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ABSTRACT. We conducted a comparative study of time-lapse full-waveform inversion (time-lapse FWI)
strategies, considering a typical deep-water Brazilian pre-salt setting. This study employed a realistic P-wave
model, ocean bottom nodes (OBN) acquisition, noisy data, and a Gaussian anomaly to represent time-lapse
model changes. We evaluated the four most commonly used time-lapse FWI schemes. In the first, known as
parallel time-lapse FWI, two independent FWI processes are performed from the same initial model, utilizing
baseline and monitor datasets. In the second strategy, namely sequential time-lapse FWI, the retrieved baseline
model serves as the starting model for inverting monitor data. In both cases, the time-lapse model is derived
by subtracting the retrieved baseline model from the retrieved monitor model. The remaining two methods
were double-difference and central-difference time-lapse FWI. Our findings demonstrate that all these schemes
can detect model variations of 3%. Remarkably, the central-difference time-lapse FWI method demonstrated
superior accuracy in producing time-lapse models and, as such, presents itself as a promising strategy for
implementation in time-lapse studies within Brazilian pre-salt regions.

Keywords: Time-lapse FWI; Brazilian pre-salt; ocean bottom nodes (OBN); Central-difference FWI; Seismic
reservoirs

INTRODUCTION Time-lapse approaches operate under the premise
that features within the target area exhibit more sig-
nificant variations from one seismic acquisition to an-
other when contrasted with the surrounding region.
Within this context, alterations in the overburden
are obtained by analyzing the disparities among each
survey conducted in the time-lapse domain. This ap-
proach is grounded in the reliable assumption that ge-
ological attributes, which remain constant over time
and contribute to the seismic image, including fac-
tors like lithology, porosity,and shale content, tend to
cancel out. Consequently, the remaining changes ob-
served (time-lapse model) are primarily associated to
the time-varying dynamic properties associated with,
for instance, fluid flows. These dynamic properties
encompass alterations in fluid saturation and pore
pressure, which are crucial factors to monitor and

Characterizing and monitoring reservoirs are vital in
strategically planning oil and gas production opera-
tions. Time-lapse studies serve as a critical tool for
discerning nuanced variations within seismic reservoir
properties (Sambo et al., 2020). These variations can
be attributed to many factors, including the dynamic
processes associated with fluid injection and extrac-
tion. Time-lapse investigations delve into the meticu-
lous analysis of geophysical data acquired through two
or more distinct seismic surveys conducted at varying
temporal intervals within the same geographical area
(Lumley, 2001). Through these comparative exami-
nations, geoscientists can understand how subsurface
physical properties evolve over time, enabling them
to optimize production strategies, enhance hydrocar-

bon recovery and make informed decisions regarding
reservoir management and environmental impact as-
sessments (Nguyen et al., 2015; Cardoso et al., 2022).

understand when evaluating the subsurface environ-
ment.
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However, the issue of non-repeatability (NR)
can introduce a significant challenge in obtaining
suitable time-lapse models (Borges et al., 2021).
NR issues can cause false time-lapse anomalies,
which may be mistakenly interpreted as alter-
ations in the physical characteristics of the subsur-
face (Zhou and Lumley, 2021b). To address this
challenge, the deployment of ocean bottom node
(OBN) surveys has gained prominence, representing
a practical solution to mitigate NR errors (Yang
et al., 2016). This shift towards OBN surveys has
been driven by the inherent difficulties associated
with streamer surveys in managing NR, azimuth
illumination, fold and longer offset concerns Cypri-
ano et al. (2019). A case in point is the Tupi
Nodes pilot project, a study conducted by Cruz
et al. (2021), which underscores the advantages
of OBN technology in the context of deep-water
Brazilian pre-salt reservoirs. The Tupi Nodes pi-
lot project demonstrated a highly favorable time-
lapse response by leveraging full-waveform inver-
sion (FWI) (Virieux and Operto, 2009) as an inte-
gral component of the time-lapse seismic process-
ing toolkit. FWI enables precise estimation of rock
property changes (Warner et al., 2013; Gorszczyk
et al., 2021; da Silva et al, 2024), such as P-
wave velocity alterations, further enhancing subsur-
face analysis accuracy in dynamic geological envi-
ronments. Consequently, operating the FWI tech-
nique to analyze OBN data can yield significantly
more precise subsurface models.

