes 
(𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘)) analyses. Additionally, as we observed in the 
𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘) study, a difference was found when looking for 
the degree correlation coefficient 𝑟𝑟 for deep earthquakes 
with 𝑚𝑚𝑡𝑡ℎ = 5.0. While the network constructed with the 
successive model presents 𝑟𝑟 ≈  0, the one created with 
the time window model has 𝑟𝑟 >  0. However, as shown 
in Figure 8 and Table 1, when we consider only magni-
tudes greater than or equal to 5.0, the number of nodes 
in the networks of deep earthquakes is much smaller 
than for 𝑚𝑚𝑡𝑡ℎ = 4.5 (Figure 7 and Table 1). Consequently, 
the results indicated by the value of 𝑟𝑟 for deep earth-
quakes with 𝑚𝑚𝑡𝑡ℎ = 5.0 are inconsistent due to the low 
number of nodes.
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Table 1 - The number of nodes (N) and the degree correlation coefficient (𝑟𝑟) values of the world-
wide and synthetic earthquake networks used in this study. 

Network N 𝑟𝑟 

Shallow earthquakes, mth = 4.5 (successive) 28471 0.0711 

Shallow earthquakes, mth = 4.5 and depth equal to 10 km excluded (successive) 20222 0.0809 

Shallow earthquakes, mth = 5.0 (successive) 12323 0.0774 

Shallow earthquakes, mth = 4.5 (time window) 23380 0.508 

Shallow earthquakes, mth = 4.5 and depth equal to 10 km excluded (time window) 14737 0.510 

Shallow earthquakes, mth = 5.0 (time window) 6184 0.582 

Deep earthquakes, mth = 4.5 (successive) 8958 0.000763 

Deep earthquakes, mth = 5.0 (successive) 3086 0.0163 

Deep earthquakes, mth = 4.5 (time window) 7675 0.0152 

Deep earthquakes, mth = 5.0 (time window) 2478 0.0944 

OFC model earthquakes 115510 0.0750 

The positive degree correlation coefficient found for 
the network of earthquakes built from the modified OFC 
model shows assortativity, as seen in Table 1. This result 
is in concordance with our findings for the nearest-neigh-
bors average connectivity of nodes 𝑘𝑘𝑛𝑛𝑛𝑛(𝑘𝑘).  

DISCUSSION 
To better understand the triggering of earthquakes and 
their dynamics, it is of great relevance to study how they 
correlate to each other worldwide. As the authors show in 
Marsan and Lengliné (2008), knowing how the temporal 
and spatial domain link together is important to under-
stand the diffusion processes in the earthquake system. 

The assortative correlation exhibited in shallow and 
synthetic earthquake networks is an exciting result. As 
the hubs are connected to other hubs in earthquake net-
works, the regions of the world where large earthquakes 
occurred (e. g. Japan, Sumatra, and Chile) tend to, on av-
erage, be linked to each other. It means that the regions 
where mainshocks occurred are connected to other regions 
where other mainshocks also appeared, suggesting that 
mainshocks may induce other mainshocks. Figure 10(a) 
presents the geospatial image of the network of shallow 
earthquakes (𝑚𝑚𝑡𝑡ℎ = 4.5) created with the time window 
model. Despite Figure 10(a) displaying only the 2% of 
nodes with the highest degree of the network, they hold 
16% of the links of the entire network. It is also possible to 
observe that hubs are not connected only to other close 
hubs (as in the case of Japan, which holds more than one 
hub), but they are also linked across the planet. 

Another point is that removing high-degree nodes in 
assortative networks is a relatively inefficient strategy 
for destroying the network connectivity, since removing 
a hub does not cause significant damage to the network 
because the hubs form a core group (Barabási and Pósfai, 
2016). Consequently, being the earthquake network as-
sortative, even if a seismically active region does not have 

earthquakes for some time, this will not influence the 
global seismic dynamics since the network structure will 
not undergo significant changes. 

Besides that, the assortative earthquake networks 
also reveal a kind of “attracting dynamics”, where many 
hubs tend to be located near each other, i.e., large events 
tend to produce many hubs in a relatively small region. 
However, as depicted in Figure 10(a), these regions are 
not isolated from the rest of the network; instead, they 
are also connected to hubs in other regions. 

