
Brazilian Journal of Geophysics, 40 (2022), Suppl. 1, 7–19
Brazilian Geophysical Society
ISSN 2764-8044
DOI: 10.22564/brjg.v40i5.2139

3D DISPLACEMENT AND STRESS FIELDS OF
COMPACTING RESERVOIR: ALTERNATIVE SOLUTIONS

Valeria C. F. Barbosa 1∗, Vanderlei C. Oliveira Jr 1, Andre D. Arelaro 2, and
Filipe Augusto S. Borges 2

1Observatório Nacional - ON, Rio de Janeiro, RJ, Brazil
2Petróleo Brasileiro S.A. - Petrobras, Rio de Janeiro, RJ, Brazil

Corresponding author e-mail: valcris@on.br

ABSTRACT. We have presented alternative solutions for the displacement and stress fields outside and inside
of a 3D right rectangular prism under constant pressure. These solutions are obtained by integrating the well-
known nucleus-of-strain solution over the volume of the prism. They are based on the similarity between the
gravitational potential yielded by a volume source under a density variation and the thermoelastic displacement
potential yielded by a volume source in a half-space under a pressure variation. This similarity enables the use
of closed expressions of the gravitational potential and its derivatives. We use our solution for approximating
the displacement and stress fields due to a reservoir with an arbitrary shape and under arbitrary pressure
changes. We discretized the reservoir as a grid of 3D right rectangular prisms juxtaposed in the horizontal
and vertical directions. Each prism has homogeneous pressure; however, pressure variations among different
prisms are allowed. This parametrization of the reservoir yields a piecewise constant distribution of pressure
in the subsurface. We validate the resultant displacement and stress fields due to the reservoir by numerical
simulations including a reservoir with arbitrary geometry and under arbitrary pressure distribution, based on a
production oil field in offshore Brazil.

Keywords: gravitational potential, reservoir compaction, hydrocarbon production, nucleus-of-strain solution,
mathematical and numerical modeling

INTRODUCTION

The surface subsidence due to oil or gas withdrawal
from a reservoir in the subsurface may occur as a
result of geomechanical changes caused by pressure
drop. The phenomenon of subsidence by fluid extrac-
tion has been observed in a variety of oil fields, e.g.,
the Ekofisk field, southern North Sea (Borges et al.,
2020) and the Groningen gas field in the northeast
Netherlands (van Thienen-Visser and Fokker, 2017).
As the subsidence close to hydrocarbon fields un-
der production can induce earthquakes (Dahm et al.,
2015; Grigoli et al., 2017), the petroleum companies
have had an increased interest in monitoring the mag-
nitude and distribution of subsidence resulting from
reservoir depletion. This monitoring is accomplished
by means of the numerical modeling of the displace-
ment field. The physical foundation of the displace-

ment, stress and strain fields in the subsurface due to
a reduction of pressure in the reservoir comes from the
theory of thermoelasticity. In the uncoupled thermoe-
lasticity theory for quasi-static problems (i.e., prob-
lems with negligible inertia effects), Goodiee (1937)
employed the method of superposition using displace-
ment potential functions and introduced the concept
of nucleus of thermoelastic strain in an infinite space.
Specifically, Goodiee’s method (1937) simplified the
thermoelastic problem by replacing it with an isother-
mal elastic problem with different boundary condi-
tions together with the solution of a Poisson’s equa-
tion (Tao, 1971). Mindlin and Cheng (1950) and Sen
(1951) extended Goodiee’s method to a homogeneous
half-space. Sharma (1956) deduced the displacement
and stress fields in an infinite elastic plate due to a
nucleus of thermoelastic strain located at a point in-
side it by using infinite integrals involving Bessel func-
tions.
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8 3D Displacement and Stress Fields

