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ABSTRACT. Determination of the reflection coefficients is a key element to a well to seismic tie, and
the density log has great petrophysical importance as it is used to calculate the acoustic impedance and the
reflectivity log. Many authors have developed empirical relations to determine the bulk density log from other
log information such as compressional velocity and shale volume fraction. However, as machine learning (ML)
techniques have advanced, many works have used them to solve problems involving regression and classification
in well log data. The primary goal of this study is to develop Artificial Neural Network (ANN) regression
models which predict the density log and use other logs as input, and then compare them to existing empirical
models and find out which one provides the best fit. Two ANN models were developed, and a statistical analysis
was used to compare both to empirical models, such as calculating the mean squared error, relative error, and

correlation factor. When compared to empirical models, both ANN models had smaller errors and higher

precision on the fit.
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INTRODUCTION

The density log plays a major role both in well log-
ging and in well to seismic tying. Its importance
is due to the petrophysical information that can be
determined by the rock densities and applied to the
oil and gas industry. A formation evaluation can be
constructed utilizing the density log associated with
other log information. By calculating the acoustic
impedance of the medium, which results from the
product of the density and the P-wave velocity, it
is possible to calculate the seismic reflection coeffi-
cients which are fundamental in the well to seismic tie.
From laboratory studies containing sedimentary sam-
ples of different basins, geological ages, and depths,
Garduner et al. (1974) developed an empirical equation
that calculates the density from the P-wave velocity
information, also allowing the calculation of acoustic
impedance and seismic reflection coefficients from the
P-wave velocity information alone.

Besides Gardner et al. (1974), other authors,

Brocher (2005), Lindseth (1979), Christensen and
Mooney (1995), and Birch (1960) developed empirical
equations to calculate the density log. Two impor-
tant empirical models were proposed by Oloruntobi
and Butt (2019), which consider for the calculation
of the density log not only the P-wave velocity in-
formation (Vp) but also the volume fraction of shale
(Vsn). The first model is a linear equation obtained
by modifying the equation of Han et al. (1986). The
second model was obtained from Gardner’s equation
in which the term for the volume fraction of shale was
added. The equation parameters were calculated in
the article utilizing core samples from USA and Gulf
of Mexico wells, but they can also be calculated for
other formations utilizing a linear regression method
for the first model and a non-linear regression method
for the second one. A special focus will be given to the
empirical equation of Gardner et al. (1974) and to the
second empirical model of Oloruntobi and Butt (2019)
because these equations were developed for sedimen-
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tary formations and present small errors in the den-
sity log calculation.

Nowadays, the use of Artificial Intelligence (AI)
and Machine Learning (ML) in geophysics has be-
come frequent and it will be indispensable in the near
future. Artificial Neural Networks (ANNs), which are
a sub-branch of the ML, were first developed by Mc-
Culloch and Pitts (1943) as a mathematical model
and then evolved with the works of authors like Hebb
(1949), Rochester et al. (1956), Rosenblatt (1958),
Widrow (1960). The applications of Artificial Neural
Networks are very broad. For instance, they might be
found in medical diagnostics, voice recognition, fraud
detection, and many others. Geophysical applications
can be found in the works of Kohli and Arora (2014),
Long et al. (2016), which are well logging applications,
Van der Baan and Jutten (2000), and Zeng et al.
(2022). A problem that arises in the construction
of the density log utilizing empirical equations, either
with the original parameters calculated by the au-
thors or by re-calibrating them with linear or nonlin-
ear regressions for specific formations, is that the error
between real and calculated density logs might be sig-
nificant due to geological factors as geochronological
differences in the formations and fractured rocks. As
an attempt to overcome this issue, an Artificial Neu-
ral Network algorithm will be used to create models
that construct the density log by having other geo-
physical logs as input data. The results of the ANN
models will be compared with the results from the
empirical equations to determine which one presents
the best adjustment.

THEORETICAL BACKGROUND

The comparison between the empirical models and
the Artificial Neural Networks models in this work
was performed in two separate ways. The first com-
parison was between the ANN models and the empir-
ical models with their original parameter values from
the articles. The second comparison was between the
ANN models and the empirical models with new pa-
rameter values calculated by inversion utilizing a ref-
erence well. The optimization methods utilized in the
inversion and also in the ANN algorithm are described
below.

