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ABSTRACT. In this synthetic study, we present semi-automatically picked true-amplitude comparisons after
time migration and time remigration (Tygel et al., 1996; Oliveira et al., 2023). Since the examples considered are
synthetic, emphasis is put on the generally disregarded dimensional aspects of the amplitudes that are modeled
to simulate compressional-only seismic data when using a Kirchhoff approximation. By bearing in mind in
this work that theoretical amplitudes work as “densities”, we show that when comparisons of true-amplitude
weighted diffraction-stack time migration and weighted isochrone-stack time remigration are performed, in order
to “correct” the dimensions involved, certain multiplicative physical constants must come into play and that
must be effectively dealt with for plotting reasons.
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Kirchhoff approximation

INTRODUCTION

Seismic reflection amplitudes are one of the most im-
portant parameters to be considered in data process-
ing since, besides resolution, it may contain fluid in-
formation, mainly gas content, typically considered
in amplitude-versus-offset (AVO) studies. Classically,
it has been documented that it is affected by a sort
of factors (Sheriff, 1975), including source strength,
directivity, coupling, multiples, spherical divergence
etc. But, since, according to O’Doherty and Anstey
(1971), “modern seismic recording instruments allow
precise measurements of the amplitude of reflected sig-
nals, intuitively it is expected that this amplitude in-
formation could be used to increase our knowledge of
the physical properties of the reflecting Earth”. In
this sense, along the years, seismic migration (either
in depth or in time) has been developed as true-
amplitude to assess measures of angle-dependent re-
flection coefficients of seismic data picked along key
reflectors. This allows one to define an approximated

image of the subsurface geology as well as assess its
physical properties in an inversion procedure, like
vector-weighted diffraction stack (Tygel et al., 1993).

In this paper, we report on the comparison of
semi-automatically picked amplitudes along synthetic
reflectors derived from a Kirchhoff-type time migra-
tion and time remigration, following the methodology
presented in Oliveira et al. (2023) for true-amplitude
imaging in the time domain. In this study, due to
the nature of definition for amplitudes, reflection co-
efficients and transmission loss factors, we investi-
gate the “density” nature of modeled seismic reflec-
tions. This is because when modeling synthetic seis-
mic data in 2-D or in 2.5-D, one must notice that
amplitudes in these domains are types of “densities”
derived from 3-D amplitudes of 3-D sources. In this
sense, square root of out-of-plane factors come into
play and must adequately be included or multiplied
to, e.g., in the part of the total amplitude that con-
tains the geometrical-spreading factors.
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When considering true-amplitude imaging
(Hubral et al., 1996; Tygel et al., 1996), weights
are applied in migration or demigration procedures
to grant the best possible amplitudes between one
process and another. This is the raytracing-based
general approach of reflection imaging proposed by
Hubral, Tygel and Schleicher in the 90s (see Refer-
ences). Specifically, in remigration and configuration
transforms, a cascading of migration/demigration
weight functions are applied in succession to grant
a diffraction stack or isochrone stack solution (Tygel
et al., 1996). Martins (2001) reduced this general ap-
proach of Tygel et al. (1996) to the 2.5-D geometry
for a single-stack solution and specified the weight
functions to be used in this domain. In Oliveira et al.
(2023), migration and remigration are performed in
the time domain using weights also in time as well,
but only the kinematic aspects were considered and
their respective imaging results. Our aim here is to
consider the dynamic aspect of this theory in the time
domain and focus on amplitudes.

