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ABSTRACT. Non-repeatability is one of the main obstacles in time-lapse seismic, as it significantly degrades
the interpretation of reservoir-related signals. Correcting the data variations caused by non-repeatability (4D
noise) is of paramount importance, which usually requires the estimation of the changing parameter. In this
paper, we propose a Machine Learning (ML) workflow for the quantitative estimation of two types of 4D noise:
changes in the acoustic velocity in water and receiver lateral positions. A synthetic database, modeled from
a velocity model estimated from the Brazilian pre-salt and containing many time-lapse seismic surveys, was
generated for the supervised training of ML models. The input samples consisted of subsets of common-shot
seismograms. We studied many combinations of ML regression algorithms and feature extraction techniques for
scenarios where data are contaminated, or not, with Gaussian random noise. The regression algorithms consid-
ered were Fully-Connected Neural Network, Extreme Gradient Boosting and Bayesian Ridge. Four rectangular
crops of the common-shot seismogram were tested as input features: full seismogram, first half of time samples,
11 smallest-offset traces and the time samples focusing on the region of first arrivals. The combination with
the best trade-o between accuracy and model complexity is the Bayesian Ridge fed with the 11 smallest-offset
traces, which estimated position and velocity time-lapse changes with median accuracy of 0.115 m and 0.017
m/s for the case with Gaussian noise. Besides the correction of repeatability-related variations, our results are
useful in the 4D Full-Waveform Inversion which needs accurate parameters to produce good seismic images.

Keywords: 4D seismic; non-repeatability noise; neural network; XGBoost; Bayesian Ridge.

INTRODUCTION

Time-lapse seismic, the state-of-the-art technology for
oil and gas reservoir monitoring, consists of taking
successive seismic surveys in the same geographic re-
gion over time (Johnston, 2013). The first survey,
called the baseline, is typically performed before ex-
ploration. After production starts, additional surveys
(monitors) are taken every several months to a few
years. By analyzing the differences in seismic data
across surveys, it is possible to infer the changes in the
reservoir over time due to fluid substitution (Nguyen
et al., 2015).

In the ideal case, the differences in the seismic
data from one survey to the other are related only to
reservoir changes (production-related) during the cor-
responding time period. However, the seismic signa-
ture is also influenced by other factors, which in prac-
tice are not exactly replicated across the surveys. The
mismatch of such factors is called non-repeatability,
and the resulting data differences (not related to the
reservoir) are termed 4D noise.

In marine seismic, the major non-repeatability
factors are the changes of sound velocity in seawa-
ter, mispositioning of sources and receivers and tidal
variations (Nguyen et al., 2015; Borges et al., 2022).
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2 ESTIMATION OF NON-REPEATABILITY NOISES WITH ML

Seawater velocity varies continuously and is influ-
enced primarily by temperature and water salinity
(Carvill, 2009). Also, GPS inaccuracies, ocean cur-
rents and weather conditions hinder the replication
of the positioning of sources and receivers across sur-
veys (Bertrand and MacBeth, 2005).

Non-repeatability effects significantly degrade 4D
seismic signals (Bertrand and MacBeth, 2005; Rit-
ter, 2010). If not properly treated, those effects
corrupt data and may lead to false indications of
the sea bottom structure and reservoir properties.
As a consequence, important tasks such as stacking,
depth migration, imaging and inversion are also af-
fected (MacKay et al., 2003; Ritter, 2010). To miti-
gate these issues, one must correct the variations in-
troduced by the non-repeatability effects in the seis-
mic data during the processing, which usually requires
a direct or indirect measure of the causing variable
(e.g., water velocity) (MacKay et al., 2003; Amini
et al., 2016). An indirect measure of water veloc-
ity, for example, would be calculating the associated
time shifts in the signal.

In the literature, there are a number of papers
about estimating non-repeatability noise and/or cor-
recting its effects. These works usually focus on wa-
ter velocity and, to a lesser degree, tidal variations.
Among the many estimation methods in the litera-
ture, we can mention those based on the direct mea-
surement of velocity and height of the water layer
with instruments (Wang et al., 2015; Bagaini et al.,
2021), tomographic inversion (Ritter, 2010), match-
ing of theoretical and observed direct arrival travel-
times (Amini et al., 2016), and time-differences mini-
mization (MacKay et al., 2003) or time-lapse diffrac-
tion (Osdal and Landrg, 2011) analyses of sea bottom
reflections. Many of the aforementioned methods rely
on the manual picking of key seismic events from the
data, which is a laborious and time-consuming task.
Also, they are built on top of physical assumptions
that may not be satisfied by the seismic data at hand,
limiting their applicability.