Furthermore, analyzing the networks themselves, 
the assortative property makes the giant component of 
the networks unable to reach large values. Once the giant 
component is the largest subset of nodes in the network 
(where each of its nodes must be connected to at least one 
other node), the assortative result means that, in earth-
quake networks, the regions with higher degrees are 
forced to connect much more to each other, than to the 
ones with small degree, making the hubs have more prob-
ability of belonging to the giant component than to the 
disconnected parts of the network. 

A further interesting point is an agreement between 
the results for the small-world-like OFC model and for 
shallow earthquakes, which strengthens the credibility 
of the OFC model for the study and statistical description 
of earthquakes. Given the importance of using theoreti-
cal-computational models in earthquake research, the 
validation of a model such as the OFC, which does not 
need large computational requirements, is an interesting 
result once it allows inferring characteristics of actual 
earthquakes from those found using the model. 

In the case of deep earthquakes, the neutral behavior 
found in the networks indicates that the earthquakes cor-
relate at random since, in neutral networks, the nodes 
are linked arbitrarily (Barabási and Pósfai, 2016). The 
geospatial image of the network of deep earthquakes, with 
magnitude threshold 𝑚𝑚𝑡𝑡ℎ = 4.5, constructed with the time 
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(a)                                                                                        (b) 

 Figure 10: Geospatial images of the networks constructed with the time window model between 2002 
and 2016, for (a) shallow earthquakes and (b) deep earthquakes, considering 𝑚𝑚𝑡𝑡ℎ = 4.5. The 2% of nodes 
with the highest degrees (hubs) in each network are shown, as well as the links between them. Larger 
and reddish cells have a higher number of connections. 

 

 
window model, is presented in Figure 10(b). This figure de-
picts 2% of the most connected nodes of the network and 
3% of the network links, showing that for deep earth-
quakes networks the hubs do not concentrate a large num-
ber of connections between each other. This result implies 
that deep seismic events worldwide have no obvious corre-
lation, making the understanding of their correlations 
more difficult than for the shallow ones. 

CONCLUSIONS 
In this work, the assortativity of networks of worldwide 
and synthetic earthquakes was studied in order to better 
characterize correlation properties and understand the 
spread of information in the system of earthquakes. Con-
cerning the global events, we analyzed shallow and deep 
earthquakes separately. From these datasets, we built 
networks of epicenters by using two methodologies: the 
successive model and the time window model of connec-
tions. For the shallow earthquakes, the networks of both 
models of linking nodes (sites) presented assortative mix-
ing, with the difference that the network constructed 
with the time window model was found to be much more 
assortative. These results were similar to those obtained 
for seismic event networks from California and Japan 
(regions with a predominance of shallow earthquakes). 

The assortative mixing was also found for the net-
work created using a catalog produced by an improved 
version of the computational model proposed by Olami, 
Feder and Christensen, which shows agreement between 
real data for shallow events and synthetic data catalogs. 
On the other hand, the deep earthquake networks, for 
both successive and time window models, presented no 
correlation between the degree of the nodes. 

We have also tested our networks under two different 
constraints, taking only earthquakes with magnitude 
larger than or equal to 5.0 and excluding the events with 
“fixed depths” of 10 km from our data. The results found 
were consistent with those without the constraints. 
These tests had the objective to check if our results (using 

the entire data) were biased by the magnitude threshold 
4.5 or by the “fixed depths”. 

Our results suggest that shallow and deep earth-
quakes have different temporal and spatial correlation 
properties. While we have positive degree correlations for 
shallow earthquakes, these correlations seem not to exist 
for deep earthquakes. Because of this, the shallow earth-
quake networks tend to link high-degree regions (regions 
with large earthquakes) with other high-degree areas, 
making it more difficult to change the seismological behav-
ior of the earthquake networks even if a specific region 
stops having earthquakes for a period of time. Moreover, 
the results seem to indicate that, for shallow earthquakes, 
mainshocks may induce mainshocks in other areas, even 
if these areas are not close to each other. Another interest-
ing feature revealed by our results from shallow earth-
quakes is a kind of “attracting dynamics”. This feature 
causes the hubs to create several other hubs close to them; 
however, it does not prevent them from being connected to 
others further away. On the other hand, for deep earth-
quakes, our network analysis indicates that they connect 
randomly, i.e., with no specific preference. 