In 2.5-D raytracing, out-of-plane factors are nat-
urally incorporated in amplitudes due to the solu-
tions of the ray equations (Bleistein, 1986). But
when reducing a two-fold to a one-fold integral in
the high-frequency approximation using the method
of stationary phase, the reciprocal of the square root
of another well-known out-of-plane factor is also in-
corporated in amplitudes – i.e., more specifically,
in the geometrical-spreading factor. Therefore, in
synthetic modeling, beyond reflection coefficients
and amplitude losses due to transmission (which
are dimensionless quantities), there appears an “am-
plitude density” factor with dimension of [s1/2/m2]
(s for seconds and m for meters). After stack inte-
gration along each possible reflector by means of a
multiplication by a differential dx, the result is that
seismic data are dimensionally equivalent to some
“value X something” (in which “something” has a di-
mension of [s1/2/m]), which is still a “density” value.
This is the starting point for the following consid-
erations in this work. For migration and remigra-
tion in the time domain – each process performed
following their specific sequence –, their respective
weight functions are scalable, each one with a proper
own dimension and multiplied by another differen-
tial dx. So far (and for plotting purposes only),
nothing new or incorrect is done that is unknown,
such that kinematically all output sections (seismic
and migrated) are correct. But if one picks several
or some amplitudes along one specific reflector and
tries to compare them, it will be noticed that their
values are proportional but not with the same magni-
tude. Thus, our claim is that, for a fair comparison,
some sort of dimensional factor must multiply each
picked amplitude to equalize their magnitudes and
label the term “true-amplitude” in a reasonable way.

It is important to state that we mean no mile-
stone in amplitude studies with the results and proofs
shown in this work. Our only intention was to clar-
ify and understand common perceptions in seismic
modeling and migration studies, to which we hope to
have contributed somehow in a very ad hoc manner.
We are aware that scaling factors are part of model-
ing, either physical or numerical. In this work we will
show the results of semi-automatic amplitude picking
comparisons recovered from two 2.5-D synthetic seis-
mic datasets (simple and complex) and discuss their
physical interpretation and possible applications.

This work is organized as follows: in the first sec-
tion we discuss the methodology regarding the idea
of viewing amplitudes as densities in 2-D synthetic
studies. The weight function for the time remigration
is introduced according to a recent study described
in Oliveira et al. (2023). Due to the fact that com-
parisons existing among different picked amplitudes
are the main topic of this paper, we decided to allo-
cate these results in a separate section. Therefore, in
the second section we present the synthetic datasets
that were used in this paper, which include unmi-
grated, migrated, undermigrated and remigrated re-
sults. Then, the third section follows regarding results
and discussions, in which we examine the main pick-
ings obtained after considering cases of constant ve-
locity medium (with and without lateral velocity vari-
ations) for a single reflector and the results obtained
from a stratigraphic model (with lateral velocity vari-
ation), the latter one representative of the pre-salt
geology of any Brazilian East Margin offshore basins.
After our conclusions, a brief discussion about remi-
gration is appended in order to show some aspects of
the theory in the time domain.

METHODOLOGY
Let us consider that a set of 2-D synthetic datasets
is available for imaging processing in the time do-
main. These synthetics may include common-offset
sections that were specifically sorted to this visual ge-
ometry so that prestack or poststack procedures are
possible choices for any subsequent workflow. Then,
some amplitude-preserving and kinematic-only imag-
ing procedures are generated upon these datasets:
weighted-Kirchhoff time migration (Schleicher et al.,
1993) and unity-weight Kirchhoff time migration, re-
spectively. Suppose then that at least two velocity
fields are also available for processing, each one with
a different degree of accuracy with respect to each
other regarding their stacking values. Also, lateral
velocity gradients issues are considered admissible to
these fields.

Braz. J. Geophys., 42, 2, 2024



FERREIRA ET AL. 3

When an accurate RMS velocity field is available,
Kirchhoff time migration correctly locates and focus
amplitudes towards their pseudo-depth positions. In
this sense, diffractions are also collapsed. If certain
weights are then applied during migration, primary
reflection amplitudes may be corrected for some prop-
agation losses, such as geometrical spreading (Schle-
icher et al., 1993). When this is not so, it can be
said that the final image is only kinematically cor-
rect. This issue of inaccurate velocity values in Kirch-
hoff time migration has been recognized for years as
source of poor imaging. And when velocity varia-
tion is not only function of stratigraphic layering, for
time migration focusing of reflections and collapsing
of diffractions become an incomplete seismic imag-
ing. Now consider the possibility of using a process
in which it is possible to complete the action of fo-
cusing and collapsing of reflections and diffractions,
respectively. This imaging procedure is called remi-
gration (Hubral et al., 1996; Tygel et al., 1996) and
makes use of two velocity fields to continue the action
as a residual migration (Fomel, 2003).