The least squares method

The theory of least squares was developed by Carl
Friedrich Gauss (Stigler, 1981). It is a numerical anal-
ysis method in which a group of functions and a set of
variables (both dependent and independent) are pro-
vided to determine the best fit of a continuous func-
tion with the variables data by the criterion of mini-
mum square error (Leon et al., 1998). To attempt to
find a set of coefficients ¢; (where i=1,2,3,....,n), f(z)
interpolates with the set {(z;,y;)},_, - being (2;,y;)
a set of points in the Cartesian plane - which can be
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represented by:

m

Zcifi (xj) =Yy,

i=1

(1)

where equation (1) written in a matrix structure is:

fi(x1)  fa(z1) fi(x1) C1 Y1
fi(x2)  fa(z2) fi(w2) C2 Y2
L fi (mn) f2 (mn) fi (xn) 1 L Sm | L Yn

which can be rewritten as:
Mc=y,

where M is the matrix containing the functions’ out-
puts for each z; and c is the vector containing the
adjustable parameters. According to Kailath (1980),
to find a solution, the first step is to multiply both
sides by the transverse matrix of M:
MTMce=MTy. (4)

The following step is to multiply both sides by
[M M ] ~! and obtain the solution for ¢
c=[M"M]T My (5)

The least squares method will be utilized to calcu-

late the parameters of Gardner et al. (1974) equation
by inversion for a reference well.

The Levenberg-Marquardt method

The Levenberg-Marquardt method (Levenberg, 1944;
Marquardt, 1963) can be derived from Newton’s
method:

x5+ — x(s) _ (A(S))flg(8)7 (6)

where A(®) is the Hessian matrix A®) = V2F(x) and

g(®) is the gradient. It is possible to make approxi-

mations for the Hessian matrix:
VZF(x) = 37 (x)J (%), (7)

and for the gradient:
VF(x) 2 J7 (x)r (x(8)> , (8)

and replacing equations 7 and 8 in equation 6, it is
possible to obtain the Gauss-Newton method:

X(S+1) _ X(s) + (JTJ)—l Ir (X(S)) , (9)
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where J is the Jacobian matrix and r is the error as-
sociated with the function values. According to Kayri
(2016) it is necessary to add Levenberg’s damping fac-
tor u, multiplied by the identity matrix to regularize
the Gauss-Newton method when the product: (J I )
results in a singular matrix and thus arrive at the
Levenberg-Marquardt equation:

D) — ) (JTJ+uI)71JTr (x<s>)’ (10)

The Jacobian matrix is composed of the first partial
derivatives:

or ., O
Oz Oy,

J= (11)
Oz ox,

On equation 10, x(**1) is the updated x value,
x(®) is the previous x value. The damping factor
w1 leads to optimization and, depending on its value,
the Levenberg-Marquardt algorithm can become the
steepest descent method. The Levenberg-Marquardt
is utilized in this work to re-calculate the parame-
ters of modified Gardner’s equation of Oloruntobi and
Butt (2019) by inversion for the reference well. It is
also utilized in the ANN algorithm as an optimization
method to update the weights of the network.

Artificial Neural Networks

The different types of ML are supervised learning,
unsupervised learning, and reinforcement learning. A
supervised learning algorithm will be applied consist-
ing of feeding the network with input and correct out-
put (target) pairs. The mean squared error will be
calculated at each iteration between the correct out-
put values and the output values at that iteration, fol-
lowed by a weight update so that the mean squared
error decreases in the following iterations until a min-
imum value is reached and the training stops. The
optimum values reached for the weights and biases
will compose the created ANN model.

The ANN were first developed by McCulloch and
Pitts (1943) as a mathematical model to simulate a bi-
ological neuron. The pioneer ANN model was the Per-
ceptron developed by Rosenblatt (1958), which con-
sisted of a very simple model with one input/output
artificial neuron. Modern ANNSs consist of multiple
layer networks as shown in Figure 1a, with one input
layer, one output layer, and some hidden layers. The
ANN algorithm developed in this work consists of one
input layer, one hidden layer, and one output layer.
The network has a total of 25 neurons in its hidden
layer and 1 neuron in its output layer. Its architecture
is represented in Figure 1b.