The subsidence resulting from reservoir depletion
is in the context of poroelastic theory. Geertsma
(1957) remarked on the analogy between the theo-
ries of thermoelasticity and poroelasticity. To our
knowledge, Geertsma (1973) was the first to solve
the poroelastic problem by using the nucleus-of-strain
concept in the half-space, which in turn was proposed
by Mindlin and Cheng (1950) and Sen (1951) in the
theory of thermoelasticity. Geertsma’s approach pre-
sumes that the total displacement field due to the
compaction of a compacting region in the subsurface
is the superposition of the displacement field due to its
constituting points. Each constituting point, in turn,
is represented by a small sphere called the nucleus of
strain. By using this idea, Geertsma (1973) derived
analytical expressions by integrating the nucleus-of-
strain solution over the volume of a thin disk-shaped
reservoir. Segall (1992) followed Geertsma (1973) and
extended the analytical solutions of the displacement
and stress fields assuming general axisymmetric ge-
ometries and an arbitrary radial pressure distribution.
Geertsma and van Opstal (1973) applied the nucleus-
of-strain concept in the half-space to calculate the
spatial subsidence distribution due to the production
of the reservoir with an arbitrary 3D shape. By as-
suming a producing reservoir embedded in a homo-
geneous, isotropic, and elastic medium, and a reser-
voir model in which the pressure perturbations are re-
lated to the displacement field by a linear relationship,
Geertsma and van Opstal (1973) (1973) discretized
the reservoir into a grid of nuclei-of-strain and cal-
culated the displacement due to the pressure change
in the whole reservoir by the superposition of the dis-
placement due to the constant pressure change in each
nucleus. Tempone et al. (2010) followed Geertsma
and van Opstal (1973) and extended the nucleus-of-
strain concept in the half-space to consider the ef-
fects of a rigid basement. The main drawbacks in
Geertsma and van Opstal (1973) and Tempone et al.
(2010) are the assumption of a homogeneous reservoir
and the fact that the solution is only valid outside
the reservoir. In this case, the displacements within
the reservoir are calculated by linear interpolation
of the displacements at the upper and lower edges
of the reservoir Tempone et al. (2012). Consider-
ing an inhomogeneous poroelastic model that consists
of layered stratigraphy, Mehrabian and Abousleiman
(2015) developed closed-form formulae for the dis-
placement and stress fields outside and inside of the
reservoir embedded within elastic strata with differ-
ent mechanical properties and subjected to pore pres-
sure disturbances due to fluid extraction or injec-
tion. Muñoz and Roehl (2017) assume a linear elas-
tic semi-infinite medium to develop an analytical so-
lution for the displacement field outside and inside
of a rectangular prism having a constant pressure
change. Their approach consists in integrating the
Geertsma’s nucleus-of-strain solution over the volume
of the prism. Then, they discretize an arbitrarily-

shaped reservoir under an arbitrary distribution of 
pressure changes into a grid of prisms having differ-
ent constant pressure changes. Finally, they compute 
the total displacement field outside and inside of the 
reservoir by adding the displacement fields produced 
by all prisms setting up the reservoir model.

The present work assumes a linear elastic semi-
infinite medium and provides an a lternative solution 
for the displacement field outside and inside of a rect-
angular prism with constant pressure change. Like 
Muñoz and Roehl (2017), we integrate the Geertsma’s 
nucleus of strain over the prism volume. We also use 
our alternative solution to approximate the displace-
ment field due t o an a rbitrarily-shaped r eservoir un-
der arbitrary pressure changes by the superposition of 
the displacement fields produced by a  grid of prisms. 
Like Vasco and Johnson (1987), we take advantage 
of the similarity between the equations for calculat-
ing the displacement field due t o a  volume s ource in 
a half-space under a pressure variation and the grav-
itational potential due to a volume source under a 
density variation. In contrast with Vasco and John-
son (1987), our approach calculates the displacement 
field d ue t o a  3 D v olume s ource a t t he w hole sub-
surface whereas Vasco and Johnson (1987) calculated 
the displacement field due t o a  2D volume s ource at 
the Earth’s surface. We use closed expressions of the 
gravitational potential and its derivatives produced 
by the 3D right rectangular prism derived by Nagy 
et al. (2000, 2002) and Fukushima (2020) for calcu-
lating the displacement field due to a 3D prism under 
a constant pressure variation.

THEORY

The displacement, stress, and strain fields in the sub-
surface caused by reservoir compactation due to hy-
drocarbon production are grounded on the theory of 
thermoelasticity. The Goodiee’s thermoelastic dis-
placement potential ϕ satisfies the Poisson’s equation 
(Goodiee, 1937), i.e.:

∇2ϕ = m T, (1)

where ∇2 is the Laplacian operator, T is the tem-
perature variation and m = α 1+ν

1−ν , where α is the
coefficient of linear thermal expansion and ν is the
Poisson’s ratio. From the potential theory, a particu-
lar solution of Equation 1 is

ϕ(x, y, z) =− m

4π

∫ ∫
v

∫
T (x′, y′, z′)√

(x− x′)2 + (y − y′)2 + (z − z′)2
dv′,

(2)
where ϕ(x, y, z) represents the Newtonian gravita-
tional potential (Kellogg, 1967) that would be pro-
duced at the coordinates x, y and z by a continuous
density distribution −m

4π T (x′, y′, z′). The integral in
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Equation 2 is conducted over the coordinates x′,y′ and
z′, denoting, respectively, the x−, y− and −z coordi-
nates of an arbitrary point belonging to the interior of
the volume v of the solid. From Equation 2 and the
potential theory, Goodiee (1937) showed that, if an
element of volume dv in the infinite solid is at a tem-
perature T (x′, y′, z′), the remainder being at temper-
ature zero, the displacement vector u caused by this
temperature is the gradient of the Goodiee’s thermoe-
lastic displacement potential, i.e.,

u = ∇ϕ(x, y, z) , (3)

where ∇ is the gradient operator. To a homogeneous
half-space, Mindlin and Cheng (1950) showed that the
method proposed by Goodiee (1937) can be extended
by the displacement solution given by:

u = ∇ ϕ1 + ∇2ϕ2, (4)

where ϕ1 ≡ ϕ1(x, y, z) is the potential defined in
Equation 2; ϕ2 ≡ ϕ2(x, y, z) is defined as "image po-
tential" (Segall, 1992) due to an image point at the
coordinates (x′, y′,−z′); and the operator ∇2 is