Common to all these procedures commented so far
is the treatment of amplitudes. Moving one ampli-
tude sample updip or downdip following these imag-
ing operations should preserve, in principle, the mag-
nitude of the event, simply because these are just
being moved somewhere. But migration itself mod-
ifies the amplitude content of the event at least in
the spectral domain, differentiating dipping and hor-
izontal reflections. In the realm of 3-D real seismic
data, it is considered that this problem is far compli-
cated. Therefore, let us focus on 2-D synthetics and
study the nature of its dimension and what happens
to amplitudes.

Kirchhoff time remigration
As described in Oliveira et al. (2023), in the exam-
ples that follows a tilde symbol (“∼”) over functions
and variables refer to the output space, including spa-
tial positions, time coordinates and velocities. The
remaining variables and functions without tildes re-
fer to the input space, also including spatial positions,
time coordinates and velocities. Examples of datasets
belonging to input space are the seismic data U(ξ, t),
velocity field vRMS(x, τ) and time-migrated section
I(x, τ), respectively. For a brief description of time
remigration theory and its domain, see Appendix A.

The input and output spaces both consider an
arbitrary 2-D single-fold measurement configuration
of point sources and receivers distributed along the
Earth surface, the location of them described by pa-
rameter ξ, which varies in A, called migration aper-
ture. Therefore, for each point (x̃, τ̃) in the output,
time-remigrated section to be simulated, the stack re-
sult Ĩ(x̃, τ̃) is obtained by a weighted stack of the
input data, represented by the integral operator de-
fined by Oliveira et al. (2023) (Appendix A), in which

I(x, τ) is the input, time-migrated (analytic) seismic
section that is to be weighted by K

(2.5D)
RM (x; x̃, τ̃) and

then summed up along the stacking line or inplanat
τ = tRM (x; x̃, τ̃) (Tygel et al., 1996).

Both functions are dependent on the point (x̃, τ̃)
where the stack is to be placed and on the vari-
able x that specifies the location of the traces be-
ing summed in the stack. Moreover, A denotes the
spatial limited aperture of the stack, the range of
midpoints in a common-offset gather available in the
time-migrated input section, I(x, τ). The stacking
line τ = tRM (x; x̃, τ̃) is defined by the kinematics of
the operation and the weight function K

(2.5D)
RM (x; x̃, τ̃)

is determined by the desired amplitude behavior.

Weight function
The remigration weight function used in the examples
is the product of 2.5-D migration and demigration
weight functions (Tygel et al., 1996; Martins, 2001;
Oliveira et al., 2023). Thus, in the time domain we
consider approximately:
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(1)

where t̃S and t̃G are double square roots (DSRs)
for source and receivers in the output domain for co-
ordinate (x̃, τ̃) and velocity ṽRMS , while t1 and t2
are DSR equations in the input domain, together
with vRMS in this input domain. Dimensionally, this
weight function is expressed in [s(1/2)/m(3/2)] units.

Apart from the form of the weight function in (1),
a dimensionless stretch factor and a term regarding
“local dip” at the reflector in the time domain may
also be multiplied when referred. Other terms that
may be multiplied in (1) are square roots of abso-
lute values of determinants of Hessian matrices or, in
2.5-D, curvatures of diffraction traveltimes for points
in the input and output domains (Tygel et al., 1998;
Martins, 2001).

Physically, weight function (1) is completely rep-
resented by kinematic parameters belonging to the
input (t1, t2, vRMS) and output (τ̃ , t̃S , t̃G) spaces, re-
spectively. In this sense, the layout of Equation (1)
just displays the product of each contribution relat-
ing chained processes of migration and demigration
(Oliveira et al., 2023).