Besides using physics-based methods, another op-
tion is to devise data-driven techniques using machine
learning (ML). Machine learning has been increas-
ingly used in geosciences, showing promising results in
many applications (Dramsch, 2020; Yoon et al., 2021;
Shen et al., 2022). Provided that enough represen-
tative data are available, ML-based regression work-
flows have the potential to be applicable to a broader
set of seismic data due to fewer assumptions, while
also dismissing manual pickings.

In this paper, we propose a ML-based method for
the quantitative estimation of two types of 4D noise
that are common in time-lapse marine seismic: the
change in the lateral position of receivers and seawa-
ter velocity. By modeling a set of time-lapse ocean
bottom node (OBN) surveys in deep water, we gen-
erated a synthetic database of common-shot seismo-
grams. To generate these seismic data, we employed a

Braz. J. Geophys., 42, 2, 2024

velocity model estimated from the Brazilian pre-salt.
From each seismogram, relative to a different monitor
survey, a subset of data (features) is extracted for su-
pervised training of the ML models. Many combina-
tions of ML regression algorithms and feature extrac-
tion techniques were tested, considering the scenarios
where data are contaminated or not with Gaussian
noise. The motivation of this work is that accurate
estimates of 4D noise can be used for correcting the
associated variations in the data (Osdal and Landrg,
2011; Wang et al., 2015). Those estimates also have
the potential to improve 4D seismic inversion work-
flows, such as obtaining a more accurate initial veloc-
ity model for the 4D Full-Waveform Inversion (FWI-
4D) technique (Yuan et al., 2019).

METHODOLOGY

We employ ML for performing the regression of two
specific 4D noise parameters: the time-lapse change
in acoustic velocity of seawater, AV, and in receiver
horizontal positions, AX. For simplicity, we assume
that the velocity is homogeneous in the water layer
and that the shift in position is the same for all re-
ceivers.

Seismic modeling

To test the method proposed in this work, we gener-
ated a synthetic database modeling a number of time-
lapse OBN seismic acquisitions in deep water. The
seismic data were generated by solving the following
acoustic wave equation in 2D with a time-domain fi-
nite difference approximation:

1 92
m @ p(X, t) - Vzp(x7 t) = S(t) 5(X - XS)? (1)
where x = (z, z) is the position vector, p(x,t) is the
pressure field and v(x) is the acoustic velocity. The
source term to the right-hand side describes a point
source located at xs, with waveform S(t).

The main parameters of the numerical simulations
are: the time step of 2 ms, the simulated time span
of 10 s, grid cell sizes of 8 m, the 4th order finite-
difference approximation of the Laplacian operator
and, to simulate propagation to infinity at the bor-
ders, 25 layers of absorbing CPML (Convolutional
Perfectly Matched Layer) cells were added around the
analysis domain.

Figure la illustrates the seismic surveys modeled
in the database. The acquisition geometry consists of
1 source and 49 receivers. The source is fixed at the
center of the domain in the horizontal direction and
at 8-meter depth; the receivers are spaced 400 meters
apart from each other along the sea bottom, repro-
ducing an OBN acquisition. The source employed
was a Ricker wavelet with a dominant frequency of 8
Hz. The velocity model used, shown in Figure 1b, is
a simplification of a real-world 2D model estimated
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from Gato do Mato oil field (Silva et al., 2021), lo-
cated in Santos basin, offshore Brazil. The simplified
model was obtained by taking the first column of the
original velocity matrix and replicating it along the
horizontal direction.

The data set is composed of 1 baseline and 1000
monitor shot-gather seismograms, each with 49 traces
and 5000 time samples. The monitor gathers corre-
spond to different possible realizations of the moni-
tor survey that will be effectively taken in the same
region after the baseline. The baseline seismogram
was obtained by modeling a survey with reference val-
ues of receiver positions and water velocity (equal to
1500 m/s). Monitor seismograms were generated by
adding different pairs of (AX, AV perturbations to
the baseline survey model.

The AX and AV values used to model the moni-
tor surveys were obtained from an adaptation of the
empirical distribution of typical 4D noise values re-
ported in (Cypriano et al., 2019). Although the dis-
tribution originally refers to receiver position errors,
some of its statistical properties, namely the range of
variation and median, are compatible with typical ve-
locity time-lapse noise values in the unit of meters per
second. This distribution was truncated to the [0, 5]
range and mirrored around zero to cover the nega-
tive noise values. Then, 1000 error position values
were randomly sampled from this modified distribu-
tion, half positive and half negative. The same was
performed for AV independently. As a result, the val-
ues of each noise type vary within the [—5,5] range,
with median +2 for each sign (unit in meters for AX
and meters per second for AV). Figures lc and 1d
show the histograms of sampled values of each noise

type.