∇2 = (3− 4ν)∇+ 2∇z
∂

∂z
− 4(1− ν)ẑ∇2

z , (5)

where ẑ is the unit vector in the z−direction and ∇2
z is

a scalar operator in which the operand is firstly mul-
tiplied by z and then operated upon by the Laplacian
∇2. Equation 4 is the displacement solution for the
variation of temperature due to a single nucleus of
strain buried at depth z′ in a semi-infinite homoge-
neous medium. In the right hand side of Equation 4,
the first term ∇ ϕ1 represents the displacement in an
infinite medium, and the second term represents a
correction of the displacement due a half-space, also
known as "image nucleus solution".

METHODOLOGY

Let’s assume that a reservoir in the interior of the
Earth is subject to a compaction due to hydrocarbon
production. The compaction is caused by the pressure
change within the reservoir, which in turn causes sur-
face subsidence (or surface displacement). Here, we
use a Cartesian coordinate system with the x−axis
pointing to the north, the y−axis pointing to the east,
and the z−axis pointing downward. We discretize the
reservoir into an mx×my×mz grid of 3D vertical jux-
taposed prisms (mx·my·mz = M) along the x, y and z
axes, respectively, in which the pressure within each
prism is assumed to be constant and known. Each
prism in the reservoir model may undergo a distinct
pressure change. The subsidence effect is the dis-
placement field due to the pressure change through-
out the reservoir and is calculated by the sum of the
displacement produced by each prism. The discrete
forward modeling to calculate the displacement and
stress fields due to a piecewise-constant distribution

of the pressure variation within a reservoir follows the
nucleus-of-strain approach. We assume that a nucleus
of strain represents an infinitesimal reservoir volume
element. The displacement solution for a single nu-
cleus of strain in a homogeneous elastic semi-infinite
medium (Equation 4) will be used as an element of the
displacement. We calculate the displacement (stress)
field due to the pressure variation of a prism by inte-
grating the nucleus of strain over its volume.

The discrete forward modeling due to a nu-
cleus of strain in a homogeneous elastic semi-
infinite medium

By considering the discrete form of Equation 4, the
displacement vector uij ≡ u(xi, yi, zi, x

′
j , y

′
j , z

′
j) at an

arbitrary point (xi, yi, zi) due to a change of pres-
sure in the jth nucleus of strain at the coordinates
(x′

j , y
′
j , z

′
j) will be calculated by

uij = u1ij + u2ij , (6)

where u1ij is the displacement vector at the point
(xi, yi, zi) due to the jth single nucleus in the infi-
nite space and u2ij is the correction of the displace-
ment considering a semi-space (image nucleus solu-
tion). The term u1ij (Equation 6) is given by

u1ij = AE ∇
(

1

R1ij

)
∆pj dv′j (7)

and represents the gradient of the potential

ϕ1 = −Cm

4π

∆pj dv′j
R1ij

. (8)

The term u2ij (Equation 6) is given by

u2ij=AE

[
Cν ∇

(
1

R2ij

)
+ 2∇

(
z
∂

∂z

1

R2ij

)
− 4(1− ν)ẑ∇2

(
z

R2ij

)]
∆pjdv

′
j

(9)

and is obtained by applying the operator ∇2 (Equa-
tion 5) to the image potential

ϕ2 = −Cm

4π

∆pj dv′j
R2ij

. (10)

In Equations (7) to (10), all derivatives are com-
puted with respect to the coordinates of the point
(xi, yi, zi); ∆pj is the pressure change of the jth nu-
cleus; dv′j is an infinitesimal element of volume cen-
tered at the jth nucleus of strain (x′

j , y
′
j , z

′
j), Cν =

(3− 4ν), AE = A(1+ν)
E , where A is the constant

A = − CmE

4π(1 + ν)
, (11)

E is the Young’s modulus and Cm is the uniaxial com-
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paction coefficient (see Geertsma, 1966)

Cm =
1

E

(1 + ν)(1− 2ν)

(1− ν)
. (12)

In Equation 8, R1ij is the distance from
the ith point (xi, yi, zi) to the jth nu-
cleus of strain (x′

j , y
′
j , z

′
j), i.e.: R1ij =√

(xi − x′
j)

2 + (yi − y′j)
2 + (zi − z′j)

2. In Equa-
tion 10, R2ij is the distance from the ith point
(xi, yi, zi) to the jth image nucleus (x′

j , y
′
j ,−z′j), i.e.:

R2ij =
√
(xi − x′

j)
2 + (yi − y′j)

2 + (zi + z′j)
2. Fig-

ure 1 shows a schematic representation of the geome-
try of the nucleus-of-strain problem in a semi-infinite
medium. The horizontal plane z = 0 is called the
"free surface". The x−, y− and z−components of
the vectors u1ij (Equation 7) and u2ij (Equation 9)
can be explicitly defined as follows:

u1ij = AE


∂
∂x

1
R1ij

∂
∂y

1
R1ij

∂
∂z

1
R1ij

∆pj dv
′
j (13)

and

u2ij=AE

Cν


∂
∂x

1
R2ij

∂
∂y

1
R2ij

− ∂
∂z

1
R2ij

+2zi


∂2

∂x∂z
1

R2ij

∂2

∂y∂z
1

R2ij

∂2

∂z2
1

R2ij


∆pjdv

′
j .

(14)
By following Sharma (1956) and Tempone et al.

(2010), the stress vector σij ≡ σ(xi, yi, zi, x
′
j , y

′
j , z

′
j)

at the point (xi, yi, zi) due to the jth single nucleus
of strain buried in the half-space is given by

σij = σ1ij + σ2ij , (15)

where σ1ij ≡ σ1(xi, yi, zi, x
′
j , y

′
j , z

′
j) is the stress

vector at the point (xi, yi, zi) due to the jth sin-
gle nucleus in the infinite space and σ2ij ≡
σ2(xi, yi, zi, x

′
j , y

′
j , z

′
j) is the stress vector at the point

(xi, yi, zi) that gives the correction of the stress due
to the jth image nucleus considering a semi-space.
These two vectors are given by

σ1ij = A


∂2

∂x∂z
1

R1ij

∂2

∂y∂z
1

R1ij

∂2

∂z2
1

R1ij

∆pjdv
′
j , (16)

and

σ2ij =A




∂2

∂x∂z
1

R2ij

∂2

∂y∂z
1

R2ij

− ∂2

∂z2
1

R2ij

+2zi


∂3

∂x∂z2
1

R2ij

∂3

∂y∂z2
1

R2ij

∂3

∂z3
1

R2ij


∆pjdv

′
j .

(17)

According to Sharma (1956) and Tempone et al.
(2010), the Beltrami’s equations (Beltrami, 1920) and
the equilibrium equations must be satisfied to obtain
the contribution of the stress field in the half-space.
Additionally, the boundary condition σij = 0 (Equa-
tion 15), where 0 is the zero vector, must be satisfied
at the free surface (zi = 0). This condition can be eas-
ily verified by adding the vectors σ1ij (Equation 16)
and σ2ij (Equation 17) computed at any point on the
free surface (xi, yi, zi = 0).

Figure 1: Schematic representation of the geometry
of the nucleus of strain in a semi-infinite medium. Af-
ter Muñoz and Roehl (2017). The adopted Cartesian
coordinate system considered the x−axis pointing to
the north, the y−axis pointing to the east, and the
z−axis pointing downward.

The discrete displacement forward modeling
due to a reservoir in a homogeneous elastic
semi-infinite medium

We parameterize the reservoir as a grid of juxtaposed
right rectangular prisms. Each grid prism undergoes
a constant pressure change ∆pj ; however, ∆pj can
be different for every prism. To calculate the dis-
placement field produced by the jth prism at the ith
coordinates (xi, yi, zi), we integrate the solution de-
duced for a single nucleus of strain (Equation 6) over
its volume and obtain

ũij =

∫∫∫
v1j

u1ijdv
′
j +

∫∫∫
v2j

u2ij dv′j , (18)

where both integrals are conducted with respect to
the variables (x′

j , y
′
j , z

′
j). The first integral in Equa-

tion 18 is conducted over the volume v1j of the
jth prism and the second is conducted over the vol-
ume v2j of a different prism symmetrically positioned
above the free surface and conveniently called jth
"image prism". The volume v1j is defined by x1j ,
x2j , y1j , y2j , z1j , and z2j , which represent, respec-
tively, the south, north, west, east, top, and bottom
borders of the jth prism. The volume v2j of the jth
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image prism is defined in a similar way, but with top
and bottom given by z1j−2 zcj and z2j−2 zcj , where
zcj =

1
2 (z1j+z2j) is the center depth of the jth prism.