We do not specify the weight functions for the
weighted diffraction-stack migration because they are
well-known in the literature (e.g., Schleicher et al.,
1993). Also, one unity weight is used for the kine-
matically only Kirchhoff migration cases.
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With the weights defined in this way, we will
show that the remigration process “pulls” the under-
migrated amplitudes to the true-migrated ones, con-
sidering, of course, limitations related to aperture is-
sues and border effects or even picking problems.

Apertures
In principle, no restrictions will be imposed to aper-
tures. Only analytical cases are considered, using
ideas of offset-continued traveltime surfaces already
studied in the literature (e.g., see Fomel, 2003). To
other concerns regarding aperture issues, see a brief
discussion in Appendix A.

Input data available for picking
All seismic sections available for amplitude picking in
this paper are space-time equivalent. Therefore, each
picked amplitude profile must have the same length.

Each section shall be considered in the following
order:

• An input seismic section (common-offset).

• A diffraction-stacked, weighted, time-migrated
section (Schleicher et al., 1993).

• A diffraction-stacked, unity-weight, time-
migrated section.

• A time-remigrated section, in which for this
latter the input section is one undermigrated,
diffraction-stacked section using an inaccurate
velocity model.

Besides the issue of true amplitudes in time do-
main, we claim in the comparisons the behavior of
each procedure according to the ones already de-
scribed in the literature in terms of magnitude, losses
(geometrical spreading), and polarity issues.

Amplitude considerations
Let us simplify some definitions and state that 3-D
sources that gave rise to 2.5-D amplitudes in our ex-
amples present no issues regarding directivity or cou-
pling. Also, no attenuating properties of the medium
are considered, only geometrical spreading and re-
flection coefficients are regarded. Transmission losses
across interfaces are not present in our examples.

Impedance contrasts are present in both synthetic
datasets. In some sense, however, they may be taken
as optional, since reflections derived from their mod-
els are essentially the final result of an analytic inte-
gration along mathematical reflectors and may even
be set to unity when referred to. As a result, picked
amplitudes will, in principle, be proportional to angle-
dependent reflection coefficients.

In the following we consider each dimensional
contributions of each numerical operation in the
time domain in the sequence: modeling, weighted-
Kirchhoff migration, unity-weight Kirchhoff migra-
tion and Kirchhoff remigration. Each mathematical
operation is responsible for a dimensional contribu-
tion to amplitude values, according to the table be-
low.

Each entry in Table 1 in the column “Contribu-
tion (dimension)” represents one contribution to each
amplitude “density”. In their final form, these contri-
butions are the result of the multiplication of several
factors that constitute one weight function in each
mathematical operation, either modeling, migration,
or remigration. The last factor that contributes di-
mensionally is the differential dx of each operator.
Therefore, each result listed in the column “Ampli-
tude (“density”)” is the term regarded as "amplitude"
that is inserted into each final time-migrated or time-
remigrated seismic section under the peak of each
wavelet signal. The scaling factors derived for each
example are the ones that are then multiplied to each
picked event in the examples, turning their ampli-
tudes dimensionless.

In each example, a peak of a reflected and mi-
grated event will be semi-automatically chosen to
compare its value with the peak in the input seismic
section and in the time-migrated and time-remigrated
output sections. These amplitudes will then be scaled
accordingly to their “density” nature in the manner
assessed in this paper and listed in Table 1.

It must be noticed that peak amplitudes are se-
lected in order to preserve the idea of higher value.
Another possible idea is to use the envelope of the
analytical signal, since this is an attribute that is re-
lated to the maximum reflection and normally pre-
serves the lateral continuity of seismic events. Also,
there may appear, in some cases, issues related to
change of polarity, a feature that must be adequately
cared and carefully considered. A manual picking, in
these cases, may be able to resume this kind of diffi-
cult.

EXAMPLES
In this section, we briefly introduce the synthetic
datasets used in this paper. We first introduce the
synthetic seismic sections and then their respective
migrated results. We consider presenting the datasets
in this way because the picking procedure that is the
main objective of this paper is realized upon unmi-
grated and migrated sections. Since the inclusion
of lateral velocity variations skews reflections, when
dealing with imaging in time, these features must be
taken into account, as it is known that automatic
picking will face some drawbacks.