(a) Multiple layer network.

(b) NNSTART Architecture.

Figure 1: (a) Diagram of a multi-layer network archi-
tecture. On the left there is the input layer, followed
by the hidden layers and output layer. Each circle
represents an artificial neuron (Kim, 2017). (b) Neu-
ral network architecture of the NNSTART MATLAB
function used in this work. The hidden layer contains
25 neurons and the output layer contains 1 neuron.
Adapted from Beale et al. (2010).

The mathematical model for a single layer ANN
is given by:

Yi = f(WimXm + By), (12)

where Wy, is the matrix containing the weights of
the neural network that will be multiplied with the
input vector (X,,) and then summed with the bias
vector (By). The result of this operation is the input
for the activation function f and gives the calculated
output vector Y. Also, we can use different notation
for equation 12, which individually calculates each el-
ement y; of vector Yy individually as given by:

yi=f D wijz+bi|,i=123.k  (13)
j=1

The matrix multiplication in details will be:

w1 Wiz - Wim x1 by

W21 W22 -+ W2m x2 bo
Yk = * —+

Wr1 W2 ** Wkm Tm by

(14)

A variety of activation functions are utilized in
ANNs, for example: the sigmoid and rectified lin-
ear functions (Menon et al., 1996; Hara et al., 2015).
Both were applied in this work, the sigmoid function
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on the hidden layer and a linear transfer function on
the output layer. To update the weights, it is neces-
sary to utilize an optimization method. In this work,
the Levenberg-Marquardt backpropagation method is
utilized and is represented on equation 10.

METHODOLOGY

The main goal of this work is to construct a pseudo
density log based on ANN models and compare them
with the empirical equations. It is possible to ob-
serve in Figure 2 all the steps of the work that lead
to the best fit selection. The empirical equations uti-
lized in this work are listed in the following section.
The point is to test each equation for well logs of
different sedimentary basins and analyze their limita-
tions by calculating the relative error (R.E), the mean
squared error (M.S.E), the root mean squared error
(R.M.S.E), an adjustment factor (R) between the real
density log and the density log calculated by the em-
pirical equation and comparing them with the results
from the ANN models.

Figure 2: Illustration of the flowchart detailing the
steps of the work methodology.

The function NNSTART (Neural Network Start)
from the MATLAB programming language is uti-
lized to obtain the ANN models (Beale et al., 2010).
The dataset utilized to perform the training, valida-
tion and testing steps of the ANN contains well log
information from the Campos Basin in Brazil, the
Norne field in Norway, the Taranaki Basin in New
Zealand, and some well logs from Alaska, USA. A
second dataset containing well logs from the Penob-
scot field in Nova Scotia, Canada, was exclusively uti-
lized to perform additional tests. All the well log data
were first submitted to an outlier removal phase, as
shown in Figure 2, utilizing a despike function, and
then submitted to the steps of the empirical equations
and machine learning algorithm. The re-calibration
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of the empirical equations’ parameters by inversion
was made utilizing a reference well from the Norne
field.

Empirical models

The parameters k and B for Gardner’s equation on
its original article, for a P-wave velocity measured
in km/s, and bulk density in g/cm3, are equal to
1.74 and 0.25, respectively. These parameters can
also be obtained by linear regression for other sed-
imentary basins utilizing the least squares method;
nevertheless, the values are generally different. The
parameters A, G, and m for Oloruntobi and Butt
(2019) model II, also known as the modified Gard-
ner’s model, are equal to 1.350, 1.651, and 0.390, re-
spectively. They can also be obtained for other forma-
tions by non-linear regression utilizing the Levenberg-
Marquardt method (Levenberg, 1944; Marquardt,
1963) but the values will also be different from the
original article ones.

Gardner et al. (1974) equation is given by:
po =k [Ve]”, (15)

where py, is the bulk density, Vp is P-wave velocity,
and k is equal to 1.74 and B is equal to 0.25.

