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ABSTRACT. One of the main tools for reservoir characterization is analyzing well log data. The importance
of such methods stems from petrophysical property estimation, such as porosity, which is very important to the
oil and gas industry. In scenarios where data are hard to collect, data loss and technical failures during the
acquisition impose an extra challenge. Thus, mathematical and petrophysical models are good candidates to
fill information gaps in the well log dataset. In such a way, the rock petroelastic and petrophysical properties
can be successfully estimated. Several studies correlate the velocity of compressional waves (Vp) to other
basic well data. In this study, we used the Gardner’s equation and Machine Learning methods such as Neural
Networks, Random Forest and Gradient Boosting regressions to generate Vp logs. We used real-world data
acquired from twenty wells of the pre-salt formation from Santos Basin in Brazil to train and test the Machine
Learning methods and evaluated the data estimated by those models using statistical metrics. We calculated
the acoustic impedance from the estimated logs and used it to create a prior model for a petroelastic inversion,
which allowed us to estimate the natural logarithm of the acoustic impedance for a seismic volume. The Machine
Learning methods presented less errors between estimated and measured velocities when compared to Gardner’s
equation.

Keywords: well logging; artificial neural networks; machine learning; linear regression

INTRODUCTION formation, such as porosity, pressure, type of rock ma-
trix and fluid and pore shape, crucial for determining
potential production in hydrocarbon reservoirs.
Nevertheless, in deep-water fields where depths
reach thousands of meters, technical failure during
the well data acquisition results in information loss,

imposing an extra challenge to well-data interpreta-

In oil field exploration, the sonic or acoustic log (DT)
analysis is fundamental and one of the most power-
ful interpretation tools for petrophysical study. This
method investigates the travel time of an elastic wave
through the rock formation, which, among other ap-

plications (e.g., calibration of seismic data, identifi-
cation of lithologies, stratigraphic correlation), is ap-
plied in petroelastic inversion and porosity calcula-
tion. In this situation, the P-wave speed can be cor-
related with some physical characteristics of the rock

tion. Yet, due to specific relationships among rock
physical properties (e.g., Gardner et al., 1974), miss-
ing acoustic data can be inferred through other well
log information, such as gamma ray, density, neutron
and resistivity.


http://dx.doi.org/10.22564/brjg.v42i2.2315
https://orcid.org/0000-0003-3335-3462
https://orcid.org/0000-0003-3091-3727
https://orcid.org/0000-0002-2105-9154
https://orcid.org/0000-0002-1999-862X
https://orcid.org/0000-0003-0114-2564
https://orcid.org/0000-0002-9564-6466
mailto:caique.pc94@gmail.com

2 P-WAVE VELOCITY LOG SIMULATION

The speed of compressional waves (VP) can be
correlated to other basic well data (e.g., Gardner
et al., 1974; Oloruntobi and Butt, 2019; Carrasquilla
et al.,, 2022; Carvalho et al., 2022). To under-
stand how the P-wave is affected by these petrophysi-
cal properties, we applied three different estimation
methods: the Gardner’s equation (Gardner et al.,
1974), which relates the velocity of the compressional
wave to the rock density, Neural networks (NN), one
of the Machine Learning (ML) methods that have al-
ready been applied in geophysics (Lim and Kim, 2004;
Rolon et al., 2009; Aleardi, 2015); and also ensemble
methods based on trees, such as the Gradient Boost-
ing and Random Forest regressors which are also ap-
plied in geoscience (Sahin, 2020).

In our work, we bring new data from one of the
largest oil reservoirs in the world. We take advantage
of the extensive well log dataset from Santos Basin,
focusing on Buzios pre-salt oil field (BOF), an ultra-
deep-water reservoir along the Brazilian coast (Figure
1). Filling the gaps of P-wave velocity in our data al-
lowed us to estimate the acoustic impedance for a
seismic volume afterwards through a petroelastic in-
version for a broad area; the acoustic impedance vol-
ume could then be applied for a porosity estimation
using the same ML techniques. Another important
application of our work is in the well to seismic tie
process; the algorithm might fill the gaps where the
P-wave velocity information is missing and the cal-
culated acoustic impedance can then be used to cal-
culate the reflectivity and the synthetic seismogram
(de Macedo et al., 2020).