We have tested our algorithm in two synthetic
datasets. The first one is represented by a common-
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Table 1: Numerical contribution to amplitudes.

Numerical Operation Contribution (dimension) Amplitude (“density”) Scalling (factor)
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√
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Remigration
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s
m
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√
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s3/2

m3/2 2dx5/2
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offset section simulated over a single-interface model.
The second dataset is given by a common-offset sec-
tion simulated over a stratigraphic model. Both ge-
ometry are specified as 2h = 50m, where h is the
half-offset between sources and receivers.

The main features of each model and its respective
data are described below (see Figure 1). Grid param-
eters for models and data are specified as the total
number of samples in each direction: Nx, Nz, Nt and
Ntraces for each respective domain. Their sampling
intervals are denoted by dx, dz, dt. For instance, in
our examples we have made use of the following equal-
ities: Ntraces = Nx. We use SI units in all examples,
but for numerical procedures, multiples and submulti-
ples are normally considered. A gradient of the order
of 0.03 Hz was included for lateral velocity variations
in the examples when referred.

Synthetic datasets

• Single reflector model. The first example is
represented by a common-offset section derived
from a single interface of a syncline model lo-
cated over a half-space (Figure 1a). Model pa-
rameters are Nx = 400, Nz = 200, dx = dz =
25 m, while data parameters are Ntraces = 300,
dt = 8ms, where trace spacing equals to dx as
specified above, as well as source and geophone
intervals. For the modeled data seen in Fig-
ure 2, the velocity in the layer above the in-
terface is constant and equal to 2.5 km/s. The
modeled seismic section in this case contains the
typical bowtie pattern of reflections associated
with this kind of model. Figure 2 depicts the
same modeled seismic section, but with a gra-
dient of 0.03 Hz along the x−direction added
to the constant velocity. Note the time-skewing
present along the range of distances from 4.0 km
to 7.5 km in this section due to the presence of
velocity gradient.

The time sample indicated for semi-automatic
picking in all sections in this first model is t = 2 s.
Note that in the range of distances 1.0 to 4.0 km, re-

flections belong to the syncline interval of the model
and are far delayed in time as expected, forming the
bowtie pattern. These amplitudes were not picked
for numerical comparison, and what is expected to be
picked along this interval around t = 2 s is just negli-
gible numerical noise or null values. In both sections
of Figure 2, note also the reflections due to the pres-
ence of a discontinuity (i.e., normal fault) in the range
of distances 4.0 to 4.4 km, which is a second gap that
was introduced in this model, representing a second
source of null values of reflection amplitudes.

Of course, the picking procedure will suffer some
drawbacks in the range of distances 4.0 to 7.5 km
when the gradient case is considered (Figure 2b). This
is not a main concern, since we are just comparing
methods and we shall show that the picked values in
this case are at least proportional and show a com-
mon trend, despite some polarity issues. In a future
work, this can be remedied with manual picking.

• Pre-salt model. The second synthetic exam-
ple considers one previously model studied in
Oliveira and Ferreira (2009), which describes
the results of the modeling of a simple 2-D
seismic dataset acquired over a representative
pre-salt model derived from any of the Brazil-
ian East Margin offshore basins (Figure 1b).
The geological model that was constructed to
simulate the seismic section seen in Figure 3
with its respective interval velocities is origi-
nally made up of four depositional sequences:
(I) basement (6.5 km/s); (II) pre-salt section
(4.5 km/s); (III) salt layer (5.5 km/s); and (IV)
the Tertiary-Upper Cretaceous section, with a
constant velocity gradient given by v(z). For
the same model in the example used in this
work, some intervals of its velocity field were
updated to include lateral velocity variations
in the Cretaceous section and in the SAG/rift
section and then transformed to the time do-
main. The model parameters for this case are
Nx = 720, Nz = 160, dx = dz = 50m, whereas
data parameters are Ntraces = Nx, Nt = 1750
and dt = 4 ms.
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6 2.5-D AMPLITUDE STUDIES

Figure 1: Geological models with interval velocities used in the synthetic tests. (a) Velocity is constant in the first layer
and equal to 2.5 km/s. The velocity below the interface is set to 3.0 km/s. A second example for this model considers
the existence of a gradient of 0.03 Hz in the x−direction in the first layer. (b) Pre-salt model considered in Oliveira and
Ferreira (2009).
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(a) Velocity is constant in the first layer and equal to 2.5 km/s.