The total displacement vector at the point (xi, yi, zi)
due to the pressure change in the whole reservoir is
defined as the sum of the displacements uij (Equa-
tion 18) yielded by each prism with constant pressure
∆pj :

ũi =

M∑
j=1

ũij , (19)

where M is the number of prisms setting up the reser-
voir model. The horizontal component of the total
displacement vector ũi (Equation 19) is calculated by

ũih =
√

ũ2
ix

+ ũ2
iy
, (20)

where ũix and ũiy are the x− and y− components.
By substituting Equation 13 and Equation 14 into
Equation 18, we obtain

ũijα = AE∆pj

[ ∫∫∫
v1j

∂

∂α

1

R1ij

dv′j +

Cν

∫∫∫
v2j

∂

∂α

1

R2ij

dvj +

2zi

∫∫∫
v2j

∂2

∂α∂z

1

R2ij

dv′j

]
,

(21)

where α = x, y, and

ũijz = AE∆pj

[ ∫∫∫
v1j

∂

∂z

1

R1ij

dv′j −

Cν

∫∫∫
v2j

∂

∂z

1

R2ij

dv′j +

2zi

∫∫∫
v2j

∂2

∂z2
1

R2ij

dv′j

]
.

(22)

On the right-hand side of Equation 21 and Equa-
tion 22, the three integrals have the same form of
derivatives of the gravitational potential produced by
the jth prism and image prism. The first integral
corresponds to the α−component of the gravitational
attraction produced by the jth prism. The second
and third integrals correspond, respectively, to the
α−component of the gravitational attraction and to
the αz−component of the gravitational gradient ten-
sor produced by the jth image prism. The similar-
ity between the displacement fields due to a volume
source in a half-space and the gravitational field al-
lows the use of closed expressions of the gravitational
potential and its derivatives produced by the 3D right
rectangular prism. We draw the readers’ attention to
the fact that Vasco and Johnson (1987) were the pio-
neer in taking the advantage of the similarity between

the displacement fields due to a source in a half-space
and the gravitational field to calculate the displace-
ment field due to a 2D volume source at the Earth
surface. Here, our approach also takes the advantage
of this similarity, but it calculates the displacement
field due to a 3D volume source at the whole subsur-
face. In Equation 21 and Equation 22, the integrals
depending on first derivatives of 1

R1ij
have the follow-

ing closed solutions (Nagy et al., 2000, 2002):

x2j∫
x1j

y2j∫
y1j

z2j∫
z1j

∂

∂x

1

R1ij

dv′j=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣yLz+zLy−xTyz

∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

,

(23)
x2j∫

x1j

y2j∫
y1j

z2j∫
z1j

∂

∂y

1

R1ij

dv′j=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣xLz+zLx−yTxz

∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

,

(24)
and
x2j∫

x1j

y2j∫
y1j

z2j∫
z1j

∂

∂z

1

R1ij

dv′j=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣xLy+yLx−zTxy

∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

(25)

where all derivatives are computed with respect to
the coordinates of the ith point (xi, yi, zi), and Lx =
ln(x + R); Ly = ln(y + R); and Lz = ln(z + R);
Tyz = tan−1

(
yz
x R

)
; Txz = tan−1

(
xz
y R

)
; and Txy =

tan−1
(

xy
z R

)
; R =

√
x2 + y2 + z2. The integration

limits in Equations (23) to (25) are

X1j = xi − x1j ,

X2j = xi − x2j ,

Y1j = yi − y1j ,

Y2j = yi − y2j ,

Z1j = zi − z1j , and

Z2j = zi − z2j .

(26)

The remaining integrals, in the right-hand side of
Equation 21 and Equation 22, depend on first and
second derivatives of 1

R2ij
. These integrals are con-

ducted over the volume v2j of the jth image prism
and have the following closed solutions (Nagy et al.,
2000, 2002):

x2j∫
x1j

y2j∫
y1j

z2j−2 zc∫
z1j−2 zc

∂

∂x

1

R2ij

dv′j=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣yLz+zLy−xTyz

∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

,

(27)

x2j∫
x1j

y2j∫
y1j

z2j−2 zc∫
z1j−2 zc

∂

∂y

1

R2ij

dv′j=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣xLz+zLx−yTxz

∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

,

(28)
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x2j∫
x1j

y2j∫
y1j

z2j−2 zc∫
z1j−2 zc

∂

∂z

1

R2ij

dv′j=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣xLy+yLx−zTxy

∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

,

(29)
x2j∫

x1j

y2j∫
y1j

z2j−2 zc∫
z1j−2 zc

∂2

∂x∂z

1

R2ij

dv′j=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Ly

∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

, (30)

x2j∫
x1j

y2j∫
y1j

z2j−2 zc∫
z1j−2 zc

∂2

∂y∂z

1

R2ij

dv′j=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Lx

∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

, (31)

and

x2j∫
x1j

y2j∫
y1j

z2j−2 zc∫
z1j−2 zc

∂2

∂z∂z

1

R2ij

dv′j=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣− Txy

∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

.

(32)

In these integrals related to the jth image prism
(Equations (27) to (29)), the integration limits along
the z direction are given by

Z1j = zi−z1j+2 zcj and Z2j = zi−z2j+2 zcj , (33)

where zcj = 1
2 (z1j+z2j) is the center depth of the jth

prism. The remaining limits along x and y directions
are the same defined by Equation 26.