The data from the well log curves were loaded and
then split into training and test data to apply the ML
methods and also the Gardner’s equation. We con-
sidered the P-wave velocity as the labeled data for
our regression; finally, we applied the statistical met-
rics to compare the results obtained with the different
ML methods and the Gardner’s equation. This work
distinguishes itself from previous researches by the
amount of data used for training the ML models and
the set of combinations of input data for the P-wave
velocity estimation for the Buzios oil field. To demon-
strate the usefulness of our methodology, we show an
acoustic impedance section at the end which was cal-
culated after the P-wave velocity gaps were filled in
the well log.

GEOLOGICAL CONTEXT

The Buuzios oil field (BOF) is a highly productive and
promising deep-water target found in Santos Basin,
one of the most extensive offshore petroleum reser-
voirs of the Brazilian continental margin. The Santos
Basin is located within the Cabo Frio high and the
Florian6polis platform along the coast of the Brazil-
ian states of Sdo Paulo and Rio de Janeiro (Figure
1). The BOF is situated seaward from the continen-
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tal shelf slope where the current water depth reaches
up to 3000 m and its sedimentary column thickness
can overtake more than 4000 m down from the ocean
floor.

The Santos Basin developed during the evolu-
tion of the South Atlantic continental margin result-
ing from the Gondwana breakup event in the Late
Jurassic-Early Cretaceous (Brune, 2016). The tec-
tonic evolution of this basin can be divided into three
main phases: (i) rift, (ii) post-rift (i.e., tectonic sag-
phase), and (iii) drift (de Mio and Chang, 2005; Mor-
eira et al., 2007).

In this study, we focus on the pre-salt section
that is associated with the rift and post-rift stages.
The rift stage is represented by lacustrine sediments
(i.e., continental siliciclastics, talc-stevensite ooids
with interbedded lacustrine coquinas and organic-rich
shales) of the Camboriti, Pigarras and Itapema for-
mations. The post-rift sequence is represented by
the Aptian non-marine and shallow-water sequence
(i.e., lacustrine carbonates and shales) of the Barra
Velha Formation (Gomes et al., 2020), followed by
an evaporitic deposit (i.e., anhydride and halite) of
the Ariri Formation (Moreira et al., 2007), featuring
the typical sequence of a continental-to-marine tran-
sitional environment also registered in other adjacent
and correlated basins along the Brazilian southeast
coast (e.g.,Campos Basin; Winter et al., 2007).

METHODS

All data processing in this study was done using
Python and Dug Insight (Dug, 2021), which included
loading and graphing logs, selecting wells to utilize,
simulating logs and creating graphs with results. Sta-
tistical analyses were performed on the simulation re-
sults. The seismic and well log data were provided by
ANP (Ageéncia Nacional do Petroleo, Gas Natural e
Biocombustiveis).

Data

For this work, we selected log data of 20 wells from
BOF. The well log curves used in this work were the
density log (py, ), neutron porosity (NPHI), gamma ray
(GR),resistivity log and P-wave velocity (V},) (Figure
2). For an initial test, the p,, NPHI, resistivity and
GR curves were used as input for training the ML
algorithms, while the V,, was used as the label. Dur-
ing the procedure, 18 wells were used for training and
cross-validation, while 2 were used for additional tests
and generating the results. Figure 3 shows the seismic
section with the location of well 9-BRSA-1197-RJS,
one of the wells used for additional tests and results.
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Figure 1: Map of the Santos Basin, focus on the Buzios field. On the lower left section, there is an example of
the litostratigraphy sequence (Moreira et al., 2007). On the lower right, we present just one example of a well
log, that was not included in our dataset, which lacks the sonic log measurements for a specific range of depth.
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This well lacked the sonic log info between depths
of 5400-5440 and 5660-5700 meters and it was selected
to apply the ML models and compare them with the
Gardner’s equation in the discussion section.