(b) A gradient of 0.03 Hz in the x-direction is added to the velocity in the layer above the interface.

Figure 2: Synthetic common-offset sections (2h = 50m) for the single reflector model. (a) Velocity is constant in the
first layer and equal to 2.5 km/s. (b) A gradient of 0.03 Hz in the x-direction is added to the velocity in the layer above
the interface. In both cases, note the typical bowtie pattern for this kind of model. In case (b), time-skewing in the
range of distances 5.0 to 7.5 km is exclusively due to velocity gradient.

For the pre-salt example, we selected an event
around t = 3.5 s to semi-automatic picking, repre-
sentative of the top of salt (see Figure 3). Events on

the base of salt could have been selected, but these
are affected by pull-up effects in regions right under
salt domes in the input and time-migrated sections.
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8 2.5-D AMPLITUDE STUDIES

Figure 3: Pre-salt model. Common-offset section (2h = 50 m) simulating a 2-D seismic marine acquisition over the
area of the velocity model defined in Oliveira and Ferreira (2009).

Time migration
In Figures 4 and 5, the results of the Kirchhoff time
migration are seen for the examples of Figures 2 and 3,
respectively. Both output sections were previously
weighted and migrated accordingly.

The results for unity weight and time remigration
are not depicted, since they are essentially the same in
terms of structures imaged. Also, the undermigrated
time section is not depicted, since only the amplitudes
present in the remigrated results are of importance in
the comparisons that will be shown in the next sec-
tion.

RESULTS AND DISCUSSIONS
Constant velocity model – single interface
The input dataset for this case is the one depicted in
Figure 2a and its time-migrated output section is the
one depicted in Figure 4a.

Figure 6 depicts four amplitude profiles picked
along the midpoints in Figures 2a (unmigrated)
and 4a (time-migrated), as well as along the unity-
weight and time-remigrated Kirchhoff equivalent sec-
tions (not shown here) for all time samples that even-
tually show any reflection with peaks at t = 2 s. The
plot has two vertical scales, to emphasize the fact that
the order of magnitudes of the amplitudes in each
group of profiles is quite different. The scale of am-
plitudes on the right refers only to the values of mod-
eling (magenta), while the scale on the left includes
amplitudes of unity-weight Kirchhoff time migration
(black), true-amplitude weighted-Kirchhoff migration
(blue), and Kirchhoff time-remigrated (green dia-
monds), respectively.

The scaling factors that were multiplied to each
picked profile value in each plot are the ones listed in
Table 1. Note in Figure 6 that the values of ampli-
tudes after multiplication are proportional and scal-
able, as initially claimed. The situation is very clear
when a laterally continuous range of amplitude values
is equal in magnitude. This feature, in the example
above, is fair and clearly visible along the range of
midpoints 5.0 to 7.0 km.

The order of magnitude for the modeled ampli-
tudes (magenta) in Figure 6 is much lower than the
time-migrated and time-remigrated ones, according
to the scale of the latter profiles positioned on the
left of the plot. It is clear that picked amplitudes
after a weighted-Kirchhoff migration (blue) are cor-
rected from geometrical-spreading losses, since they
are presented as higher values in relation to migra-
tion with unitary weight (black) in the same plot.

As for the time-remigrated amplitudes (green
diamonds), they are practically the same as the
weighted-Kirchhoff result. In the general approach
to seismic imaging of Hubral, Tygel and Schleicher,
the cascading of a migration/demigration or a sin-
gle stack solution grants the best possible amplitudes
in a preserving way. For this constant-velocity (and
simple) example, this is a faithful statement of this
fact.