This work essays a comprehensive comparative
analysis of time-lapse FWI methodologies within
the context of a typical deep-water Brazilian pre-
salt geological setting. Specifically, we consider an
OBN acquisition geometry to determine the most
effective time-lapse FWI seismic monitoring tech-
nique for identifying changes in the properties of
ultra-deep reservoirs while contending with noisy
data. It is important to emphasize that, owing to
the inherent nonlinear characteristics of FWI, our
investigation also delves into the nonlinear artifacts
introduced by the data inversion process. These
artifacts can introduce subsurface model changes
unrelated to reservoir variations, as highlighted in
prior researches (Yang et al., 2015; Zhou and Lum-
ley, 2021b; da Silva et al., 2023). The choice to
employ FWI is rooted in its standing as a robust
seismic inversion method that leverages the com-
prehensive physical principles embedded within a
wave equation (Virieux and Operto, 2009). From
a practical standpoint, FWI is usually formulated
as a local optimization problem, where the primary
objective is to minimize the sum of squared differ-
ences between the modeled data (derived from the
wave equation solution) and the observed seismic
data (Fichtner, 2010). Utilizing the entire wave-
forms, rather than solely travel times or ampli-
tudes, enables a comprehensive evaluation of the
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propagation of waves that illuminate the subsur-
face.

Time-lapse seismic methodologies entail the im-
plementation of two distinct seismic surveys within
the same geographical area. In the initial survey,
known as the baseline data acquisition, baseline
data is recorded, while the follow-up surveys record
monitor data. In this work we explore the applica-
bility of the four most widely employed time-lapse
FWI strategies, considering one monitor data ac-
quisition. The first strategy, parallel time-lapse FWI
(Lumley, 2001), consists of conducting two inde-
pendent FWI processes starting from the same ini-
tial model. The baseline and monitor models are
constructed using the respective baseline and moni-
tor data sets. The time-lapse model is subsequently
ascertained by subtracting the retrieved baseline
model from the retrieved monitor model. In the
second strategy, sequential time-lapse FWI (Routh
et al., 2012), the retrieved baseline model serves as
the starting point for inverting the monitor data.
The time-lapse changes are calculated by subtract-
ing the retrieved baseline model from the new re-
trieved monitor model obtained through the inver-
sion of the monitor data. In the third time-lapse
FWI approach, double-difference time-lapse FWI
(DDWI) (Yang et al., 2015), the retrieved baseline
model serves as the initial model for inverting the
difference between the baseline and monitor data
sets. The time-lapse changes are derived by sub-
tracting the retrieved baseline model from the new
model acquired through this inversion process. Fi-
nally, in the fourth time-lapse FWI approach con-
sidered in this work, central-difference time-lapse
FWI (CFWI) (Zhou and Lumley, 2021a), the re-
trieved baseline and monitor models are employed
as initial models for a new FWI application. In
particular, the retrieved baseline model is used as
the starting model for inverting the monitor model,
producing a second monitor model. Simultaneously,
the retrieved monitor model is employed as the ini-
tial model for inverting the baseline data, creating
a second baseline model. The resulting time-lapse
model is then computed by subtracting the arith-
metic mean of the baseline models from the arith-
metic mean of the monitor models.

The structure of this work is as follows: in the
subsequent section we briefly present the main in-
gredients of FWI and the time-lapse schemes em-
ployed in this work. Then, in the numerical ex-
periments section, we present our implementation
of a 2D acoustic FWI in the time-domain employ-
ing a finite difference computational algorithm. No-
tably, our focus is examining the sensitivity of the
aforementioned time-lapse methodologies employing
FWI and OBN. Finally, in the last section, we dis-
cuss and present our concluding remarks, outlining
the best time-lapse strategies and prospects for fu-
ture research endeavors.
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METHODS
Full-waveform inversion (FWTI)

Full-waveform inversion (FWI) is a powerful tech-
nique that aims to retrieve a high-resolution sub-
surface model iteratively (Virieux and Operto,
2009). In this approach, an initial model is con-
sidered and seismic waveforms are modeled based
on this model by numerically solving a wave equa-
tion. In this work we assume the premise that
the following acoustic wave equation describes the
wavefields:

1 0?%ps(Z,t)

2 ¥ —_
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= fs(@s,1), (1)

where ps; denotes the modeled wavefield; m repre-
sents the P-wave velocities (model parameters) to
be estimated; and fi(Zs,t) is a seismic source s
fired at the position & = Zs, with £ and 0 <t <
T representing, respectively, the spatial coordinate
and the time; 7' is the maximum recording time.

