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ABSTRACT. Increasing seismic resolution has been long pursued by the geophysical community, serving, among 
other applications, for more detailed interpretation of seismic clinoforms, better seismic inversion and quantitative 
interpretation. Sparse deconvolution methods play a central role in this pursuit. However, although sparse methods 
have performed well for single seismic stack or acoustic inversion tasks, their application for multi-stack seismic 
volumes and consequent use in elastic inversion are still a challenging and ongoing research topic. The challenge is 
to obtain reflectivity volumes with high correlation between them. In this study, we present a new method to perform 
simultaneous sparse deconvolution (SSD) in a group of seismic volumes associated with different reflection angles. 
The proposed algorithm enforces co-localization of the spikes on the estimated reflectivity traces and additionally 
allows user control of the sparsity via hyperparameters. The method is validated in both synthetic and real datasets 
proving its co-localization capability and resulting in higher correlations between the reflectivity volumes, when 
compared to independent sparse deconvolution (ISD) of the seismic stacks. The resulting reflectivity volumes are, 
henceforth, better suited for downstream tasks such as high-resolution amplitude versus angle (AVA) analysis or 
input for high-resolution elastic inversions. 
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INTRODUCTION
The band-limited character of routine seismic image 
volumes imposes resolution constraints (limited 
separability of two adjacent events in the seismic signal) 
for hydrocarbon reservoir characterization. These 
constraints are particularly restrictive for depositional 
settings with complex stratigraphic features. 

According to Sheriff (1991), deconvolution is a data 
processing technique applied to seismic reflection and 
other data for the purpose of improving the 
recognizability and resolution of reflected events. There 
are many types of deconvolution methods in the 
literature, and Rosa (2018) describes some of them. 
Based on the assumption that the subsurface rocks are 
mainly composed of layers with sharp interfaces, sparse 
spike deconvolution methods (sparse meaning a time 
series with limited number of non-zero elements) extend 

the spectral bandwidth of these seismic volumes, thus 
improving the resolution of heterogeneous stratigraphic 
features (Hargreaves et al., 2013; Kazemi and Sacchi, 
2014; Rosa, 2018). The general goal of these methods is 
to transform the seismic traces in an estimate of the 
reflection coefficient series associated with the geological 
layer interfaces. 

Acoustic inversion methods can also benefit from 
the bandwidth extension provided by sparse spike 
deconvolved data, by using it as input to the inversion 
algorithm (Cunha et al., 2019). 

In order to extend the applicability of sparse spike 
deconvolution to elastic inversion, it is advisable to 
constraint the solutions from traces associated with the 
same spatial position and different reflection angles, so 
that the reflectivities from different angle stacks are 
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representative of the same geological interfaces. Xi et al. 
(2018) solve the problem by using a multivariate version 
of a modified Cauchy distribution. But, unlike the 
solution presented in this paper, the modified Cauchy 
distribution in Xi et al. (2018) has no parameter to 
control the sparsity (amount of zero coefficients in the 
reflectivity series) of the solution and does not develop 
the full posterior distribution over the reflectivities. 

Our work is based on the Automatic Relevance 
Determination (ARD) formalism explained in Bishop 
(2006). This is a fully Bayesian formalism which was 
created for linear regression problems, where one is 
interested in finding the sparsest solution (solution with 
a minimal number of non-zero coefficients), but it can be 
applied to any linear inverse problem. In the geophysics 
literature, there are few publications that explore ARD 
formalism: Valentine and Sambridge (2018) present it in 
the context of inversion regularization techniques; Ji et 
al. (2020) apply ARD to amplitude versus angle (AVA) 
joint inversion to P and S reflectivities. 

The novelty of the present work is that we apply 
the ARD algorithm to AVA inversion with a different 
kind of prior then the one used in Ji et al. (2020), which 
enforces the co-localization of the reflectivity spikes 
throughout the different reflectivity traces. The present 
paper also makes no assumption regarding the seismic 
error spatial structure, which is determined in the 
proposed optimization algorithm. 

The results presented in this paper discuss the 
problem of deconvolution of seismic partial stacks, 
although the tools developed here could also be applied 
to any kind of AVA seismic inversion (such as AVA to 
elastic reflectivity inversion, for example). 