Depth (m)

Density (g/cm?)

Figure 2: Well log curves used in this work. Density,
neutron porosity, gamma ray and resistivity were used
as input, and P-wave velocity was used as the correct
output.

The ML algorithms used were the MLP Regres-
sor, the Random Forest Regressor and the Gradient
Boosting Regressor, all implemented with the Scikit-
Learn library in Python (Pedregosa et al., 2011). The
Gardner’s equation was implemented with the param-
eter values from Gardner et al. (1974). We isolated
the V), variable on the equation and estimated it by
having the density curve as input. Two metrics were
selected for the evaluation of the different algorithms.
One was the Root mean squared error (RMSE) which
penalizes large errors (Chai and Draxler, 2014) and
the other was the Pearson’s correlation coefficient
which evaluates a linear relationship between mea-
sured and estimated values (Sedgwick, 2012; Thiru-
malai et al., 2017).

Figure 3: 3D seismic section where well 9-BRSA-
1197-RJS is located. The pre-salt layer for the well
location ranges from around 5400 to 5700 meters.
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Gardner’s Equation

The empirical equation estimated by Gardner et al.
(1974) shows that the relationship between density
(pp) and velocity (Vp) is:

Pb :k[VP]Ba (1)

where k and B are the empirical constants, and their
numerical values change accordingly to the units of
measurement for density (pp) and velocity (Vp). The
units that we used in this work were g/cm? for density
and km/s for velocity; thus, the values for the empir-
ical constants were k = 1.74 and B = 0.25. These are
the values found by Gardner et al. (1974).

Gardner’s equation is a systematic relationship
between the velocity and density of many sedimentary
rocks in situ. The empirical relationship allows esti-
mating the reflection coefficients from the velocity in-
formation. Gardner et al. (1974) also concluded that
Gassmann’s theory is valid for sedimentary rocks at
interrelated elastic constants, densities, and P-wave
velocities for different rock components and for the
entire consolidated rock, with the structure or skele-
ton being an important component. Microcracks can
be present in rock and slow down the P-wave veloc-
ity. Nevertheless, lithostatic and tectonic stresses can
close them and induce the velocity increase. The elas-
tic parameters of rocks without microcracks can be
estimated using the theories of Voigt and Reuss and
the elastic constants of crystals (Swan and Kosaka,
1997).

Neural Network

Neural Networks (or Artificial Neural Networks) are
an important part of Artificial Intelligence and were
developed by authors such as McCulloch and Pitts
(1943) and Rosenblatt (1958) as a mathematical
model inspired by the information processing that oc-
curs in the biological neurons in the brain. The neural
network models we selected for this work are super-
vised learning methods, which means that they re-
quire pairs of input and labeled output data values
for training, validating, and testing. The mathemat-
ical model of a neural network is based mainly on a
matrix multiplication operation.

According to Amr (2020), the Multilayer Percep-
tron (MLP) is a subset of feedforward neural networks
and one of its most commonly used types. In this
model, each of the input features is multiplied by a
weight and summed to get the output. Sometimes
an extra bias factor is also added to get a non-linear
output; an activation function is used after the sum-
mation. A more detailed mathematical expression for
a single layer NN is given by:

Y = f(WikmXm + By), (2)
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where Wi, is the matrix containing the weights of the
neural network that will be multiplied by the input
vector X, and then summed with the bias vector By.
The result of this operation is the input for the acti-
vation function f, giving the calculated output vector
Yk.

A different notation for the neural network model
is the Equation 3 which calculates each element y; of
vector Yy individually:

yi=f Zwi,jxj +b;],i=1,2,3...k. (3)
j=1

The same operation expressed in a matrix multi-
plication will be:

Wil Wi2 - Wim | | 21 by
Wo1 Wap -+ Wom | | @2 by

Yie=f L ] @
Wr1 Wk2 *** Wem | | Tm b,

We used the MLP Regressor function from the
Scikit-Learn library and the GridSearchCV func-
tion for the tuning of hyperparameters. The test
was conducted for the selection between the solvers
’sgd’, which is the stochastic gradient descent method
(Amari, 1993), and ’adam’, which is a modification
from the stochastic gradient descent method (Kingma
and Ba, 2014). Other hyperparameters considered
were constant or adaptive learning rates. The ac-
tivation functions were also tested among the logis-
tic, identity, hyperbolic tangent and rectified linear
ones. The selected score metric was the negative
mean squared error.