Then, these synthetic waveforms (modeled data)
are compared with the observed data through an
objective function ¢ (Fichtner, 2010). In this work
we consider a classical time-domain FWI, in which
the objective function is defined as:

- ;Z /0 ! (rwps(m,t) - ds,r(t))th, (2)

where I's ,ps and d,, represent modeled and ob-
served data, respectively, in which I';, is an ex-
tracting operator onto the receiver r of the source
s (da Silva et al., 2020).

Due to the FWI non-linearity, model recovery is
performed iteratively (Virieux and Operto, 2009).
In this work we consider a Fletcher-Reeves non-
linear conjugate gradient method (see, for exam-
ple, Nocedal and Wright (2006)) to solve the FWI
problem. We chose to use this nonlinear conju-
gate gradient algorithm because it has been shown
to work well when analyzing real data from the
pre-salt region of Brazil, as recently presented by
da Silva et al. (2024). This optimization method
involves updating the subsurface model by mini-
mizing an objective function ¢ in the following
way:

7Nitera
(3)
where Ny, represents the maximum number of

FWI iterations; a; > 0 denotes the step size No-
cedal and Wright (2006); and

mip1 = m; —a; h(m;), for i=0,1,2,---

vm¢(m0) ) Zf 1=0
h(mi) = § Vimd(mi) + ¢(mg)h(mi—1), (4)
for i = 1,2, , Niter

is the descent direction; V,,¢(m) denotes the gra-
dient of the objective function; and

Vnd(m) (Vnd(mi) = V(i)
Vind(mi—1)Vimé(mi—1) .

We compute the gradient of the objective
function efficiently by applying the adjoint-state
method (see, for instance, Plessix (2006)). In this
regard, the gradient is obtained by cross-correlating
the wavefield ps; with the adjoint-wavefield g,
given by (Lailly, 1983):

X[

in which the adjoint-wavefield is obtained by solv-
ing

¢(mi) =

8 Ds (m t)

—gz a4t (6)
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which is the adjoint-state wave equation, where f
denotes the transpose.

Time-lapse FWI strategies

In this section we present the time-lapse FWI
frameworks considered in this work. Time-lapse
analyses involve the conduction of two distinct seis-
mic surveys operated within the same geographic
region but at varying time intervals. The initial
survey yields what we term as the baseline data,
denoted as d,, while the subsequent survey cap-
tures the monitor data, labeled as d,,. For a con-
cise notation, we adopt the expression ém to rep-
resent the retrieved time-lapse model.

In this work we explore four distinct time-lapse
FWI schemes:

(i) Scheme I: In the first scheme, also known as
the parallel time-lapse FWI (Lumley, 2001),
we perform two independent FWI procedures
from the same initial model, denoted as mg,
where the baseline and monitor seismic data
are utilized in these detached inversions. The
resulting time-lapse model is derived by sub-

tracting the retrieved baseline model, my,
from the retrieved monitor model, m,,, de-
noted as:

OMpar = My, — Mp. (8)
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(ii) Scheme II: In the second scheme, also
known as the sequential time-lapse FWI
(Routh et al., 2012), we start by obtaining
the baseline model, m;, inverting the base-
line data, dp, by starting from the initial
model mg. Subsequently, a new FWI is con-
ducted, inverting the monitor data d,, by us-
ing the retrieved baseline model m; as the
initial model. The resulting time-lapse model
is obtained from

5mseq - m;n — My, (9)

where m/, represents the retrieved monitor
model when initiated from mg.

(iii) Scheme III: In the third scheme, also
known as the double-difference time-lapse
FWI (DDWI) (Yang et al., 2015), we first
obtain the baseline model, m;, inverting the
baseline data, dp, from the initial model
mo. Subsequently, a new FWI is con-
ducted, starting from the retrieved baseline
model my and inverting the difference be-
tween the double-difference: dd(mgq,t) =
[Fs,rpsb(mbat) - Fs,rpsdd] - [db(t) - dm(t)]v
where ' ,ps, (mp,t) and Ty ,ps,,(Mmaq,t) are
the modeled data from the retrieved base-
line model, mp, and the model mgyq to be re-
constructed, respectively. The resulting time-
lapse model is then obtained through

dMdq = Mdd — Mp, (10)

with mgq representing the resulting model
from the inversion of the observed data differ-
ence, dy(t) — d,(t), to the modeled data dif-
ference, I's ,ps, (Mmp,t) —T's 1 ps,,, starting from
the model my.