THEORY 
ARD applied to Geophysics 
Many geophysical problems may be cast into or 
approximated by a linear system, with Gaussian noise. 
For example, given an input vector 𝑟𝑟 and an output 
vector 𝑠𝑠, with the linear transformation 𝐺𝐺, one can write: 
 

𝑠𝑠 = 𝐺𝐺𝑟𝑟 + 𝜖𝜖 

𝜖𝜖 ∼ 𝒩𝒩(𝜖𝜖|0, S), 
(1) 

 

where 𝑆𝑆 is the covariance matrix of the measurement 
noise and is usually assumed to be diagonal and uniform 
(independent and identically distributed noise). In this 
work, we will make no such assumption. 

For seismic 1D convolutional model, the matrix 
𝐺𝐺 is a given Toeplitz matrix, which represents the 
convolution of the input reflectivity trace r with the 
estimated seismic wavelet. The prior probability over r is 
defined by: 
 

𝑝𝑝(𝑟𝑟)  = 𝒩𝒩(𝑟𝑟|0,𝐴𝐴−1) (2) 
 

The ARD assumption is that the prior precision 
matrix 𝐴𝐴 is diagonal, with independent entries: 
 

𝐴𝐴 = �
𝜆𝜆1 0
0 𝜆𝜆2

… 0
… 0

… …
0 0

… …
… 𝜆𝜆𝑁𝑁

� 

= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑁𝑁) 

= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆) 

(3) 

 

In a maximum a posteriori (MAP) approach, one is 
interested in finding the vector r which maximizes the 
posteriori probability 𝑝𝑝(𝑟𝑟|𝑠𝑠, 𝜆𝜆, 𝑆𝑆): 
 

𝑝𝑝(𝑟𝑟|𝑠𝑠, 𝜆𝜆, 𝑆𝑆) =
𝑝𝑝(𝑠𝑠|𝑟𝑟, 𝑆𝑆)𝑝𝑝(𝑟𝑟|𝜆𝜆)

𝑝𝑝(𝑠𝑠|𝜆𝜆, 𝑆𝑆)  (4) 

 

The above maximization problem is equivalent to 
minimizing the loss: 
 

𝑈𝑈(𝑟𝑟) = (𝑠𝑠 − 𝐺𝐺𝑟𝑟)𝑇𝑇S−1(𝑠𝑠 − 𝐺𝐺𝑟𝑟) +  �𝜆𝜆𝑗𝑗𝑟𝑟𝑗𝑗2,
𝑁𝑁

𝑗𝑗=1

 (5) 

 

which is equivalent to a deterministic inversion with 
regularization term. In this setting, the best choice of 𝜆𝜆 
from the mismatch point of view is zero (the smaller the 
regularization, the better is the match between 
measured 𝑠𝑠 and simulated 𝐺𝐺𝑟𝑟). On the other hand, the 
smaller mismatch usually comes at the expense of 
unstable (noisier) solutions. Figure 1 illustrates this 
situation for a 2D toy example. The Bayesian approach 
brings a natural way of finding the optimal value of the 
regularization hyperparameters 𝜆𝜆 that balances 
mismatch and solution quality.  

In a fully Bayesian approach, one is interested in 
characterizing the posterior distribution 𝑝𝑝(𝑟𝑟|𝑠𝑠, 𝜆𝜆, 𝑆𝑆); in 
this context, the optimal parameters (𝜆𝜆, 𝑆𝑆) are obtained 
by maximizing the marginal likelihood 𝑝𝑝(𝑠𝑠|𝜆𝜆, 𝑆𝑆): 
 

 

The above integral can be regarded as an inner 
product of the functions 𝑓𝑓𝑆𝑆(𝑟𝑟) = 𝑝𝑝(𝑠𝑠|𝑟𝑟, 𝑆𝑆) and 𝑑𝑑𝜆𝜆(𝑟𝑟) =
𝑝𝑝(𝑟𝑟|𝜆𝜆). For a fixed seismic error matrix 𝑆𝑆, the maximum  