Ensemble methods based on trees

The other algorithms applied in this work were the
Random Forest and the Gradient Boosting Regres-
sor, which are ensemble methods. A very powerful
and applied technique, an ensemble of methods is a
learning algorithm that combines the predictions of
multiple statistical models to improve the final pre-
diction. An ensemble method can be applied both
for classification and regression problems (Dietterich,
2000; Breiman, 2001; Iaccarino et al., 2024).

To understand the concept of the Random Forests
algorithm, it is important to first understand the def-
inition of a decision tree classifier. A decision tree
is constructed by analysing a set of training samples
with known class labels and make a series of questions
about features related to these samples. Each ques-
tion is contained in a node and every internal node

points to one child node for each possible answer to
the question, forming a hierarchy of questions (Kings-
ford and Salzberg, 2008).

A Random Forest algorithm combines the predic-
tions of decision trees such that each tree depends
on the values of a random vector sampled indepen-
dently and with the same distribution for all trees in
the forest. Random Forest can be applied for regres-
sion by growing trees depending on a random vector
such that the tree predictor takes on numerical values
as opposed to class labels (Breiman, 2001).

The Gradient Boosting Regressor or GBR is an
algorithm that combines the intuitions from boost-
ing and gradient descent to construct ensembles of
decision trees. In this algorithm, the gradient of a
cost function is calculated with respect to the pre-
dicted values of the ensemble and new decision trees
are added iteratively to the structure to shift the algo-
rithm in the negative direction of the gradient. Other
important parameters are the maximum depth of the
trees and the learning rate of the gradient descent
(Friedman, 2001; Taccarino et al., 2024).

The hyperparameters for the Random Forest and
the Gradient Boosting Regressors utilized were the
default ones from the Scikit-Learn library, with the
exception of the maximum depth for the Random For-
est Regressor. For the Gradient Boosting Regressor,
the loss function was the squared error of the regres-
sion. The learning rate of the gradient descent is equal
to 0.1 and the maximum depth of the trees is 3. For
the Random Forest Regressor, the number of trees is
100, the criterion function is the squared error and
the maximum depth of the tree is 2.

Petroelastic inversion

As an example of how our methodology may be ap-
plied, a 3D model of the natural logarithm of the
acoustic impedance will be created for the ML model
that presents the best metrics result. We will uti-
lize this 3D model as a priori guess for a petroelastic
inversion of a 3D poststack seismic data.

We will use the PyLops library (Ravasi and Vas-
concelos, 2020) to calculate the petroelastic inversion.
The importance of this algorithm is to provide a vari-
able which contains a petroelastic property of the
medium and might be applied to calculate petrophys-
ical properties such as porosity, oil and water satura-
tion. This algorithm requires as input the information
of the wavelet, the seismic trace and, as optional pa-
rameter, the priori model for the natural logarithm of
the acoustic impedance. This last optional parameter
will significantly improve the inversion result. Figure
4 shows an example of a wavelet signal which is a
required parameter for the inversion algorithm.

Braz. J. Geophys., 42, 2, 2024
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Figure 4: Signal example of a Ricker wavelet. One
of the necessary input parameters for the petroelas-
tic inversion.

The first step to create the 3D priori model is to
use the estimated P-wave velocity (green curve shown
in Figure 12) and the bulk density log (black curve
of Figure 12) to calculate the natural logarithm of
the acoustic impedance for each well. The acoustic
impedance is calculated multiplying the density log
by the velocity one; then, the natural logarithm is
applied.