(iv) Scheme IV: In the last scheme, also known
as the central-difference time-lapse FWI (Zhou
and Lumley, 2021a), we conduce two indepen-
dent FWI processes starting from the model
myg, using the baseline and monitor seismic
data to retrieve the baseline m; and mon-
itor m,, models, in a manner akin to the
parallel time-lapse FWI strategy. This is the
first step. The second step also involves two
FWI procedures, closely resembling the se-
quential time-lapse FWI strategy, with one
using the monitor data d, and initiating
from m; to establish a new monitor model
m! . The other utilizes the baseline data
dy and starting from m,, to generate a new
base model mj. Then, the resulting time-
lapse model is obtained from the average
of the differences between the monitor and
baseline models from both steps, specifically
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Figure 1 provides a graphical representation
summarizing these time-lapse strategies, shedding
a comprehensive understanding of the workflows of
these time-lapse FWI schemes.

Initial Model
my
FWI, FWI,
&m
(scheme II1)
6m(5cheme 1)
my m, Mgy
FWigy
FWlm am(schemell)

Figure 1: Inversion workflow. Starting from the
initial model mg, we obtain m; and m,,. From
my, we then recover mgq and m/,. Here, FWI
stands for a time-invariant FWI while the FWI
subscripts refer to the observed data used, with
m representing the monitor; b, the baseline; and
dd, the observed data difference d,, — dp used in
the Double-Difference Waveform Inversion.

NUMERICAL EXPERIMENTS

In order to conduct a comparative assessment of
the time-lapse FWI schemes, we consider a real-
istic Brazilian pre-salt P-wave velocity model, as
initially modified from Karsou (2020), which is de-
picted in Figure 2a. This model encompasses a
geological structure featuring a deep-water layer,
with an average depth of 2km, underlying post-
salt marine shales and rock layers, a substantial
salt body, a pre-salt oil reservoir and bedrock be-
low. We discretize this P-wave model into a reg-
ular grid comprising 840 x 280 points, with each
cell measuring 25 x 25m. We adopt an OBN ge-
ometry for data acquisition in all numerical experi-
ments. This geometry comprises 23 nodes situated
on the ocean floor, spaced at intervals of 400m
(indicated by white triangles in Figure 2a), along
with 257 seismic sources positioned at a depth of
10m (marked by the green line in Figure 2a) and
separated by 50m apart. The seismic source em-
ployed was a Ricker wavelet with a peak frequency
of 5Hz. We set to 7s the acquisition time.



BEZERRA ET AL. D

Using the P-wave model presented in Figure
2a, we generate the baseline data set d, by em-
ploying the 2D time-domain acoustic wave equa-
tion (1). Subsequently, we introduce Gaussian
noise with a signal-to-noise ratio (SNR) of 10dB
to mimic real-world conditions. Moreover, we per-
turb the baseline model by introducing a bivari-
ate Gaussian anomaly to construct the monitor
model, as depicted in Figure 2c. In this context,
we simulate a time-lapse model featuring a maxi-
mum P-wave velocity reduction of 3% at the reser-
voir level. While the differences between the mon-
itor and baseline true models might not be readily
discernible to the naked eye, denoting it as the
true time-lapse model. With the monitor model
in place, we then generate the monitor data d,,
using the 2D time-domain acoustic wave equation
(1) and subsequently apply Gaussian noise with an
SNR of 10dB. In Figure 3, Panels (a) and (b) de-
pict receiver-gathers corresponding to the first node
from the baseline and monitor models, respectively,
while Panel (c) highlights the difference between
these seismograms.