𝑝𝑝(𝑠𝑠|𝜆𝜆, 𝑆𝑆) = �𝑝𝑝(𝑠𝑠|𝑟𝑟, 𝑆𝑆)𝑝𝑝(𝑟𝑟|𝜆𝜆)𝑑𝑑𝑟𝑟
𝑟𝑟

 (6) 
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Figure 1: Bayesian inversion applied to a 2D toy example for different values 
of the hyperparameter λ1=λ2=0. (a), 1.0 (b), and 20.0 (c). The matrix G is 
singular, so when λ1=λ2=0 there are infinite optimal solutions. 

marginal likelihood is achieved by finding the vector 𝜆𝜆, 
which maximizes the projection of 𝑑𝑑𝜆𝜆(𝑟𝑟) over 𝑓𝑓𝑆𝑆(𝑟𝑟). This is 
neither achieved with 𝜆𝜆 ≈ 0�⃗  (equiprobable distribution 
over 𝑟𝑟) nor with 𝜆𝜆 → ∞ (distribution of r peaked at the 
solution 𝑟𝑟 = 0�⃗ ); but there is an optimal non-trivial solution. 

The above integral is not analytical to be computed 
and its derivatives are also not analytical (besides, they 
suffer from vanishing gradients). For this reason, one can 
use the identity below, which holds for any test 
distribution 𝑞𝑞(𝑟𝑟): 
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log 𝑝𝑝(𝑠𝑠|𝜆𝜆, 𝑆𝑆) = ℒ(𝑞𝑞, 𝜆𝜆, 𝑆𝑆) 

+𝐷𝐷𝐾𝐾𝐾𝐾�𝑞𝑞(𝑟𝑟)�𝑝𝑝(𝑟𝑟|𝑠𝑠, 𝜆𝜆, 𝑆𝑆)� 

≥ (𝑞𝑞, 𝜆𝜆, 𝑆𝑆) 

(7) 

ℒ(𝑞𝑞, 𝜆𝜆, 𝑆𝑆) = 𝔼𝔼𝑞𝑞(𝑟𝑟) �log
𝑝𝑝(𝑠𝑠, 𝑟𝑟|𝜆𝜆, 𝑆𝑆)

𝑞𝑞(𝑟𝑟) � (8) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑞𝑞(𝑟𝑟)�𝑝𝑝(𝑟𝑟|𝑠𝑠, 𝜆𝜆, 𝑆𝑆)� 

= 𝔼𝔼𝑞𝑞(𝑟𝑟) �log
𝑞𝑞(𝑟𝑟)

𝑝𝑝(𝑟𝑟|𝑠𝑠, 𝜆𝜆, 𝑆𝑆)� 
(9) 

 

The 𝐷𝐷𝐾𝐾𝐾𝐾 is the Kullback-Leibler divergence and 
measures the discrepancy between the proposed 
distribution 𝑞𝑞(𝑟𝑟) and the true posterior 𝑝𝑝(𝑟𝑟|𝑠𝑠, 𝜆𝜆, 𝑆𝑆). It is 
always greater than or equal to zero; equality only holds 
when 𝑞𝑞(𝑟𝑟) ≡ 𝑞𝑞(𝑟𝑟|𝑠𝑠, 𝜆𝜆, 𝑆𝑆). 

The ℒ(𝑞𝑞, 𝜆𝜆, 𝑆𝑆) term is known as Evidence Lower 
Bound and maximizing it with respect to 𝑞𝑞 is equivalent 
to minimizing the 𝐷𝐷𝐾𝐾𝐾𝐾 term. The EM algorithm 
(Expectation Maximization) consists of optimizing the 
marginal likelihood 𝑝𝑝(𝑠𝑠|𝜆𝜆,𝑆𝑆) by alternating two 
optimization steps. It can be described in the Algorithm 1: 
 

Input: seismic trace 𝑠𝑠, number of iterations 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟  
Output: optimum reflectivity precisions 𝜆𝜆 = (𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑁𝑁) and 
measurement error covariance matrix 𝑆𝑆 