By applying the natural logarithm on both sides
of equation 15, a linear equation is obtained. It is now
possible to find a solution for the constants k and B
utilizing the least squares method. Modifying equa-
tion 15 with the natural logarithm and applying to
equation 2, it is obtained:

1 In(Vy1) In(pp1)
1 In(Vpe) In(pp2)
In(k)
- (16)
B
|1 1n(V;lm) i L ln(pbn) i

Now it is possible to get the values of the vector
¢, which is ¢ = [In(k), b] for equation 15 by replacing
each element of equation 16 in equation 5. Consid-
ering that In(k) = ., then it is possible to find the
value of k by applying the exponential function to
both sides k = exp(z,). After these steps, it was pos-
sible to obtain the new values for parameters k and B
utilizing the reference well from the Norne field. As
mentioned earlier, the other equation used was the
Oloruntobi and Butt (2019). This equation was mod-
ified from Gardner’s equation. Mathematically, it is
given by:

b =A[V, +GVg]™. (17)

where Vg, is the shale volume log. The Vg, was calcu-
lated from the gamma-ray (GR) log utilizing Clavier
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et al. (1971) equation:

Vw::17v%38—(ﬂng+07f, (18)
where Igg is the gamma-ray index given by:

GRlog - GRmzn
GRmaac - GRmzn ’

Igr = (19)

Here, the Levenberg-Marquardt algorithm was
utilized for the regularization of the non-linear in-
version of the equation (17) as well as for the reg-
ularization of the weights during the training stage of
the NN models (it will be discussed later). It is im-
portant to point out that, in neural network models,
the Jacobian matrix of regularization is composed of
the partial derivatives of the function concerning the
weights, as shown in equation 24. The Jacobian ma-
trix of the modified Gardner’s model is composed of
the function derivatives for the parameters A, G, and
m:

9p1  9p1  O;

9A  9G om
J=1 : : ; (20)

9pn  9pn  Opn

9A  9G  dm 1,

Opn  Opn 9pn : ol
where 72, F% and 7= are the partial derivatives of

the function with respect to the parameters. When
the parameters k and B from the traditional Gard-
ner’s equation, and also the parameters A, G, and
m, from the modified Gardner’s equation, were cal-
culated by inversion utilizing the first dataset, con-
sisting of well logs from Campos, Norne, Alaska, and
Taranaki Basins, their values were very close to the
ones of their respective original articles. Therefore, a
single well from the Norne field was chosen to be the
reference well.

ANN models

Lv et al. (2017) show that for a NN with two layers,
the ANN architecture will be represented by:

R

S
a? :f2 Zwiifl(zwil,jpj +bzl) + b , (21)
i=1

=1

which was also the one utilized in this work. For it,
wl1 j+ Pjs b} and f! represent the weights, input vector,
bias, and activation function for the hidden layer; R
is the size of the input vector p;, while wii, b2, and
f? represent the weights, bias, and activation func-
tion for the second layer (output layer); a? represents
the network output. The input data might also be a
matrix. However, to establish the matrix multiplica-
tion, the number of columns of the matrix containing
the weights needs to be equal to the number of lines
of the input matrix. This also guarantees that each
weight value is associated with each input value. It
is important to notice in equation 21 that there is

an inner equation similar to equation 13 which rep-
resents the outputs of the first layer. Each of these
elements is multiplied by the weights of the second
layer and then summed, showing that the outputs of
the first layer are inputs of the second layer. The next
steps after the training of the ANN will be validating
and testing. Table 1 shows the total number of sam-
ples from the data utilized for both ANN models and
how they were split: 80 % for training, 10 % for val-
idation, and 10 % for testing. Additional tests were
made with the second dataset containing a well log
from the Penobscot field in Canada which was used
to perform tests on rocks with different lithology, also
called "blind tests".

Table 1: Number of samples for the first and second
ANN models and percentage used for each step.

Model 1 Model 2
Samples | % | Samples | %
Total 69669 100 35034 100
Training 55735 80 24524 80

Validation 6967 10 5255 10
Testing 6967 10 5255 10

The data from the Campos, Norne, and Penob-
scot fields were also used to train and build the sec-
ond neural network model, which was fed with P-wave
velocity (Vp), gamma-ray (GR), and neutron poros-
ity (¢n) logs. It is important to divide the data for
each step of the work. Additional tests were made
with well logs from Norne, Norway, and the Campos
Basin, Brazil.