The discrete stress forward modeling due to
a reservoir in a homogeneous elastic semi-
infinite medium

By following the similar approach used in the previ-
ous subsection, the stress field of each prism assuming
constant pressure is calculated by an integrating solu-
tion for a nucleus of strain (Equation 15, Equation 16,
and Equation 17) over its volume. This integration
leads to a stress vector σ̃ij ≡ σ̃(xi, yi, zi, x

′
j , y

′
j , z

′
j)

given by

σ̃ij =

∫∫∫
v1j

σ1ijdv
′
j +

∫∫∫
v2j

σ2ijdv
′
j , (34)

where the first and second integrals are conducted,
respectively, over the volumes v1j and v2j of the jth
prism and the jth image prism. The total stress vec-
tor at the ith coordinates (xi, yi, zi) due to the pres-
sure change in the whole reservoir is calculated by the
sum of all stress vector σ̃ij (Equation 34), i.e.,

σ̃i =
M∑
j=1

σ̃ij . (35)

By substituting Equation 16 and Equation 17 into
Equation 34, we obtain the α−component (where
α = x and y) and the z− component of the stress

vector σ̃ij as follows:

σ̃ijα =A∆pj

[∫∫∫
v1j

∂2

∂α∂z

1

R1ij

dv′j+

∫∫∫
v2j

∂2

∂α∂z

1

R2ij

dv′j

+ 2zi

∫∫∫
v2j

∂3

∂α∂z2
1

R2ij

dv′j

]
(36)

and

σ̃ijz =A∆pj

[∫∫∫
v1j

∂2

∂z2
1

R1ij

dv′j+

∫∫∫
v2j

∂2

∂z2
1

R2ij

dv′j

+ 2zi

∫∫∫
v2j

∂3

∂z3
1

R2ij

dv′j

]
.

(37)

Similarly to the displacement field (Equation 21 and
Equation 22), the three integrals in the right-hand
side of Equation 36 and Equation 37 have the same
form of derivatives of the gravitational potential pro-
duced by the jth prism and image prism. The in-
tegrals depending on 1

R1ij
have the following closed

solutions (Nagy et al., 2000, 2002):

x2j∫
x1j

y2j∫
y1j

z2j∫
z1j

∂2

∂x∂z

1

R1ij

dv′j =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Ly

∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

, (38)

x2j∫
x1j

y2j∫
y1j

z2j∫
z1j

∂2

∂y∂z

1

R1ij

dv′j =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Lx

∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

, (39)

and

x2j∫
x1j

y2j∫
y1j

z2j∫
z1j

∂2

∂z∂z

1

R1ij

dv′j =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣− Txy

)∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

,

(40)

where the limits X1j , X2j , Y1j , Y2j , Z1j , and Z2j

are defined by Equation 26. The integrals depending
on second derivatives of 1

R2ij
in the right-hand side of

36 and Equation 37 have closed solutions defined by
Equation 30, Equation 31, and Equation 32. Finally,
the remaining integrals depending on third derivatives
of 1

R2ij
have closed solutions given by (Nagy et al.,

2000, 2002):

x2j∫
x1j

y2j∫
y1j

z2j−2 zc∫
z1j−2 zc

∂3

∂x∂z2
1

R2ij

dv′j=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣−yz

R

(
1

x2 + z2

) ∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

,

(41)
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x2j∫
x1j

y2j∫
y1j

z2j−2 zc∫
z1j−2 zc

∂2

∂y∂z2
1

R2ij

dv′j=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣−xz

R

(
1

y2 + z2

) ∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

,

(42)

and

x2j∫
x1j

y2j∫
y1j

z2j−2 zc∫
z1j−2 zc

∂3

∂z3
1

R2ij

dv′j=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣xyR

(
1

x2 + z2
+

1

y2 + z2

) ∣∣∣∣∣
X2j

X1j

∣∣∣∣∣
Y2j

Y1j

∣∣∣∣∣
Z2j

Z1j

,

(43)

where the limits X1j , X2j , Y1j , and Y2j are defined
by Equation 26 and Z1j and Z2j by Equation 33.
Our method was implemented in Python program-
ming language and it is based on Harmonica (Uieda
et al., 2020). The horizontal and vertical displace-
ments are calculated by using the volume integrations
(Equation 21 and Equation 22), whose solutions are
given by equations Equations (23) to (32). The hori-
zontal and vertical stresses are calculated by using the
volume integrations (Equation 36 and Equation 37),
whose solutions are given by Equations (38) to (43).
We used Fukushima (2020) to overcome the zero di-
vision in evaluating the arguments of the arctangent
function.