The second step is to bring the calculated natural
logarithm of the acoustic impedance of each well to
the seismic scale. Since the samples on the well occur
about every 15 centimeters and on the seismic data
they are sampled about every 5 meters, to adjust the
scales, we used the Numpy interp Python function.
The last step is to make a linear regression for each
well location between the seismic data and the nat-
ural logarithm of the acoustic impedance which will
allow us to create the 3D priori model using the 3D
seismic data as input.

RESULTS

The hyperparameter tuning applied for the MLP Re-
gressor selected ’adam’ as the best optimizer and a
constant learning rate. The other hyperparameters
consisted of one hidden layer containing 100 neurons
and a second layer with the number of neurons consis-
tent with the labeled data output size. The activation
function hyperbolic tangent (tanh) achieved the best
result among the functions that were tested.

The results we obtained for comparing Gardner’s
equation and model 2, 6 and 10 of Table 1 are shown
in Figure 5 and the results for the metrics are shown
in Table 2. In Figure 5, it is possible to observe the
fit for the P-wave velocity provided by the different
models for the pre-salt layer of a well that ranges from
5450 m to 6100 m. Model 10 achieved the lowest
RMSE calculated between measured and estimated
velocities, which was 0.2523, and the highest correla-
tion coefficient, which was 0.8573, as shown in Table
2.
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The estimation for the Gardner’s equation is
shown in Figure 5. The RMSE calculated among the
velocities for Gardner’s equation was 0.7061, much
higher than the other ML models, while the correla-
tion coefficient was 0.8051 as shown in Table 2.

We applied the MLP estimation to fill the P-wave
velocity for the areas in which this information was
missing. Figures 11 and 12 illustrate how the P-wave
velocity might be combined with the other logs (GR,
NPHI and density [py]) for interpretation purposes.
Figure 6 shows the absolute error for Gardner’s equa-
tion and models 2, 6 and 10 of Table 1.

Figure 7 shows all the results for Gardner and the
ML models 1, 5 and 9 which use the GR, NPHI, den-
sity and resistivity logs as input. Figure 8 shows the
absolute error for each of these methods. The com-
parison of model 4, 8 and 12 with Gardner is shown
in Figures 9 and 10.

DISCUSSION

Well logs from a carbonate reservoir in Brazilian pre-
salt were used in this investigation. The focus was
creating a model to estimate the P-wave velocity log
for regions of the well where the sonic log (DT) infor-
mation was missing. Different combinations of logs
that present a good relation with the P-wave veloc-
ity log such as Gamma-ray, neutron porosity, density
and resistivity were used as input. By testing these
different combinations, the objective was to verify the
influence of each log on the velocity prediction and if
any one of them could be suppressed from the input
data set.

Analysing Figures 5 and 6, we can see that Gard-
ner’s equation did not provide a good fit and pre-
sented the highest absolute error except for depths
between 5800 m and 5900 m. It also presented the
highest root mean squared error by the metrics re-
sults of Table 2. Gardner’s equation presented a bet-
ter correlation coefficient when compared to models
1, 5, 6, 7 and 8; however, a qualitative analysis of
the plotted curves of Figure 5 and the error results
demonstrate that these ML models are still a better
choice compared to Gardner’s equation.

By comparing the results of Figures 11, 12 and
13, we can observe how Gardner’s equation fails to
reproduce the measured values of P-wave velocity.
Among the ML methods chosen for the estimation of
the P-wave velocity, the Gradient Boosting Regres-
sor proved to be the most accurate due to its lowest
mean squared error and highest correlation with the
real values as shown in Table 2 and it also proved to
be more accurate for depths between 5600 and 5700
m in the 'blind test’ well log shown in Figure 12 when
compared to the MLP Regressor shown in Figure 11.

The analysis of the metrics results of Table 2 also
shows that the lowest RMSE and highest correlation
coefficient were from model 10. Figures 5 and 6 il-
lustrate how this model presents a low absolute er-
ror except for a region around the depth of 5800 m.
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Table 1: Models used to train the data and the parameters used as input.