An additional consequence of our findings is the vali-
dation of the OFC model to describe the degree correla-
tion of shallow earthquake networks. It implies one more 
verification of the applicability of the OFC model. This 
step forward may help to study statistical correlations in 
actual earthquakes, given that the model presented sim-
ilar results to those for natural earthquakes. 

The correlation properties found in our analyses con-
cern both temporal and spatial relations since we use time 
sequences to establish links between different spatial re-
gions of the globe. It is known that earthquakes can induce 
others thousands of kilometers away from their epicenters 
(O’Malley et al., 2018), and our findings reinforce these 
long-range interactions in the worldwide seismicity. Here, 
these properties appear naturally using only complex net-
work theory, showing how powerful this theory is to study 
correlated systems, such as earthquakes. 
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The present study shows that more than just degree 
distributions must be investigated when analyzing an 
earthquake network. Still, it is also necessary to observe 
how the network nodes are related. In this way, we have 
shown that the presence of mixing patterns in earth-
quake networks has a profound effect on the network's 
topological properties as it affects the detailed wiring of 
links among nodes. 

For future works, we intend to study the earthquake 
clusters and communities performed from deep and shal-
low earthquakes. 

ACKNOWLEDGMENTS 
The authors would like to thank the Brazilian agencies 
FAPERJ and CNPq, for funding and scholarships.  

REFERENCES 
Abe, S., and N. Suzuki, 2004a, Scale-free network of earth-

quakes: Europhysics Letters, 65, 4, 581–586, doi: 
10.1209/epl/i2003-10108-1. 

Abe, S., and N. Suzuki, 2004b, Small-world structure of 
earthquake network: Physica A, 337, 1-2, 357–362, doi: 
10.1016/j.physa.2004.01.059. 

Abe, S., and N. Suzuki, 2006a, Complex earthquake 
networks: Hierarchical organization and assortative 
mixing: Phys. Rev. E, 74, 2, 026113, doi: 
10.1103/PhysRevE.74.026113. 

Abe, S., and N. Suzuki, 2006b, Complex-network descrip-
tion of seismicity: Nonlin. Processes Geophys., 13, 2, 
145–150, doi: 10.5194/npg-13-145-2006. 

Abercrombie, R.E., 1996, The magnitude-frequency 
distribution of earthquakes recorded with deep 
seismometers at Cajon Pass, southern California: 
Tectonophysics, 261, 1–3, 1–7, doi: 10.1016/0040-
1951(96)00052-2. 

Ahmed, N., S. Ghazi, and P. Khalid, 2016, On the varia-
tion of b-value for Karachi region, Pakistan through 
Gumbel’s extreme distribution method: Acta Geod. Ge-
ophys., 51, 227–235, doi: 10.1007/s40328-015-0122-8. 

Albert, R., and A.L. Barabási, 2000, Topology of evolving 
networks: local events and universality: Phys. Rev. 
Lett., 85, 5234, doi: 10.1103/PhysRevLett.85.5234. 

Albert, R., and A.L. Barabási, 2002, Statistical mechanics 
of complex networks: Rev. Mod. Phys., 74, 47, doi: 
10.1103/RevModPhys.74.47. 

Albert, R., H. Jeong, and A.L. Barabási, 1999, Diameter of 
the world-wide web: Nature, 401, 6749, 130–131, doi: 
10.1038/43601. 

Baiesi, M., and M. Paczuski, 2004, Scale-free networks of 
earthquakes and aftershocks: Phys. Rev. E, 69, 6, 
066106, doi: 10.1103/PhysRevE.69.066106. 

Bak, P., and M. Paczuski, 1995, Complexity, contingency, 
and criticality: Proc. Natl. Acad. Sci., 92, 15, 6689–
6696, doi: 10.1073/pnas.92.15.6689. 

Bak, P., K. Christensen, L. Danon, and T. Scanlon, 2002, 
Unified scaling law for earthquakes: Phys. Rev. Lett., 
88, 17, 178501, doi: 10.1103/PhysRevLett.88.178501. 

Barabási, A.L, 2002, Linked: The New Science of Net-
works: Perseus, Cambridge, MA. 280 pp. 

Barabási, A.L., and R. Albert, 1999, Emergence of scaling 
in random networks: Science, 286, 509–512, doi: 
10.1126/science.286.5439.509. 