1 Initialize 𝜆𝜆0 and 𝑆𝑆0 
2 for 𝑑𝑑 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 do: 
3     E-step: set the test distribution 𝑞𝑞(𝑟𝑟) = 𝑝𝑝(𝑟𝑟|𝑠𝑠, 𝜆𝜆0, 𝑆𝑆0) 
4     M-step: maximize the ELBO ℒ(𝑞𝑞,𝜆𝜆,𝑆𝑆) in relation to 𝜆𝜆 and  
5 𝑆𝑆 , fixing 𝑞𝑞(𝑟𝑟) = 𝑝𝑝(𝑟𝑟|𝑠𝑠, 𝜆𝜆0, 𝑆𝑆0) 
6     set 𝜆𝜆0 = 𝜆𝜆 and 𝑆𝑆0 = 𝑆𝑆 
7 end 

Algorithm 1: Expectation Maximization (EM) algorithm 
for maximizing the marginal likelihood probability. 

 
The posterior distribution of the E-step is developed 

in Buland and Omre (2003), and can be written as: 
 

𝑝𝑝(𝑟𝑟|𝑠𝑠, 𝜆𝜆0, 𝑆𝑆0) = 𝒩𝒩(𝑟𝑟|�̂�𝑟,Λ𝑟𝑟−1) 

�̂�𝑟 = Λ𝑟𝑟−1𝐺𝐺𝑇𝑇𝑆𝑆0−1𝑠𝑠 

Λ𝑟𝑟 = 𝐴𝐴0 + 𝐺𝐺𝑇𝑇𝑆𝑆0−1𝐺𝐺 

(10) 

 

In the M-step, one can ignore the terms which do 
not depend on 𝜆𝜆 or 𝑆𝑆: 
 

𝜆𝜆, 𝑆𝑆 = argmax
𝜆𝜆,𝑆𝑆

𝔼𝔼𝑞𝑞(𝑟𝑟)[log 𝑝𝑝(𝑠𝑠, 𝑟𝑟|𝜆𝜆, 𝑆𝑆)]

= argmax
𝜆𝜆,𝑆𝑆

�𝑝𝑝(𝑟𝑟|𝑠𝑠, 𝜆𝜆0, 𝑆𝑆0) log 𝑝𝑝(𝑠𝑠, 𝑟𝑟|𝜆𝜆, 𝑆𝑆)
𝑟𝑟

 
(11) 

 

The solution to the above optimization problem is 
given by: 
 

𝜆𝜆𝑖𝑖 =
1

[Λr−1]𝑖𝑖,𝑖𝑖 + �̂�𝑟𝑖𝑖2
=

1
𝔼𝔼[𝑟𝑟𝑖𝑖2] (12) 

𝑆𝑆 = 𝐺𝐺Λ𝑟𝑟−1𝐺𝐺𝑇𝑇 + (𝐺𝐺�̂�𝑟 − 𝑠𝑠)(𝐺𝐺�̂�𝑟 − 𝑠𝑠)𝑇𝑇 (13) 
 

The above equations 10 through 13 are recursive 
equations since they have cyclic dependencies. The solution 
is found thus by iterative application of these equations. 

Equation 13 comes from the assumption that 
seismic noise is distinguishable from the signal, which is 
not entirely true since noise and signal have similar 
frequency spectrum. For this reason, the estimate in 
Equation 13 may be rescaled at each iteration to match 
a desired signal to noise ratio (SNR), which can be 
parametrized by the seismic processing expert: 
 

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 = γ[𝐺𝐺Λ𝑟𝑟−1𝐺𝐺𝑇𝑇 + (𝐺𝐺�̂�𝑟 − 𝑠𝑠)(𝐺𝐺�̂�𝑟 − 𝑠𝑠)𝑇𝑇] = 𝛾𝛾𝑆𝑆 (14) 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑃𝑃𝑠𝑠𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖

=
𝑃𝑃𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑖𝑖𝑠𝑠

𝑃𝑃𝑠𝑠𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖
− 1 

=
𝑠𝑠𝑇𝑇𝑠𝑠

𝑡𝑡𝑟𝑟[𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠] − 1 =
𝑠𝑠𝑇𝑇𝑠𝑠
𝛾𝛾𝑡𝑡𝑟𝑟[𝑆𝑆] − 1 

(15) 

 

In the above equations, 𝛾𝛾 can be computed from the 
SNR and then it is used to compute the 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 matrix. 
As such, the signal to noise is a hyperparameter that 
indirectly controls the sparsity of the solution: for higher 
signal to noise ratio, the algorithm will try to match each 
and every seismic event, and the solution will be less 
sparse; for smaller signal to noise ratio, more events will 
be ignored by the algorithm, which will be able then to 
yield a sparser solution. This possibility to manually 
parametrize the sparsity of the solution is an advantage 
of the present method in comparison to the one of Xi et 
al. (2018), where such hyperparameter does not exist. 
Hyperparameter tuning can be used to find the SNR that 
yields the more geologically plausible result. 