Model Algorithm Input parameters
1 MLP Regressor GR, NPHI, Density and Resistivity
2 MLP Regressor GR, NPHI and Density
3 MLP Regressor NPHI and Density
4 MLP Regressor GR and NPHI
5 Random Forest Generator | GR, NPHI, Density and Resistivity
6 Random Forest Generator GR, NPHI and Density
7 Random Forest Generator NPHI and Density
8 Random Forest Generator GR and NPHI
9 Gradient Boosting Regressor | GR, NPHI, Density and Resistivity
10 Gradient Boosting Regressor GR, NPHI and Density
11 Gradient Boosting Regressor NPHI and Density
12 Gradient Boosting Regressor GR and NPHI

Table 2: Results of the metrics used for comparison of the P-wave velocity estimated by Gardner’s equation,
MLP Regressor, Random Forest Regressor and Gradient Boosting Regressor for each different set of input pa-
rameters.

Model | RMSE | PEARSON RMSE | PEARSON | RMSE | PEARSON
(Train) (Train) (Test) (Test)

Gardner 0.7061 0.8051 - - - -

Equation
1 0.3246 0.7399 0.3922 0.7186 0.3975 0.7155
2 0.2763 0.8445 0.2996 0.8284 0.3091 0.8229
3 0.2984 0.8197 0.3383 0.7706 0.3416 0.771
4 0.2815 0.8239 0.3244 0.7968 0.3297 0.7771
5 0.3040 0.7783 0.3488 0.7574 0.3626 0.7353
6 0.3050 0.7761 0.3483 0.7591 0.3495 0.7524
7 0.3355 0.7337 0.3754 0.7107 0.3754 0.7161
8 0.3038 0.7784 0.3482 0.7587 0.3597 0.7497
9 0.2682 0.8317 0.2578 0.8756 0.2665 0.8670
10 0.2523 0.8573 0.2736 0.8587 0.2791 0.8570
11 0.2999 0.8089 0.3296 0.7848 0.3366 0.7855
12 0.2728 0.8281 0.2940 0.8347 0.3060 0.8162

Braz. J. Geophys., 42, 2, 2024
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Braz. J. Geophys., 42, 2, 2024



10 P-WAVE VELOCITY LOG SIMULATION

Gardner's equation MLP Random Forest Gradient Boosting
5500 5500 = 5500 5500
~
5600 5600 5600 5600
5700 5700 5700 5700
E
£=
= =
o
4 >
O 5800 5800 = 5800 5800 -
5900 5900 5900 5800
6000 B000 B000 6000
— Vpmeasurad = — Vp measured = — Vp measured — Vp measurad ; 4
—— Wp estimated —— Vp estimated —— Wp estimated —— Wp estimated

3 4 5 & 3 4 5 5 3 4 5 6 3 4 5 6
P-wave velocity (km/s) P-wave velocity (km/s) P-wave velocity (km/s) P-wave velocity (km/s)

Figure 9: Result for the P-wave velocity estimation using Gardner, MLP, Random Forest and Gradient Boost-
ing regressor. Each regression used as input the NPHI and RHOB logs. These estimations correspond to models
4, 8 and 12. The black curve represents the real velocity values, while the red curve represents the calculated
ones.
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Figure 10: Absolute errors for Gardner, MLP, Random Forest and Gradient Boosting regressor. Each regres-
sion used as input the NPHI and RHOB logs. These estimations correspond to models 4, 8 and 12.
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velocity estimation using the MLP Regressor (model 2). The blue curve represents the real velocity values while
the green one represents the calculated values. It was possible to fill the P-wave velocity information where it

was absent.
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Figure 13: Lithology and well log curves of density, neutron porosity, gamma ray and the result for the P-wave
velocity estimation using Gardner’s equation. The blue curve represents the real velocity values while the green

one represents the calculated values.

It is also very effective in removing some outliers that
are present close to the depth of 5900 m. The met-
rics results of models 1, 5 and 9 in Table 2 and the
results of Figures 7 and 8 show how the addition of
the resistivity log does not provide a better estima-
tion for the P-wave velocity as it increases the RMSE
and decreases the correlation coefficient when com-
pared to the models where the GR, neutron porosity
and density logs are used as input.