The logs used as input data for the first ANN
model were the P-wave velocity (Vp), calculated from
the sonic log (DT), and the volume fraction of shale
(Vsn), calculated from the gamma-ray log (GR). In
the case of the second model, the neutron porosity log
(¢n) was added as an input. The input to the first
and second ANN models is a matrix with two lines
(or three lines for the second model) and n rows, with
each line representing a log of Vp and Vi, (and an
additional ¢ log for the second model). Mathemat-
ically this specific architecture is given by:

25 2 o0r 3
o = A Y wiaf | DD wipn ) | 467
i=1 j=1
(22)
k=1,2..n.

The ideal number of neurons on the hidden layer
was reached after several tests that confirmed that
many neurons larger than 25 would overfit the model.
The density log (pp) was used as the target data in
both cases. When the training, validation, and test-
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ing steps were complete, the final values of weights
and biases were stored in a model that will be used
to perform new tests.

Figure 3 shows an example of the well log data
utilized as input for both ANN models as well as
their units of measure. Figure 4 shows the MAT-
LAB NNSTART function User Interface which pro-
vides information such as the algorithm utilized to
train the network, how the data were split, the num-
ber of iterations and validation checks, and the pa-
rameter utilized to improve the performance of the
network training, which was the mean squared error.

Figure 3: Example of the logs used as input for
the ANN models. P-wave velocity and shale volume
fraction (Vi) for the first model, and P-wave veloc-
ity, Gamma ray and Neutron porosity for the second
model.

Figure 4: NNSTART User Interface detailing the
training and performance of the algorithm. Adapted
from Beale et al. (2010).

The Levenberg-Marquardt method was also uti-
lized in the ANN algorithm to optimize the solu-
tion for the weight values. The algorithm utilized for
neural networks is called Levenberg-Marquardt back-
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propagation. Modifying equation 10 for the weight
update gives:

wtt = w! = [37T 4 p1] ' e, (23)

The Jacobian matrix will be:

deq (w) dey (w) L dey (w)
Ow, Owa Own,
Oea(w) des(w) . Oez (w)
J— 81.111 81.112 . al.Un (24)
bex(w) dex(w) . dex(w)
owq Ows own

For the comparison of the empirical equations of
the traditional and modified Gardner models (Gard-
ner et al., 1974; Oloruntobi and Butt, 2019) with both
ANN models that generate the density log, two types
of tests were conducted. The first test consisted of
comparing the MSE of the ANN model with the MSE
of the traditional and modified Gardner equations,
utilizing the original parameter values from the ar-
ticles. The second test consisted of comparing the
ANN model with the traditional and modified Gard-
ner models, in which the parameters were calculated
in a well log from a different field, utilizing linear and
non-linear regression.

RESULTS

The regression fit obtained during the training, val-
idation, and testing steps of the ANN algorithm is
shown in Figure 5. The adjustments of the density
calculated by the empirical equations and the den-
sity obtained by the ANN are depicted in Figure 6a.
The blue curve is the real density, the red curve is
the density calculated by the empirical equation and
the black curve is the density calculated by the ANN
model. Table 2 shows the values of the mean squared
error (MSE) and the Pearson’s Correlation Coeffi-
cient (R) obtained during the training, validation, and
testing steps of the ANN algorithm while creating the
first and the second ANN models.

Table 3 shows the mean squared errors for the
ANN, the empirical models of Gardner et al. (1974)
and Oloruntobi and Butt (2019), while Table 4 shows
the correlation factors for the same data.

For the dataset composed of a well log from Cam-
pos Basin and another from Penobscot field, tests
were performed using the first ANN model. The ad-
justment is shown in Figures 6a and 6b. The mean
squared errors for the different models are displayed
in Table 3. The mean squared error between the real
density and the density calculated by the ANN model
for a Campos Basin well log was 0.0097, while the
mean squared error for the same field but with the
traditional Gardner equation utilizing the parameters
k and B from Gardner et al. (1974) was 0.0147, as
shown in Figure 6a. When the parameters k and B
were calculated on a well log from the Norne field and
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applied to the Campos Basin, the mean squared error
was 0.0260, as shown in Figure 6b.