The EM algorithm tries to find the smallest values 
for the vector 𝜆𝜆, and by doing that it induces sparsity in the 
solution (if consistent with the matrix 𝐺𝐺): the necessary 
entries of the vector 𝑟𝑟 will be associated with smaller 
values 𝜆𝜆𝑖𝑖, while the entries of r which can be set to zero, 
without compromising the measurement mismatch, will 
be associated with high 𝜆𝜆𝑖𝑖 values, and set to approximately 
zero after some iterations. Figure 2 exemplifies the 
deconvolution of a seismic trace in the ARD formalism: the 
measured seismic equals the true seismic plus a colored 
noise; the ARD solution has a good visual match with the 
true reflectivity trace; it is sparser than the conventional 
deconvolution with similar seismic mismatch. Figure 3 
compares the estimated and actual seismic noise covariance 
functions and shows that they are similar. 
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ARD for multi-stack seismic deconvolution 
In a multi-stack seismic deconvolution, the matrix 𝐺𝐺 is a 
block-diagonal matrix, where each block is the Toeplitz 
matrix associated with the wavelet of the respective 
seismic stack. We would like to induce sparsity, without 
compromising the co-localization between the different 
reflectivity stacks, since they are generated from the 
same interface positions.  

The way to do that is to elaborate more on the 
structure of the prior precision matrix 𝐴𝐴. Say, we choose 
𝐴𝐴 to be: 
 

𝐴𝐴 = 𝐴𝐴𝜃𝜃 ⊗ 𝐴𝐴𝑖𝑖 
(16) 

𝐴𝐴𝜃𝜃 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆𝜃𝜃1, 𝜆𝜆𝜃𝜃2, … ,𝜆𝜆𝜃𝜃𝜃𝜃) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆𝜃𝜃) (17) 

𝐴𝐴𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆t1, 𝜆𝜆t2, … ,𝜆𝜆𝑖𝑖𝑁𝑁) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆𝑖𝑖), (18) 

 

where ⊗ denotes the kronecker product (Lyche, 2020); 𝐹𝐹 
is the number of angle stacks; and 𝑆𝑆 is the number of 
trace samples. The above equations mean that a sample 
at position 𝑑𝑑 and reflectivity stack 𝑗𝑗 has precision equal 
to 𝜆𝜆𝜃𝜃𝑗𝑗𝜆𝜆𝑖𝑖𝑖𝑖. This means that the matrix 𝐴𝐴𝜃𝜃 controls the 
weight of each stack in the solution and is shared among 
all samples. 

The EM algorithm, together with the above prior 
precision matrix assumption, is what we will refer to as 
the simultaneous sparse deconvolution (SSD) formalism. 
In the SSD formalism Equations 12 and 13 must be 
adapted into the following equations: 

 

𝜆𝜆𝑖𝑖𝑖𝑖 =
𝐹𝐹

∑ 𝔼𝔼�𝑟𝑟𝑖𝑖,𝑗𝑗2 �𝜆𝜆𝜃𝜃𝑗𝑗𝜃𝜃
𝑗𝑗=1

 (19) 

𝜆𝜆𝜃𝜃𝑗𝑗 = 𝑁𝑁
∑ 𝔼𝔼�𝑟𝑟𝑖𝑖,𝑗𝑗

2 �𝜆𝜆𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=1

, (20) 

where 𝔼𝔼�𝑟𝑟𝑖𝑖,𝑗𝑗2 � is the estimated second moment of the 𝑑𝑑𝑖𝑖ℎ 
sample of the 𝑗𝑗𝑖𝑖ℎ reflectivity stack. 
 