The metrics results for models 3, 4, 7, 8, 11 and 12
in Table 2 show how the suppression of the Gamma
ray (GR) information as an input variable does not
cause significant increase in the RMSE. Furthermore,
by comparing models 6 and 8, the results show that
the Random Forest Regressor achieved a better per-
formance when the GR variable was suppressed. The
suppression of the density log as an input variable
causes more error in the P-wave velocity estimation.
This can be observed by comparing the metrics results
for models 3, 7 and 11 with the metrics for models 4,
8 and 12 in Table 2.

Figures 11 and 12 illustrate how the NN and
the Gradient Boosting Regressor methods, specifi-
cally models 2 and 10 were efficient in filling the gaps
of somnic log information for well 9-BRSA-1197-RJS,
shown in Figure 3, which lacked this information for
specific depths. The ML methods were also very ac-
curate on estimating the curve in regions where the

Braz. J. Geophys., 42, 2, 2024

P-wave velocity information was present (blue curve
in Figures 11 and 12); however, they did not provide
a good fit between the depths of 5550 m and 5600 m.
This can be explained by the presence of a carbonate
dark grey shale in this specific depth, as shown in the
lithological profile in Figures 11 and 12.

Gardner’s equation was applied to estimate the P-
wave velocity on the same well where the MLP and
Gradient Boosting Regressor were applied (Figures
11, 12 and 13). We can observe that the ML meth-
ods estimate the measured velocity values more ac-
curately. By comparing the blue and green curves
between 5450 and 5650 meters in Figure 13, it is pos-
sible to observe that the estimated values of Gardner’s
equation do not reproduce the measured ones.

Hyperparameter tuning

The hyperparameter tuning was a crucial step for
the selection of the hyperparameters that best suited
the data, due to its high computational cost. The
tested hyperparameters were reduced to two options
between solvers and learning rates and four options
of activation functions. Nevertheless, the Gradi-
ent Boosting Regressor presented the lowest mean
squared error and the highest correlation coefficient
with its default hyperparameter values.
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Figure 14: Natural logarithm of the acoustic impedance calculated through a petroelastic inversion from seis-
mic data. The P-wave velocity data estimated using the ML methods from this work were used to create the

priori model for the inversion.

Petroelastic inversion

Considering that model 10 presented the best metrics
result, we used the calculated P-wave velocity (green
curve shown in Figure 12) and the bulk density log
(black curve of Figure 12) to calculate the natural
logarithm of the acoustic impedance for each well.
After filtering the well log data to the seismic
scale, we did the linear regression to create the 3D pri-
ori model using the 3D seismic data as input. We used
the PyLops library (Ravasi and Vasconcelos, 2020)
and our priori model to calculate the inversion for a
poststack seismic data. Figure 14 shows the result for
a seismic data cube from the BOF in Santos Basin.

CONCLUSION

The measurement and the estimation of petrophysi-
cal and petroelastic parameters such as porosity, per-
meability and P-wave velocity in carbonate deposits
is a complex process, which corroborates the appli-
cation of the methodology of this work. From the
metric relations, we understand that the ML models
were more successful in estimating the P-wave veloc-
ity when compared to Gardner’s equation. This leads
us to conclude that ML is a good option for V}, simu-
lation in complex models.

By the analysis of the metrics shown in Table 2
and the curves of Figures 5 and 13, we can conclude
that the Gardner’s equation would not be as precise
as the ML methods for regions of the well where the
P-wave velocity is missing, especially for areas where
carbonate shales are present.

The case study discussed in this research produced
remarkable results with very low errors for the ML
methods, especially considering that it is a carbonate
reservoir with complex geology. In order to replicate
the ML models created in this work, it is only nec-
essary to have access to the same well log data from
BOF and to the Python libraries. The number of
well logs used in this work were enough to produce
accurate results. In future works, it is intended to
add other logs to the data set that may be relevant
in influencing the P-wave velocity (V) estimate and
also check how the natural logarithm of the acous-
tic impedance calculated by the petroelastic inversion
can be precise to estimate petrophysical properties
such as the porosity of a carbonate reservoir.
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