Figure 7a shows the adjustment for the Penob-
scot field data comparing the ANN model with the
traditional Gardner’s equation. The ANN model
had a mean squared error of 0.0074 while the tra-
ditional Gardner’s equation had a mean squared er-
ror of 0.0105. When the parameters k and B were
calculated on the Norne field, Gardner’s equation
performed worse, showing a mean squared error of
0.0254, which is also greater than the error presented
by the ANN. The adjustment is shown in Figure 7b.

Figure 5: Example of a regression fit during training,
validation and testing.

Table 2: Number of samples, Mean Squared Error and
Pearson’s Correlation Coefficient R for both ANN
models.

Model 1
Samples MSE R
Training 55735 | 0.00421 | 0.86092
Validation 6967 0.00413 | 0.86487
Testing 6967 0.00438 | 0.85900
Model 2
Samples MSE R
Training 24524 | 0.00455 | 0.8874
Validation 5255 0.00492 | 0.8800
Testing 5255 0.00430 | 0.8958

Table 3: Mean Squared Error (MSE) for well data
from the Campos Basin and for a well from the Penob-
scot field. A.V. refers to the parameter values from
their respective original article while INV refers to the
parameters calculated by inversion in a Norne field
dataset.

MSE
MSE
Model (Penobscot
(Campos Basin)
Basin)
Traditional
0.0147 0.0105
Gardner (A.V.)
Modified
0.0209 0.0105
Gardner (A.V.)
Traditional
0.0260 0.0254
Gardner (INV)
Modified
0.0355 0.0099
Gardner (INV)
ANN 0.0097 0.0074

Table 4: Pearson’s Correlation Coefficient (R) for
well data from the Campos Basin and for a well from
the Penobscot field. A.V. refers to the parameter val-
ues from their respective original article while INV
refers to the parameters calculated by inversion in a
Norne field dataset.

MSE
MSE
Model (Penobscot
(Campos Basin)
Basin)
Traditional
0.89 0.72
Gardner (A.V.)
Modified
0.84 0.64
Gardner (A.V.)
Traditional
0.87 0.72
Gardner (INV)
Modified
0.29 0.63
Gardner (INV)
ANN 0.92 0.74
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(a) Traditional Gardner (A.V.).

(b) Traditional Gardner (INV).

Figure 6: Comparison between the fit of the density
log constructed with the ANN and the traditional
Gardner model. (a) It is the comparison of the Gard-
ner model with its original article parameter values
(A.V.), represented by the red curve on the plot, and
the density log constructed by the ANN model (black
curve). (b) It is the comparison of the Gardner model
with its parameter values calculated in a Norne field
well log by inversion (INV), represented by the red
curve on the plot, and the density log constructed by
the ANN model (black curve). Both are applied in a
Campos Basin dataset.

Braz. J. Geophys., 40, 2, 2022

(a) Traditional Gardner (A.V.).

(b) Traditional Gardner (INV).

Figure 7: Comparison between the fit of the density
log constructed with the ANN and the traditional
Gardner model. (a) It is the comparison of the Gard-
ner model with its article parameter values (A.V.),
represented by the red curve on the plot, and the den-
sity log constructed by the ANN model (black curve).
(b) It is a comparison of the Gardner model with its
parameter values calculated in a Norne field well log
by inversion (INV), represented on the plot by the red
curve, and the density log constructed by the ANN
model (black curve). Both are applied in the Penob-
scot dataset.
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Similar tests were conducted comparing the mod-
ified Gardner’s equation with Oloruntobi and Butt
(2019). The mean squared error was 0.0209 for the
modified Gardner in a Campos Basin well log uti-
lizing the parameters A, G, and m from Oloruntobi
and Butt (2019). The parameters were calculated
by non-linear regression from Norne field data. The
mean squared error was 0.0355. Both results showed
a larger error compared to the ANN model, which
was 0.0097. These results are shown in Table 3. The
correlation factors are displayed in Table 4 and Fig-
ures 8a and 8b show the adjusted curves and relative
errors.