Impact of SSD algorithm on AVA analysis 
Since each reflectivity trace is important to explain its 
correspondent seismic stack trace, the optimized 𝐴𝐴𝜃𝜃 will 
not induce sparsity, since it would mean to zero a whole 
reflectivity trace. Most importantly, equations 16 
through 18 imply that if a sample is not important to 
explain the output seismic gather, then 𝜆𝜆𝑖𝑖𝑖𝑖 ≫ 1 and, 
therefore, all stack reflectivies will have 𝜆𝜆𝜃𝜃𝑗𝑗𝜆𝜆𝑖𝑖𝑖𝑖 ≫ 1, 
meaning that the sparsity will be shared across the 
different reflectivity stacks. The converse is not true: if 
one or more reflectivity coefficients at position 𝑑𝑑 are 
important (non-zero), the algorithm does not induce the 

other coefficients at the same position to be non-zero, 
since 𝜆𝜆𝜃𝜃𝑗𝑗𝜆𝜆𝑖𝑖𝑖𝑖 will be small for every stack 𝑗𝑗, and thus small 
regularization will be applied. As a consequence, seismic 
events with AVA type 2 or with amplitude dimming are 
not harmed by the algorithm. 

Finally, the regularization takes into account the 
square of the reflectivity coefficients; thus, the sign of the 
coefficients does not impact the loss function. As a 
consequence, seismic events with sign change across 
different stacks (AVA type 1 or 2, for example) are also 
not harmed by the algorithm. 

RESULTS 
We will show the application of the SSD formalism to 
both a synthetic and a real case example. The SSD 
formalism will be compared to the ARD approach 
independently applied to each seismic stack, which we 
will refer to as independent sparse deconvolution (ISD). 

Synthetic case 
We created a sparse reflectivity trace by sampling from 
a Gaussian-Bernoulli process (sampling a random white 
noise and multiplying it by a binary random trace with 
0.1 probability to be equal to 1). We derived elastic 
reflectivity traces (P, S and density) proportional to this 
initial reference reflectivity and guided by linearized 
rock physics relations. The simulated seismic stacks 
correspond to the reflection angles of 0, 15 and 30 degrees 
(Near, Mid and Far, respectively), and their respective 
reflectivities were computed using the Aki-Richards 
equations. The wavelets were modelled (in order to 
resemble the same spectrum as the real seismic data 
used in the next section) as butterworth filters with the 
same low-cut ramp (5Hz-10Hz) but decreasing high-cut 
ramps: 50Hz-80Hz for the Near stack, 30Hz-50Hz for the 
Mid stack, and 20Hz-40Hz for the Far stack. A colored 
noise with the same power spectrum as the wavelets was 
added such that the signal to noise ratio equals 20. 

Figure 4 shows the deconvolution results for both 
ISD and SSD formalisms. The ISD has no one-to-one 
correspondence between spikes across the different 
reflectivity stacks and no alignment is guaranteed, 
whereas the SSD has aligned spikes and a better match 
with the true reflectivities. In this synthetic example, 
there is no true residual moveout between the traces, and 
the misalignment is solely due to differences in the 
partial stacks’ resolutions. 

Since ARD is a fully Bayesian formalism, Figure 4 
also illustrates the 80% confidence interval of the 
reflectivities for the SSD case.
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Figure 2: Application of the ARD formalism to deconvolve a seismic trace. It can be noted that the solution is sparse, 
and it has a good match with the measured seismic. An inversion with λ1=λ2=⋯=λN=10-4 resulted in a not sparse 
solution with the same mismatch level. 

 

 
Figure 3: Covariance function of the seismic noise as a function of time lag. 
There is a good visual match between the estimated and modeled error 
structures. 

 

Real Case
The real case example was taken from an offshore 
seismic, where a turbidite play was studied. The 
wavelets were calibrated from nearby wells (although 
statistical wavelets could also be used). The seismic 
stacks have sampling rate of 1ms and correspond to 
the following angle stacks: Near (2 to 12 degrees), Mid 
(10 to 22 degrees), Far (20 to 33 degrees), and Ultra 
Far (30 to 42 degrees). The signal to noise ratio 
hyperparameters were adjusted as 5, 5, 2, 1 for 
the Near, Mid, Far and Ultra Far stacks, in order 

to achieve the best visual deconvolution results 
(alternatively, those values can be estimated from 
seismic to well tie), meaning that the Far and Ultra 
Far stacks are much more deteriorated by noise than 
the Near and Mid. 