NUMERICAL APPLICATIONS

Disk-shaped reservoir under uniform depletion

Embedded in a semi-infinite homogeneous medium,
we simulated a vertical cylinder-like reservoir (not
shown) with a radius of 500 m and whose horizontal
coordinates of its center along the north-south and
east-west directions are 0 m and 0 m, respectively.
The depths to the top and to the bottom of the simu-
lated reservoir are 750 m and 850 m, respectively. The
reservoir is uniformly depleted by ∆p = −10 MPa.
The Young’s modulus is 3300 (in MPa), the Poisson’s
coefficient is 0.25, and the uniaxial compaction coef-
ficient Cm (Equation 12) is 2.2525 10−4 MPa−1. To
apply our methodology, we discretized the cylinder
along the x− and y− directions into a 20 × 20 grid
of prisms. Hence, we totalized 400 prisms all of them
centered at 800 m deep, with depths to the top and
to the bottom at 750 m and 850 m and with pres-
sure change ∆pj , j = 1, ..., 400 equal to −10 MPa.
To apply the Geertsma’s method (Geertsma, 1973),
we used the disk-shaped reservoir described in Fjær
et al. (2008) with dimensions and physical properties
defined above. Figures 2 and 3 show cross-sections

at x = 0 m of the displacement fields in 2D con-
tour plots due to the pressure change in the whole
cylindrical reservoir by using our methodology and
Geertsma’s method, respectively. As we defined the
z−axis as positive downwards, the positive vertical
displacement means a subsidence and the negative
vertical displacement means an uplift. Figure 2 shows
the horizontal and vertical displacements calculated,
respectively, with Equation 20 and Equation 22 by
our methodology. Figure 3 shows the radial and ver-
tical displacements using Geertsma’s method consid-
ering an elastic homogeneous cylindrical reservoir un-
der uniform depletion based on the nucleus-of-strain
concept in the half-space. In both cases (Figure 2b
and Figure 3b) the vertical displacements due to the
entire disk-shaped reservoir display a subsidence (pos-
itive values) above the reservoir and an uplift (nega-
tive values) below the reservoir. We stress that the
proposed volume integrations (Equations (23) to (32)
allowed to evaluate the vertical displacement (Fig-
ure 2b) throughout the entire reservoir. Rather, the
vertical displacement using Geertsma’s method (Fig-
ure 3b) is only valid outside the reservoir. The radial
displacement using Geertsma’s method (Figure 3a)
shows positive values at the edges of the reservoir
(y = −500 and y = 500) with a singularity at the
center of the reservoir (x = 0, y = 0 and z = 800
m). The horizontal displacement with the proposed
full integration (Figure 2a) shows positive values at
the edges of the reservoir (y = −500 and y = 500);
however, it does not present singularities inside the
reservoir. Figure 4 shows the x−component displace-
ment and the vertical displacement by our methodol-
ogy that uses a full volume integrations. These dis-
placements are calculated along the x−axis, at y = 0
m, and considering four surfaces located at the follow-
ing depths: seafloor (z = 0 m), reservoir top (z = 750
m), reservoir center (z = 800 m) and reservoir bot-
tom (z = 850 m). In the x-component of the dis-
placement (Figure 4a), we can note an increased hor-
izontal contraction from the center of the reservoir
(x = 0) toward the reservoir edge (x = 500 m) where
the maximum contraction of all surfaces occur. In the
vertical displacement (Figure 4b), we can note a sub-
sidence of the seafloor and the reservoir top (positive
values) and an uplift of the reservoir bottom (negative
values). The vertical displacements of the seafloor,
the top and bottom of the reservoir for Geertsma’s
method (Figure 5) show similar behavior to those ob-
tained by our methodology that uses full volume in-
tegrations (Figure 4b). However, we note that the
subsidence of the seafloor is more attenuated in the
Geertsma’s method than in ours because we calcu-
late the total displacement field outside and inside
of the reservoir. This fact is important because the
movement of the seafloor should be monitored in hy-
drocarbon fields under production. Figure 6 shows
the null stress through the free surface at the plane
z = 0 m due to the reservoir under uniform depletion.
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Figure 2: Reservoir under uniform depletion: (a) horizontal displacement (Equation 20) and (b) vertical dis-
placement (Equation 22) by our methodology that uses the closed expressions of the volume integrations (Equa-
tion 21 and Equation 22), whose closed solutions are given by Equations (23) to (32).
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Figure 3: Reservoir under uniform depletion: (a) radial displacement and (b) vertical displacement using
Geertsma’s method (Geertsma, 1973) considering an elastic homogeneous cylindrical reservoir under uniform
depletion (Fjær et al., 2008).
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Figure 4: Reservoir under uniform depletion: (a) horizontal x-component displacement and (b) vertical dis-
placement by our methodology that uses the closed expressions of the volume integrations (Equation 21 and
Equation 22), whose closed solutions are given by equations Equations (23) to (32). These displacements are
calculated along the x-axis, at y = 0 m and z located at the depths of: seafloor (z = 0 m), reservoir top (z = 750
m), reservoir center (z = 800 m) and reservoir bottom (z = 850 m).
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Figure 5: Reservoir under uniform depletion: vertical displacement using Geertsma’s method (Geertsma, 1973)
considering an elastic homogeneous cylindrical reservoir under uniform depletion (Fjær et al., 2008). The
displacement is calculated along the x-axis, at y = 0 m and z located at the depths of: seafloor (z = 0 m),
reservoir top (z = 750 m), and reservoir bottom (z = 850 m).
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Figure 6: Reservoir under uniform depletion: (a) x−, (b) y−, and (c) z−components of the stress at the free
surface. The horizontal and vertical stresses are calculated by using the full volume integrations (Equation 36
and Equation 37), whose closed solutions are given by equations Equations (38) to (43).