When the modified Gardner equation was applied
to the Penobscot dataset utilizing the original param-
eters from the article, the mean squared error was
0.0105, while the parameters calculated by non-linear
regression on a well log from Norne showed a mean
squared error of 0.0099. Both errors were larger than
the ANN model error, which was 0.0074. Figures 9a
and 9b show the fits of the ANN and the empirical
equations and their respective relative errors.

Figures 10a and 10b compare the empirical equa-
tions of Gardner et al. (1974) and of Oloruntobi and
Butt (2019) with the second ANN model, which was
trained with the P-wave velocity (Vp), gamma-ray
(GR), and neutron porosity (¢x) logs as input. The
training data consisted of logs from the Norne, Penob-
scot, and Campos fields, and the ANN model was
tested in a well from a different area of the Cam-
pos Basin. The ANN model presented a smaller
MSE (mean squared error) and a smaller RMSE (root
mean squared error), although these values were very
close to the ones presented by the traditional Gard-
ner model, as Table 5 shows. The modified Gardner
model presented a larger error for this well log. The
correlation factor (R) was closer to one for the ANN
model, as Table 5 shows.

Table 5: MSE, RMSE and R values for the sec-
ond ANN, the traditional Gardner, and the Modified
Gardner models applied in a well log from the Cam-
pos Basin.

Model MSE | RMSE | R
Second ANN 0.01001 0.10 | 0.73
Traditional Gardner | 0.0105 | 0.1026 | 0.67
Modified Gardner 0.0263 | 0.1622 | 0.57

(a) Modified Gardner (A.V.).

(b) Modified Gardner (INV).

Figure 8: Comparison between the fit of the density
log constructed with the ANN and the modified Gard-
ner model. (a) Here, it is the comparison of the mod-
ified Gardner model with its article parameter values
(A.V.) represented by the red curve on the plot, and
the density log constructed by the ANN model (black
curve). (b) Here, it is the comparison of the mod-
ified Gardner model with its parameter values cal-
culated in a Norne field well log by inversion (INV)
represented by the red curve on the plot, and the den-
sity log constructed by the ANN model (black curve).
Both are applied in a Campos Basin dataset.
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(a) Modified Gardner (A.V.).

(b) Modified Gardner (INV).

Figure 9: Comparison between the fit of the density
log constructed with the ANN and the modified Gard-
ner model. (a) It Compares the modified Gardner
model with its article parameter values (A.V.), repre-
sented by the red curve on the plot, to the density log
constructed by the ANN model (black curve).(b) It
is a comparison of the modified Gardner model with
its parameter values calculated in a Norne field well
log by inversion (INV), represented on the plot by
the red curve, and the density log constructed by the
ANN model (black curve). Both are applied in the
Penobscot dataset.
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(b) Modified Gardner (A.V.).

Figure 10: Comparison between the fit of the den-
sity log constructed with the ANN and the traditional
Gardner model. (a) Compares the traditional Gard-
ner model with its article parameter values (A.V.),
represented by the red curve on the plot with the
density log constructed by the second ANN model
(black curve). (b) It is the comparison of the modi-
fied Gardner model with its article parameter values
(A.V.), represented by the red curve on the plot, and
the density log constructed by the second ANN model
(black curve). Both are applied in the Campos Basin
dataset.
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DISCUSSION

The original parameter values utilized in the empiri-
cal equations of Gardner et al. (1974) and of Olorun-
tobi and Butt (2019) were very close to the values
obtained by linear and non-linear regression for the
first dataset in this work that contains geologic infor-
mation from very distinct sedimentary basins. How-
ever, both ANN models created in this work, tested
with the same geologic data, showed smaller MSE val-
ues and correlation factor values closer to one. The
empirical equations of Gardner et al. (1974) and of
Oloruntobi and Butt (2019) had a good performance
on constructing the density log by presenting a low
MSE and a high Pearson’s Correlation Coefficient.
Nevertheless, when the equation parameters were ob-
tained utilizing linear and non-linear inversion for a
reference well from the Norne field data, the errors
increased significantly, showing that the article pa-
rameters are a better option for the calculation.