A first comparison between the ISD and SSD 
approaches is illustrated in Table 1, which presents 
the correlations between different reflectivity stacks, 
showing that the SSD method results in higher 
correlations between the stacks. 
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Figure 4: Comparison of ISD and SSD results. Each plot represents the deconvolution of a seismic 
stack (0, 15 and 30 degrees, respectively from top to bottom). The independent deconvolution (red 
traces) shows no one-to-one correspondence between the spikes across the different stacks, and 
no alignment is guaranteed. The simultaneous deconvolution (green traces) shows better 
correlation between spikes in different stacks, and better match with the true reflectivity traces. 
For the SSD case, the 80% confidence interval is also displayed. 

 

Table 1: Correlation coefficients between the different 
reflectivity stacks for the SSD (green) and for the ISD 
(orange) cases. It can be noticed that the SSD 
correlation coefficients tend to have higher values. 

 Near Mid Far Ultra Far 

Near  0.782 -0.043 -0.003 

Mid 0.339  0.480 0.150 

Far 0.111 0.188  0.448 

Ultra Far 0.015 0.038 0.118  

 

Figure 5 compares the deconvolution results for a 
random trace within the seismic volume. It visually 
confirms that the SSD approach yields more aligned 
reflectivity traces.  

The visual analysis of the 80% confidence 
intervals in Figure 5 shows a tendency of increasing 
uncertainty from the Near stack to the Ultra Far stack, 

which is consistent with the user parametrized signal 
to noise ratios. 

Figure 5 also shows some misalignment issues in 
the real seismic data, for example, around 5860 ms 
(orange rectangle). These misalignments impact the ISD 
algorithm (and any other independent deconvolution 
method) because it generates reflectivity spikes at 
different positions. These misalignments also impact the 
stability of the SSD solution: the amplitude of the 
reflectivity spikes is bigger for the Far and Ultra Far 
angle stacks, and they tend to present a dipole-like 
behavior aspect at the misaligned seismic events. On the 
other hand, the SSD algorithm still generates spikes at 
the same positions across all reflectivity stacks, and the 
Bayesian formalism tends to indicate bigger uncertainties 
where the input seismic is misaligned, which can be used 
as a quality control of the SSD algorithm. 

Figure 6 compares ISD and SSD results on a real 
seismic line. The red boxes are visual aids to show the 
misalignment issues between Near and Ultra Far stacks. 
While the ISD spikes show the same misalignment 
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Figure 5: Result of the deconvolution on a single trace of the real seismic data. Orange rectangle shows the impact 
of seismic misalignment on the ISD and SSD algorithms. 

 
issues present in the input seismic stacks, there is 
great structural conformity between Near and Ultra 
Far reflectivities obtained from SSD as can be seen 
from the sections. 

CONCLUSIONS 
The presented SSD (Simultaneous Sparse 
Deconvolution) technique developed here is based on 
the ARD formalism, together with a specific structure 
in the prior precision matrix, which couples the sparsity 
of different reflectivity traces. It has been shown, both 

in synthetic and real case examples, that the SSD 
technique generates co-localized spikes, consequently 
resulting in more accurate results and better 
correlation between the resulting reflectivity traces. 

Also, it has been shown that the SSD technique 
solves satisfactorily the misalignment due to different 
resolutions of the partial stacks, as illustrated in the 
synthetic example. On the other hand, more intense 
misalignment (due to residual moveout as illustrated in 
the real dataset) also impacts SSD, resulting in more 
unstable solutions, and dipole-like behavior in the 
reflectivity traces. 
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Figure 6: (a) Near seismic stack. (b) Near reflectivity computed from ISD. (c) Near reflectivity computed from SSD. 
(d) Ultra Far seismic stack. (e) Ultra Far reflectivity computed from ISD. (f) Ultra Far reflectivity computed from 
SSD 

 
Finally, other types of seismic multi-stack 

inversion, such as elastic inversion, may benefit from 
the regularization technique presented in this paper. 
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