Barabási, Al., and M. Pósfai, 2016, Network science: Cam-
bridge University Press, Cambridge, UK. 475 pp. 

Caruso, F., V. Latora, A. Pluchino, A. Rapisarda, and B. 
Tadić, 2006, Olami-Feder-Christensen model on differ-
ent networks: Eur. Phys. J. B., 50, 1, 243–247, doi: 
10.1140/epjb/e2006-00110-5. 

Catanzaro, M., G. Caldarelli, and L. Pietronero, 2004, As-
sortative model for social networks: Phys. Rev. E, 10, 
3, 037101, doi: 10.1103/PhysRevE.70.037101. 

Chorozoglou, D., E. Papadimitriou, and D. Kugiumtzis, 
2019, Investigating small-world and scale-free struc-
ture of earthquake networks in Greece: Chaos Soliton. 
Fract., 122, 143–152, doi: 10.1016/j.chaos.2019.03.018. 

Christensen, K., and Z. Olami, 1992a, Variation of the 
Gutenberg‐Richter b values and nontrivial temporal 
correlations in a spring‐block model for earth-
quakes: J. Geophys. Res., 97, 8729–8735, doi: 
10.1029/92JB00427. 

Christensen, K., and Z. Olami, 1992b, Scaling, phase tran-
sitions, and nonuniversality in a self-organized critical 
cellular-automaton model: Phys. Rev. A, 46, 4, 1829, 
doi: 10.1103/PhysRevA.46.1829. 

Davidsen, J., and M. Paczuski, 2005, Analysis of the spa-
tial distribution between successive earthquakes: 
Phys. Rev. Lett., 94, 4, 048501, doi: 
10.1103/PhysRevLett.94.048501. 

Dorogovtsev, S.N., and J.F. Mendes, 2003, Evolution of 
networks: From biological nets to the Internet and 
WWW: Oxford University Press, Oxford, UK. 280 pp. 

Ebel, H., L. Mielsch, and S. Bornholdt, 2002, Scale-free 
topology of e-mail networks: Phys. Rev. E, 66, 3, 
035103, doi: 10.1103/PhysRevE.66.035103. 

Ferreira, D.S.R., A.R.R. Papa, and R. Menezes, 2014, 
Small world picture of worldwide seismic events: Phys-
ica A, 408, 170–180, doi: 10.1016/j.physa.2014.04.024. 

Ferreira, D. S. R., A. R. R. Papa, and R. Menezes, 2015, 
On the agreement between small-world-like OFC 
model and real earthquakes: Phys. Lett. A, 379, 7, 669–
675, doi: 10.1016/j.physleta.2014.12.023. 

Ferreira, D., J. Ribeiro, A. Papa, and R. Menezes, 2018. 
Towards evidence of long-range correlations in shallow 
seismic activities: Europhysics Letters, 121, 5, 58003, 
doi: 10.1209/0295-5075/121/58003. 

Ferreira, D.S.R., Ribeiro J., P.S. L. Oliveira, A.R. Pimenta, 
R.P. Freitas, and A.R.R. Papa, 2020, Long-range corre-
lation studies in deep earthquakes global series: Phys-
ica A, 560, 125146, doi: 10.1016/j.physa.2020.125146. 

http://doi.org/10.1209/epl/i2003-10108-1
http://doi.org/10.1016/j.physa.2004.01.059
http://doi.org/10.1103/PhysRevE.74.026113
http://doi.org/10.5194/npg-13-145-2006
http://doi.org/10.1016/0040-1951(96)00052-2
http://doi.org/10.1016/0040-1951(96)00052-2
http://doi.org/10.1007/s40328-015-0122-8
http://doi.org/10.1103/PhysRevLett.85.5234
http://doi.org/10.1103/RevModPhys.74.47
http://doi.org/10.1038/43601
http://doi.org/10.1103/PhysRevE.69.066106
http://doi.org/10.1073/pnas.92.15.6689
http://doi.org/10.1103/PhysRevLett.88.178501
http://doi.org/10.1126/science.286.5439.509
http://doi.org/10.1140/epjb/e2006-00110-5
http://doi.org/10.1103/PhysRevE.70.037101
http://doi.org/10.1016/j.chaos.2019.03.018
http://doi.org/10.1029/92JB00427
http://doi.org/10.1103/PhysRevA.46.1829
http://doi.org/10.1103/PhysRevLett.94.048501
http://doi.org/10.1103/PhysRevE.66.035103
http://doi.org/10.1016/j.physa.2014.04.024
http://doi.org/10.1016/j.physleta.2014.12.023
http://doi.org/10.1209/0295-5075/121/58003
http://doi.org/10.1016/j.physa.2020.125146