It was possible to observe that, utilizing the equa-
tion of Oloruntobi and Butt (2019) with the parame-
ters obtained by inversion in a Norne field well log, a
good adjustment was presented when applied in the
Penobscot field data, which might indicate that both
fields have similar lithology composed of shaly rocks.
For the comparison of the first ANN model with the
empirical models on the Penobscot data, it is possi-
ble to observe in Figures 7b and 9a that, in depths
ranging from 300 m to 650 m, the ANN model makes
a much better adjustment with the real density curve
than the empirical models; from 650 m to 1000 m,
the ANN density and the modified Gardner density
are close. However, it is possible to observe in the fig-
ure that the RE of the ANN model is close to zero
while the RE of the modified Gardner (MG) model is
closer to 10%.

For the Campos Basin well log, utilized on the
tests for the comparison of the empirical models with
the first ANN model, shown in Figures 6a and 8a, it
is possible to observe that, from depths between 3095
m and 3110 m, the traditional Gardner and the ANN
model do not make a good adjustment compared to
the modified Gardner model, which might indicate a
very shaly formation or a washout. However, for the
rest of the well, for depths from 3110 m to 3150 m, for
example, the ANN model makes a better adjustment
than both empirical models.

(b)

Figure 11: (a) Comparison of the fit of the density
log constructed with a third ANN model with the Vp,
Vin, and ¢ logs, as input data (red curve), and the
measured density log (blue curve). Here, the train-
ing and application were made using the data from
the Campos Basin. (b) A comparison of the fit of the
density log constructed with a third ANN model with
the Vp, Vih, phiy, and ILD logs as input data (red
curve), and the measured density log (blue curve).
Here, the training and application of the data from
the Campos Basin were also made.
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The second ANN model was fed with less well log
data, due to a lack of clean neutron porosity logs
which were used as input; nevertheless, the second
model also presented smaller MSE and RMSE com-
pared to the empirical models and the R values were
also closer to one. The performance of the second
ANN model can be observed in Figures 10a and 10b,
from depths equal to 2980 m to 3020 m, and from 3060
m to 3080 m. An additional ANN model was created
using as input logs the P-wave velocity (Vp), the shale
volume fraction (Vyp,), and the neutron porosity (¢n)
with data from the Campos Basin utilized for train-
ing. The results for this simple ANN model are shown
in Figure 11a. The MSE was equal to 0.01.

Figure 11b shows the results for a fourth ANN
model very similar to the previous one but with a dif-
ferent additional resistivity (ILD) log. The MSE was
equal to 0.006. Comparing the results from Figures
11a and 11D, it is possible to conclude that, by adding
more log information to the training dataset, the er-
ror decreases and the model gets more accurate.

CONCLUSION

When compared to empirical models, both ANN mod-
els had a better match for density log estimation,
with reduced mean squared errors, root mean squared
errors, relative errors, and higher Pearson’s Corre-
lation Coefficient. Our findings suggest that using
ANN regression models to determine the density log
for a wide range of sedimentary lithologies is a viable
choice.

The adjustment of the ANN models does not fit
the real density log in some regions of the wells due
to several different geologic and tectonic factors, such
as washout and mud filtrate, which affect the bulk
density measurement and, consequently, the density
adjustment of both empirical and ANN models. Nev-
ertheless, as mentioned before, the statistical anal-
ysis showed that the ANN models outperform the
empirical models on the wells where they were ap-
plied. On the comparison between the two empir-
ical models, it was observed that there are some
shaly formations where the modified Gardner model
of Oloruntobi and Butt (2019) outperforms the tradi-
tional model of Gardner et al. (1974); however, both
models presented good adjustments.

The two-layer neural networks constructed with
25 neurons on the first layer presented satisfactory
results. For further studies, an ANN model might
present an even better performance than the ones
obtained in this work with a larger number of hid-
den layers on the ANN training algorithm and with
a larger training dataset containing multiple well log
data as input, such as caliper, electroresistivity, per-
meability, and many others, although it would greatly
increase the computation time. It is something worth
testing in future works.
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