To solve the FWI problem, we consider a scal-
ing factor of 0.05, following the recommendation by
Kohn (2011). We set the stopping criterion for our
numerical simulations at 50 iterations. To avoid
drastic effects caused by cycle-skipping issues (Hu
et al., 2018), we consider that the initial model mg
was well determined from a kinetic point of view.
In particular, we generate the initial model mg by
smoothing the true model (Figure 2a) with a Gaus-
sian operator with a standard deviation of 250m.
The model mg is depicted in Figure 2b. Figure
4 shows the retrieved FWI models. The FWI re-
sults exhibit remarkable similarity; thus, the mini-
mal dissimilarities are only discernible in the time-
lapse domain. Figure 5 shows the resulting time-
lapse models associated with the four time-lapse
FWI schemes. Within this visual representation, a
notable observation emerges regarding Scheme II,
where the resulting time-lapse model is predomi-
nantly marked by artifacts throughout the model,
as showcased in Figure 5b. Unfortunately, this out-
come falls short of expectations, as it deviates sig-
nificantly from the true time-lapse model (Figure
2c). Scheme III also exhibits several artifacts, al-
beit on a smaller scale, particularly near the upper
regions of the salt layer. In contrast, Scheme I and
Scheme IV demonstrate a more effective mitigation
of the time-lapse noises from the ocean floor and
the uppermost salt layer. Furthermore, it is cru-
cial to recognize that, within Scheme I and Scheme
IV, certain artifacts do exist; however, their pres-
ence is unrelated to geological structures, as seen in
Scheme II and Scheme III. Instead, these artifacts
are primarily associated with noise in the central
portion of the model, spanning distances between
5 and 15 km, and mark the wavepaths at the ex-

tremeties of the model where seismic illumination
is practically absent.

Figure 6 shows P-wave vertical-velocity profiles
depicting model changes arising from the time-lapse
FWI schemes against the true time-lapse model
represented by the black curve. These profiles are
observed at distinct distances: 10.25km, 10.50km
(the central region of the Gaussian anomaly) and
10.75km. All the schemes can detect time-lapse
changes within the pre-salt reservoir. Neverthe-
less, Scheme II exhibits heightened discrepancies
when evaluating regions beyond the primary target
area. This is evident from larger amplitude vari-
ations around dm = 0, which suggests pronounced
errors relative to Schemes I, III and IV. Further-
more, Scheme II appears to overreach in estimat-
ing time-lapse changes, as indicated by the purple
curve. On a brighter note, the efficacy of Schemes
I IIT and IV is highlighted by their adeptness
at identifying the time-lapse changes, particularly
within depths ranging from 5.5 to 6.0 km. Notably,
Scheme IV outperforms the rest in its remarkable
precision within the area of peak seismic illumina-
tion (central segment of the P-wave model). This
prowess is noted through the almost perfect align-
ment of the blue curve (representing Scheme IV)
with the benchmark black curve in the pre-salt do-
main, as showcased in Figure 6(b).

CONCLUSIONS

In this work we have compared the most used
time-lapse  FWI methodologies in the literature,
drawing inspiration from the challenging ultra-deep
reservoirs from the Brazilian pre-salt oil region.
Our findings have unveiled the potentialities and
difficulties of these time-lapse strategies in detect-
ing subtle changes in P-wave velocity within a typ-
ical Brazilian pre-salt oil reservoir, all while utiliz-
ing cutting-edge OBN technology. Importantly, it
is worth noting that the inversion artifacts exhib-
ited distinctive behaviors across the various time-
lapse FWI schemes we investigated.

Within the Brazilian pre-salt case study,
Scheme I (parallel time-lapse FWI) and Scheme IV
(central-difference time-lapse FWI) have emerged
as promising strategies, providing robust and ac-
curate time-lapse responses, even when analyzing
noisy data. These two strategies have effectively
represented the expected time-lapse model changes,
as depicted in Figure 5. On the other hand,
while yielding satisfactory results, Scheme III has
shown a tendency to introduce significant artifacts
at the top of the salt layer. These artifacts,
while intriguing, could potentially lead to mislead-
ing geophysical interpretations. Scheme II, how-
ever, has presented some limitations, as it intro-
duces time-lapse changes across the entire P-wave
model, not solely related to reservoir production.
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This scheme led to a higher incidence of changes in
the overburden and possibly spurious correlations
linked to noise. From a computational perspective,
the complexity of these schemes is intricately re-
lated to the number of inversions conducted within
each proposed workflow. Scheme I, Scheme II and
Scheme III exhibit comparable computational ef-
forts, with the additional misfit data in Scheme
III constituting a computationally trivial aspect.
Conversely, Scheme IV entails two extra inversions
compared to the previous schemes, necessitating
more substantial computational resources.

Our future endeavors are poised to explore
the resilience of these four strategies concerning
non-repeatability (NR) effects, encompassing fac-
tors such as water velocity variations and errors
in shot-receiver positioning. Furthermore, we aim
to model the complexities of wave physics, incor-
porating effects related to density and shear veloc-
ity. These endeavors will undoubtedly contribute
to a more comprehensive understanding of time-
lapse FWI methodologies and their adaptability in
challenging geological settings.
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