Machine learning strategy

The proposed algorithm employs seismic data to
quantify two types of 4D noise in monitor surveys. As
previously mentioned, the method assumes that the
4D noise affecting the velocity is constant in the entire
water layer and that all receivers are shifted by the
same distance along the X direction. The ML model
receives as input a subset (input type) extracted from
seismic data and outputs the estimated AX and AV
values. To perform this task, we tested many com-
binations of ML regression algorithms and types of
input extracted from seismic data. Those combina-
tions are henceforth called treatments in this paper.

The considered regression techniques are Bayesian
Ridge (Tipping, 2001), Fully-Connected Neural Net-
work (FCNN) (Bishop, 1995) and Extreme Gra-
dient Boosting (XGBoost) (Chen and Guestrin,
2016). Bayesian Ridge is a kernel method similar
to the Gaussian Process regression (Rasmussen and
Williams, 2005); neural networks are universal func-
tion approximators inspired by neural interconnec-
tions in biological brains; and XGBoost combines the

outputs of many decision trees (boosting) to achieve
better estimation performance.

The standard Bayesian Ridge and XGBoost are
univariate regression techniques. To predict the two
noise types, two independent models were trained for
each Bayesian Ridge and XGBoost treatment, one for
estimating AX and the other for AV. For FCNN
treatments, on the other hand, a single neural net-
work was considered for estimating both noise types.

The FCNN considered is a feedforward network
formed of three hidden layers of 128-64-16 neurons,
all using the ReLLU activation function, and 2 neurons
with no activation function in the output layer. The
network was trained for 300 epochs using the RM-
SProp optimizer, with 102 learning rate and MSE
loss function. The XGBoost model is an ensemble
of 50 boosted trees with maximum depth equal to
6, learning rate equal to 0.3 and the L2 regulariza-
tion term on weights equal to 1. As for the main pa-
rameters of the Bayesian Ridge model, the maximum
number of iterations is equal to 200 and the priors
over the target noise variance and over the regular-
ization parameters of the algorithm (Tipping, 2001)
were chosen as the Gamma distribution with shape
and rate parameters equal to 107%. We used the
implementations of neural networks, Bayesian Ridge
and XGBoost algorithms from the libraries Tensor-
Flow/Keras 2.4.1, scikit-learn 1.0.2 and dmlc/xgboost
1.5.1, respectively.

The tested input types are the full shot-gather
seismogram and also three rectangular crops ex-
tracted from it: the first half of time samples (called
“Half seismogram”), the 11 smallest-offset traces and
the “Focus arrivals” input, which is formed by all
traces within the 1.3-1.8 s time range. This last in-
put type focuses on the region of first arrivals of the
smallest-offset traces. Figure 2 illustrates all the in-
put types tested in this work.

We also experimented with contaminating seismic
data with random noise, in order to assess the robust-
ness of the methodology against a kind of disturbance
commonly found in real data. All the combinations of
ML algorithm and input type (treatments) are tested
for two scenarios: seismic signals free of random noise
and seismic data contaminated with additive white
Gaussian noise (AWGN) of 10 dB signal-to-noise ra-
tio (S/N). An example of a single trace polluted by
10 dB AWGN is illustrated in Figure 3. Table 1 lists
all the 12 treatments tested in this work. Consider-
ing the scenarios in which random noise is present or
absent, we performed 24 simulations in total.

The ML 4D noise regression is carried out accord-
ing to the workflow shown in Figure 4. From the
database described in the previous section, we cal-
culate the difference between each monitor and the
baseline seismogram.

These difference gathers may or may not be con-
taminated with Gaussian noise, depending on the sce-
nario being considered. Next, one of the input types
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Figure 1: Seismic surveys modeled in the synthetic database. (a) Acquisition geometry (off-scale); baseline sur-
vey corresponds to AX = AV = 0. (b) Baseline velocity model. (c) Histogram of position 4D noises. (d)
Histogram of velocity 4D noises.
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Figure 2: Considered types of input extracted from shot-gather seismograms.
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Figure 3: Illustration of seismic trace (a) free of random noise and (b) contaminated with 10 dB S/N Gaussian
noise. Noise causes a strong disturbance in the data. The trace peak, for example, which can be used to calcu-
late the first arrival, undergoes amplitude changes and time shifts.
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Figure 4: Block diagram of the proposed 4D noise regression methodology.
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Table 1: Treatments according to the ML method and input type.