 Ribeiro et al. 95 

Braz. J. Geophysics, 40, 1, 2022 

Fiedler, B., S. Hainzl, G. Zöller, and M. Holschneider, 
2018, Detection of Gutenberg-Richter b-value changes 
in earthquake time series: B. Seismol. Soc. Am., 108, 
2778–2787, doi: 10.1785/0120180091. 

Foster, J., D. Foster, P. Grassberger, and M. Paczuski, 
2010, Edge direction and the structure of networks: 
P. Natl. A. Sci., 107, 24, 10815–10820, doi: 
10.1073/pnas.0912671107. 

Frohlich, C., 1989, The nature of deep-focus earth-
quakes: Annu. Rev. Earth Planet. Sci., 17, 1, 227–254, 
doi: 10.1146/annurev.ea.17.050189.001303. 

Frohlich, C., 2006, Deep Earthquakes: Cambridge Univer-
sity Press, Cambridge, UK. 592 pp, doi: 
10.1017/CBO9781107297562. 

Gheibi, A., Safari, H., and M. Javaherian, 2017, The solar 
flare complex network: Astrophys. J., 847, 2, 115, doi: 
10.3847/1538-4357/aa8951. 

Grassberger, P., 1994, Efficient large-scale simulations of 
a uniformly driven system: Phys. Rev. E, 49, 3, 2436, 
doi: 10.1103/PhysRevE.49.2436. 

Gutenberg, B., and C.F. Richter, 1942, Earthquake 
magnitude, intensity, energy, and acceleration: B. 
Seismol. Soc. Am., 32, 3, 163–191, doi: 
10.1785/BSSA0320030163. 

He, X., H. Zhao, W. Cai, Z. Liu, and S.-Z. Si, 2014, 
Earthquake networks based on space–time influ-
ence domain: Physica A, 407, 175–184, doi: 
10.1016/j.physa.2014.03.093. 

He, X., S.B.H. Shah, B. Wei, and Z. Liu, 2021, Comparison 
and Analysis of Network Construction Methods for Seis-
micity Based on Complex Networks: Complexity, Article 
ID 6691880, doi: 10.1155/2021/6691880. 

Helmstetter, A., Y.Y. Kagan, and D.D. Jackson, 2005, Im-
portance of small earthquakes for stress transfers and 
earthquake triggering: J. Geophys. Res. 110, B05S08, 
doi: 10.1029/2004JB003286. 

Jeong, H., S.P. Mason, A.L. Barabási, and Z.N. Oltvai, 
2001, Lethality and centrality in protein networks: Na-
ture, 411, 6833, 41–42, doi: 10.1038/35075138. 

Johnson, S., J. Torres, J. Marro, and M. Munoz, 2010, En-
tropic origin of disassortativity in complex networks: 
Phys. Rev. Lett., 104, 10, 108702, doi: 
10.1103/physrevlett.104.108702. 

Kagan, Y., and D. Jackson, 1991, Long-term earthquake 
clustering: Geophys. J. Int., 104, 1, 117–133, doi: 
10.1111/j.1365-246X.1991.tb02498.x. 

Kanamori H., and E.E. Brodsky, 2004, The physics of 
earthquakes: Rep. Prog. Phys., 67, 8, 1429, doi: 
10.1088/0034-4885/67/8/R03. 

Leon, D., J. Valdivia, and V. Bucheli, 2022, A revision of 
seismicity models based on complex systems and 
earthquake networks: J. Seismol., 26, 137–145, doi: 
10.1007/s10950-021-10017-0. 

Lotfi, N., and A.H. Darooneh, 2012, The earthquakes net-
work: the role of cell size: Eur. Phys. J. B, 85, 23, doi: 
10.1140/epjb/e2011-20623-x. 

Marsan, D., and O. Lengliné, 2008, Extending earth-
quakes’ reach through cascading: Science, 319, 5866, 
1076–1079, doi: 10.1126/science.1148783. 