Reservoir with arbitrary geometry and under
arbitrary pressure changes

In this numerical application, the reservoir model is
a simplification of a realistic reservoir located in a
production oil field in offshore Brazil. The entire
reservoir model comprises dimensions of 14 km on the
north-axis, 13 km on the east-axis, and 0.6 km on the
down-axis. The depths to the top and bottom of the
reservoir model are 2,712 m and 3,312 m, respectively.
The components of the displacements are calculated
at 0 m deep, on a regular grid of 100 × 80 observa-
tion points along the north- and east-directions, re-
spectively. We discretized the reservoir along the x−,
y− and z− directions into a 14×13×2 grid of prisms.
The Young’s modulus is 3300 (in MPa), the Poisson’s
coefficient is 0.25, and the uniaxial compaction coef-
ficient Cm (Equation 12) is 2.2525 10−4 MPa−1.

Figure 7: Reservoir with arbitrary geometry and un-
der arbitrary pressure changes: 3D perspective view
of the pore pressure distribution based on a reservoir
located in a production oil field in offshore Brazil.

Figure 7 shows the pore pressure distribution of
the reservoir whose pressures vary from 0 to −0.72

MPa. Figure 8 shows cross-sections at x = 8 km of
the horizontal and vertical displacements, calculated
in the whole reservoir by using our methodology. Fig-
ure 9 shows the null stress through the free surface
due to reservoir shown in Figure 7.

CONCLUSION

Grounded on the similarity between the gravitational
potential produced by a volume source under a den-
sity variation and the displacement field produced by
a volume source in a half-space under a pressure vari-
ation, we have presented an alternative solution for
the displacement and stress fields outside and inside
of a 3D right rectangular prism with constant pres-
sure change. Our solution is obtained by integrat-
ing the well-known nucleus-of-strain solution over the
volume of the prism. We also use our solution to
approximate the displacement and stress fields due to
reservoir compaction with arbitrary geometry and un-
der non-uniform pressure distribution. Our approach
consists in approximating the reservoir 3D pressure
distribution through a piecewise constant function de-
fined on a user-specified grid of 3D prisms juxtaposed
in the x−, y−, and z−directions. The sum of the dis-
placements (stresses) produced by the prisms is the
resultant displacement (stress) field due to the whole
reservoir. Our expressions are valid either outside or
inside the prisms. We have demonstrated the use of
these expressions by applying them to calculate the
displacement and stress fields due to cylindrical reser-
voirs with uniform and non-uniform pressure distri-
butions and to a reservoir model of a production oil
field in offshore Brazil. All the numerical applications
produced null stress fields at the free surface showing
that the condition of null tractions at the free surface
has been met.
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Figure 8: Reservoir with arbitrary geometry and under arbitrary pressure changes: (a) horizontal displacement
(Equation 20) and (b) vertical displacement (Equation 22) by our methodology that uses the closed expressions
of the volume integrations (Equation 21 and Equation 22), whose closed solutions are given by equations
Equations (23) to (32).

Figure 9: Reservoir with arbitrary geometry and under arbitrary pressure changes: (a) x−, (b) y−, and (c)
z−components of the stress at the free surface. The horizontal and vertical stresses are calculated by using
the full volume integrations (Equation 36 and Equation 37), whose closed solutions are given by equations
Equations (38) to (43).
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CODE AND DATA AVAILABILITY

The current version of our code is freely
distributed under the BSD 3-clause license
and it is available for download at Zenodo:
https://doi.org/10.5281/zenodo.4041984. The lat-
est development version of our code can be
freely downloaded from a repository on GitHub
(https://github.com/pinga-lab/DisReserv). Instruc-
tions for running the current version of our code are
also provided on the repository. The code is still be-
ing improved and we encourage the user to work with
the latest development version. The code was de-
veloped as an open-source Python language (Python
3.7.x). The numerical applications were produced in
Jupyter Notebook. The data of the pore pressure dis-
tribution simulating a reservoir with arbitrary geom-
etry and under arbitrary pressure changes (realistic-
model.pickle) are available in the above-mentioned
repositories.
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