Treatment Label

Regression Algorithm

Input Type

S1 FCNN

S2 FCNN

S3 FCNN

S4 FCNN

S5 XGBoost

S6 XGBoost
S7 XGBoost

S8 XGBoost

S9 Bayesian Ridge
S10 Bayesian Ridge
S11 Bayesian Ridge
S12 Bayesian Ridge

Full seismogram
Half seismogram
11 smallest-offset traces
Focus arrivals
Full seismogram
Half seismogram
11 smallest-offset traces
Focus arrivals
Full seismogram
Half seismogram
11 smallest-offset traces

Focus arrivals

shown in Figure 2 is extracted from the difference seis-
mograms. The extracted crop is then rearranged as
a 1D vector (flattened) so it can be passed as input
to the ML techniques. The data are randomly split
into 70% and 30% disjoint subsets. The first 70% set
is used for supervised training of the ML regression
model. After training, the 30% set is used for assess-
ing the model accuracy in estimating AX and AV. In
all simulations, the same monitor shot gathers were
used to generate the training and test data in order
to facilitate the comparison.

RESULTS AND DISCUSSION

In this section, we present the results of the proposed
methodology for all treatments, considering the sce-
narios with and without Gaussian noise. The treat-
ments are labeled according to Table 1. All simu-
lations were performed on a computer with Intel®
Xeon® E5-2698 v3 CPU and 512 GB RAM. The pre-
dictive performances obtained by the treatments are
assessed by computing the estimation error magni-
tudes (EEM) on the test data. The EEM is cal-
culated as the magnitude of the difference between
the true value of 4D noise (AX or AV) and the
corresponding value estimated by the ML regression
model. For treatments using Bayesian Ridge, the esti-
mated AX/AV is taken as the mean of the predictive
distribution of the model.

Most results are shown as boxplots describing
the distribution of the test EEMs obtained by each
treatment for position and velocity noise. The fun-
damental element of a boxplot is the box with
whiskers (Walpole et al., 2016). The box marks the
distribution quartiles: its lower and upper edges co-
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incide respectively with the 25" and 75" percentiles,
and the horizontal line inside marks the median. The
vertical lines extending above and below the box
(whiskers) span the range containing most of the data
points below the first quartile and above the third
quartile. The circles beyond the whiskers represent
individual data points of extreme values (outliers).

Figure 5 shows the boxplot of EEMs obtained for
AWGN-free seismic signals. The position errors can
be compared with velocity errors after dividing all
values by 10, which is the amplitude of the range of
variation of each noise type (both vary within the
[—5,5] range, as described in the seismic modeling
section). After doing that, we notice that the nor-
malized AX errors are higher than the normalized
AV errors, suggesting that receiver position 4D noise
is harder to estimate. It can also be observed that
the XGBoost algorithm (treatments S5 to S8) tends
to estimate velocity noise accurately on average (de-
spite the outliers), but, on the other hand, it presents
the worst results when estimating position noise.

The same general observations can be made for
the case where seismic data is contaminated with 10
dB Gaussian noise, shown in Figure 6. The difference
is that EEMs are larger in this case, which is expected
because the physical attributes correlated with the 4D
noise types, such as times of first arrival (Osdal and
Landrg, 2011), are harder to extract accurately from
seismic data when random noise is present (see Fig-
ure 3). A simple comparison between the vertical axes
of Figures 5 and 6 shows that EEMs are five to ten
times larger when AWGN is present.

For each studied 4D noise type, water velocity and
receiver position, we employ a three-way ANOVA sta-
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tistical test (Walpole et al., 2016) with the following
factors: Gaussian noise, ML technique and seismo-
gram crop. The first factor has two classes: AWGN-
free and 10 dB Gaussian noise. The second factor has
three classes: Bayesian Ridge, FCNN and XGBoost.
The third factor has four classes, one for each input
type. The total number of classes in the two statisti-
cal experiments is 2 x 3 x 4 = 24. The ANOVA test is
calculated from the 300 EEM values (test set) associ-
ated to each class. The results are shown in Table 2.

The performed ANOVA test allows us to answer
the questions: "is our methodology affected by ran-
dom noise?", "what is the best ML technique?" and,
finally, "is there an input crop that performs better
than others?". The first two questions can easily be
answered by visual inspection of Figures 5 and 6, and
the statistical test confirms: noise affects estimation
accuracy significantly, and Bayesian Ridge is the best
regression algorithm. The answer to the third ques-
tion is inconclusive, as shown in Table 2; the difference
among the crops is statistically significant for estimat-
ing AX, but no crop performs better than others for
the regression of AV.