Mega, S., P. Allegrini, P. Grigolini, V. Latora, L. Pal-
atella, A. Rapisarda, and S. Vinciguerra, 2003, 
Power-law time distribution of large earthquakes: 
Phys. Rev. Lett., 90, 18, 188501, doi: 
10.1103/PhysRevLett.90.188501. 

Newman, M.E., 2002, Assortative mixing in networks: 
Phys. Rev. Lett., 89, 20, 208701, doi: 
10.1103/PhysRevLett.89.208701. 

Newman, M.E., 2003, Mixing patterns in networks: 
Phys. Rev. E, 67, 2, 026126, doi: 
10.1103/PhysRevE.67.026126. 

Olami, Z., H.J.S. Feder, and K. Christensen, 1992, Self-
organized criticality in a continuous, nonconservative 
cellular automaton modeling earthquakes: Phys. Rev. 
Lett., 68, 8, 1244, doi: 10.1103/PhysRevLett.68.1244. 

O’Malley, R.T., D. Mondal, C. Goldfinger, and M.J. Beh-
renfeld, 2018, Evidence of systematic triggering at 
teleseismic distances following large earthquakes: Sci. 
Rep., 8, 1, 1–12, doi: 10.1038/s41598-018-30019-2. 

Pastén, D., F. Torres, B. Toledo, V. Munoz, J. Rogan, and 
J.A. Valdivia, 2016, Time-Based Network Analysis Be-
fore and After the 𝑀𝑀𝑤𝑤 8.3 Illapel Earthquake 2015 
Chile: Pure Appl. Geophys., 173, 2267–2275, doi: 
10.1007/s00024-016-1335-7. 

Pastén, D., F. Torres, B. Toledo, V. Muñoz, J. Rogan, and 
J. Valdivia, 2018, Non-universal critical exponents in 
earthquake complex networks: Physica A, 491, 445–
452, doi: 10.1016/j.physa.2017.09.064. 

Pastor-Satorras, R., A. Vázquez, and A. Vespignani, 2001, 
Dynamical and correlation properties of the internet: 
Phys. Rev. Lett., 87, 25, 258701, doi: 
10.1103/PhysRevLett.87.258701. 

Peixoto, T.P., and C.P. Prado, 2006, Network of epicen-
ters of the Olami-Feder-Christensen model of earth-
quakes: Phys. Rev. E, 74, 1, 016126, doi: 
10.1103/PhysRevE.74.016126. 

Piraveenan, M., M. Prokopenko, and A. Zomaya, 2010, As-
sortative mixing in directed biological networks: 
IEEE/ACM Trans. Comput. Biol. Bioinform., 9, 1, 66–
78, doi: 10.1109/TCBB.2010.80. 

Roberts, D., and D. Turcotte, 1998, Fractality and self-or-
ganized criticality of wars: Fractals, 6, 4, 351–357, doi: 
10.1142/S0218348X98000407. 

Spence, W., S.A. Sipkin, and G. L. Choy, 1989, Measuring 
the size of an earthquake: Earthquake Information 
Bulletin (USGS), 21, 1, 58–63. 

Stein, S., 1999, The role of stress transfer in earthquake 
occurrence: Nature, 402, 605–609, doi: 10.1038/45144. 

Telesca, L., and M. Lovallo, 2012, Analysis of seismic 
sequences by using the method of visibility graph: 
Europhysics Letters, 97, 5, 50002, doi: 10.1209/0295-
5075/97/50002. 

http://doi.org/10.1785/0120180091
http://doi.org/10.1073/pnas.0912671107
http://doi.org/10.1146/annurev.ea.17.050189.001303
http://doi.org/10.1017/CBO9781107297562
http://doi.org/10.3847/1538-4357/aa8951
http://doi.org/10.1103/PhysRevE.49.2436
http://doi.org/10.1785/BSSA0320030163
http://doi.org/10.1016/j.physa.2014.03.093
http://doi.org/10.1155/2021/6691880
http://doi.org/10.1029/2004JB003286
http://doi.org/10.1038/35075138
http://doi.org/10.1103/physrevlett.104.108702
http://doi.org/10.1111/j.1365-246X.1991.tb02498.x
http://doi.org/10.1088/0034-4885/67/8/R03
http://doi.org/10.1007/s10950-021-10017-0
http://doi.org/10.1140/epjb/e2011-20623-x
http://doi.org/10.1126/science.1148783
http://doi.org/10.1103/PhysRevLett.90.188501
http://doi.org/10.1103/PhysRevLett.89.208701
http://doi.org/10.1103/PhysRevE.67.026126
http://doi.org/10.1103/PhysRevLett.68.1244
http://doi.org/10.1038/s41598-018-30019-2
http://doi.org/10.1007/s00024-016-1335-7
http://doi.org/10.1016/j.physa.2017.09.064
http://doi.org/10.1103/PhysRevLett.87.258701
http://doi.org/10.1103/PhysRevE.74.016126
http://doi.org/10.1109/TCBB.2010.80
http://doi.org/10.1142/S0218348X98000407
http://doi.org/10.1038/45144
http://doi.org/10.1209/0295-5075/97/50002
http://doi.org/10.1209/0295-5075/97/50002


96   Correlation Properties in Worldwide and Synthetic Earthquake Networks 

Braz. J. Geophysics, 40, 1, 2022 

Tenenbaum, J.N., S. Havlin, and H.E. Stanley, 2012, 
Earthquake networks based on similar activity pat-
terns: Phys. Rev. E, 86, 4, 046107, doi: 
10.1103/PhysRevE.86.046107. 

Toda, S., and S. Stein, 2020, Long‐and short‐term stress 
interaction of the 2019 Ridgecrest sequence and Cou-
lomb‐based earthquake forecasts: B. Seismol. Soc. Am., 
110, 4, 1765–1780, doi: 10.1785/0120200169. 

Tosi, P., V. De Rubeis, V. Loreto, and L. Pietronero, 
2008, Space–time correlation of earthquakes: Ge-
ophys. J. Int., 173, 3, 932–941, doi: 10.1111/j.1365-
246X.2008.03770.x. 

Vázquez, A., R. Pastor-Satorras, and A. Vespignani, 2002, 
Large-scale topological and dynamical properties of 
the Internet: Phys. Rev. E, 65, 6, 066130, doi: 
10.1103/PhysRevE.65.066130. 

Watkins, N., G. Pruessner, S. Chapman, N. Crosby, and 
H. Jensen, 2016, 25 years of self-organized critical-
ity: Concepts and controversies: Space Sci. Rev., 
198, 1, 3–44, doi: 10.1007/s11214-015-0155-x. 

Watts, D.J., and S.H. Strogatz, 1998, Collective dynamics 
of ‘small-world’ networks: Nature, 393, 440–442, doi: 
10.1038/30918.

 
 
 
 
Ribeiro, J.: data analysis, result computing and paper writing; 
Oliveira Júnior, P.S.L.: data analysis, result computing and pa-
per writing; Pereira, L.O.: data analysis and paper revision; 
Freitas, R.P.: data analysis and paper revision; Pimenta, A.R.: 
data analysis and paper revision; Papa, A.R.R.: data analysis and 
paper revision; Ferreira, D.S.R.: concept development, study de-
sign, data analysis, result computing and paper writing. 
 
 
 
Received on November 7, 2021 / Accepted on April 7, 2022 
 
 
 

 
 - Creative Commons attribution-type BY 

 

http://doi.org/10.1103/PhysRevE.86.046107
http://doi.org/10.1785/0120200169
http://doi.org/10.1111/j.1365-246X.2008.03770.x
http://doi.org/10.1111/j.1365-246X.2008.03770.x
http://doi.org/10.1103/PhysRevE.65.066130
http://doi.org/10.1007/s11214-015-0155-x
http://doi.org/10.1038/30918

	ABSTRACT. In this work, we studied the correlation properties of seismic networks by analyzing the assortativity of worldwide and synthetic earthquake networks. We used data from the World Earthquake Catalog for the period from 2002 to 2016, consideri...
	Keywords: earthquakes; complex networks; computational modeling; correlation properties.
	Instructions
	THEORETICAL BACKGROUND
	Fundamental Concepts of Complex Networks
	Correlation Properties in Complex Networks
	The OFC Model
	Standard OFC model
	Small-world-like OFC model
	DATA
	Worldwide Earthquakes
	Synthetic Earthquakes
	METHOD
	Successive Model
	Time Window Model
	RESULTS
	Degree Correlation Function
	Degree Correlation Coefficient
	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