The Bayesian Ridge algorithm greatly outper-
forms all other techniques, for both the cases with and
without Gaussian noise. The success of the Bayesian
strategy is evident for all crops; indeed, the crop
choice is not as important as the employed ML re-
gressor (Figures 5 and 6). Among the reasons for its
success, the Bayesian Ridge uses one optimized prior
for each basis function weight, resulting in fewer basis
functions (sparsity) and better generalization capa-
bilities (Tipping, 2001). However, the high accuracy
comes at a cost: it has the largest computational com-
plexity (resource usage increases the fastest with in-
put size) among the studied algorithms. Using the
full seismogram input, for example, takes about 500
GB RAM to train one Bayesian model for one noise
type. Note that the memory consumption is much
lower for the other treatments: 122 GB for S10, 26
GB for S11 and less than 4 GB for the others.

Figure 7 shows estimation errors only for the treat-
ments using the Bayesian Ridge. In the AWGN-free
case, estimation errors are so low that the input types
can be considered equally good from a practical point
of view. However, when Gaussian noise is present,
a more realistic scenario, estimation errors are large
enough for the differences to matter, especially out-
liers. In qualitative terms, we argue that the treat-
ment with the best balance between accuracy and ML
model complexity is the Bayesian Ridge fed with the
11 smallest-offset traces (S11), because in the noisy
case its median accuracies are among the lowest, with
the smallest outliers. This treatment is also favored
by the smaller input size, as per the principle of Oc-
cam’s razor. In treatment S11, AX and AV are es-
timated with median accuracy of 2.9 x 10~* m and
2.5x107* m/s for the AWGN-free scenario, and 0.115
m and 0.017 m/s for the noisy case.

Braz. J. Geophys., 42, 2, 2024

Finally, we note that the proposed methodology is
supervised and depends on information not available
in the real world for training (true 4D noise values).
To apply the method in practice, it is necessary to
synthetically model a number of monitor surveys from
the baseline, as performed in this study. If the model-
ing is realistic, covering many plausible 4D noise set-
tings, there is a high confidence that the ML model
can generalize to data not seen in training, so that its
estimations can be used for correcting the 4D noise
effects on real monitor data, for example. In many
areas of geosciences, such as in hydrocarbon reservoir
characterization, it has been demonstrated that ML
algorithms trained on realistically modeled synthetic
data present good performance when applied to field
data (Corte et al., 2020). In the case of our method,
realistic modeling of monitor surveys is possible by us-
ing some results of full-track baseline processing, es-
pecially the inverted velocity model. Although some
simplifications were adopted in the modeling of this
study, the results herein presented are still useful be-
cause the very good performances demonstrate the
potential of using ML-based algorithms for estimat-
ing 4D noise on field data.

CONCLUSION

In this study, we proposed a ML methodology for
quantifying the time-lapse changes, relative to the
baseline survey, in the acoustic velocity in seawater
and receiver lateral positions. A synthetic database,
modeling deep water OBN time-lapse surveys using a
velocity model estimated from the Brazilian pre-salt,
was built for supervised training of ML models.

We tested many combinations (treatments) of re-
gression algorithms and types of input extracted from
common-shot seismograms, for the scenarios where
seismic data are free of random noise and contami-
nated with 10 dB Gaussian noise. Our results high-
light the importance of an adequate selection of the
regression algorithm and, to a lesser degree, of the in-
put type. Also, the presence of Gaussian noise signif-
icantly affects accuracies, which is expected because
it is harder to extract from noisy data the physical
attributes (e.g., time of first arrival) correlated with
4D noise. The treatment with the best balance be-
tween accuracy and model complexity estimated po-
sition and velocity time-lapse changes with a median
accuracy of 0.115 m and 0.017 m/s for the 10 dB
Gaussian noise case.

This study demonstrates the feasibility of using
supervised ML-based techniques for estimating 4D
noise values. Accurate estimates of such parameters
can be used for correcting their effect on seismic data
during processing, or to improve time-lapse inversion
workflows by, for example, obtaining better initial ap-
proximations of the time-lapse velocity model for the
FWI-4D technique.
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Table 2: Summary of three-way ANOVA results for each 4D noise type, discriminating among the factors
varying in ML treatments.

4D Noise Type Factor F p-value
Recei Gaussian Noise 3221 < 10716
ecerver ML technique 783 <1016
position . 6
Seismogram crop 10.01 1.4 x 10
W Gaussian Noise 1294 2 x 10716
ater ML technique 834 <10-16
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Figure 7: Estimation error magnitudes of treatments using Bayesian Ridge regression algorithm.
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