A final and interesting comparison for the con-
stant velocity example is shown in Figure 7. This
time, the black curve of amplitudes along mid-
points depicts the picked values for the undermigrated
Kirchhoff result, showing that these values of ampli-
tudes are much even higher or overestimated than the
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(a) Time migration for the constant velocity case.

(b) Time migration for the gradient case.

Figure 4: Time-migrated sections of the input data shown in Figure 2. (a) Constant velocity case. (b) Gradient case.

weighted-Kirchhoff result and, therefore, its ampli-
tudes are not the best possible ones. When these data
are time-remigrated, following the lines of Oliveira
et al. (2023), the output amplitudes are true again,
as predicted in theory (Hubral et al., 1996; Tygel
et al., 1996). This again shows that time remigra-
tion “pulls” undermigrated amplitudes to their best
true-amplitude results.

Lateral velocity variation – single interface
When lateral velocity variation is present, time-
skewing is one of the features commonly present in
time migration (Black and Brzostowski, 1994; Bevc
et al., 1995). Figure 2b is a skewed version of the

input seismic section for the constant velocity case.
Figure 8 then depicts the comparison of picked ampli-
tudes for the same event at t = 2 s in the same manner
as in Figure 6. This time, the automatic picking for
this temporal sample will vary along midpoints, in-
cluding polarity changes due to skewing. This is an
example in which a manual picking should come into
play to preserve the lateral continuation of the events
being tracked.

Figure 9 then just depicts the same behavior of
amplitudes when the true-amplitude results are com-
pared to the undermigrated ones. Again, time rem-
igration “pulls” undermigrated amplitudes to their
best true-amplitude results.

Braz. J. Geophys., 42, 2, 2024



10 2.5-D AMPLITUDE STUDIES

Figure 5: Kirchhoff time-migrated seismic section of the input data seen in Figure 3 (pre-salt model). Weighted time
migration here presents non-collapsed pull-ups below salt dome events and time-skewing due to lateral velocity gradient.

Figure 6: Semi-automatically picked amplitudes for an event at t = 2 s for the example of constant velocity. See text
for details.

Figure 7: Another comparison, as in Figure 6, but this time the black curve shows the values of the undermigrated re-
sult when compared to the other true-amplitude ones.

Braz. J. Geophys., 42, 2, 2024
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Figure 8: Semi-automatically picked amplitudes for an event at t = 2 s for the example of lateral velocity variation.

Figure 9: Another comparison, as in Figure 8, but this time the black curve shows the values of the undermigrated re-
sult when compared to the other true-amplitude ones.

We call attention to the fact that in this lat-
ter example, amplitudes were automatically picked,
whereas it should have been manually done. But even
with the presence of this picking problem, we observe
that physically the results are conclusive, agreeing
with the one for the constant velocity example.

Pre-salt model
For this synthetic model of the Brazilian pre-salt (see
Figure 1b), the 2.5-D amplitudes were modeled with
amplitudes that work as “densities” with dimension
equal to 1√

2m3/2
(see Figure 3). Therefore, any am-

plitude picked from the reflections of this model must
first be scaled with 2

√
dx before any comparison and

assessment. The other factors involved in the scaling
of picked values for migration and remigration are
listed in Table 2.

The picking procedure for this example is the most
challenging one. There are several processing issues
related to this model. The presence of aliasing noise
in modeling and migration seems to contaminate the
automatic sample picking in the straightforward man-
ner in which our procedures were done in the previ-
ous examples. Our opinion, without proving here, is
that a careful manual picking should be mandatory
in order to compare all amplitudes, time-migrated or
time-remigrated, in a fair way. But since manual pick-

ing was not available to us during the writing of this
paper, the only solution was to band-pass the data in
each of the procedures so as to eliminate as much noise
as possible and proceed with semi-automatic picking.
Therefore, an Ormsby band-pass filter was applied to
the input seismic data before kinematic and weighted
migrations, as well as to the undermigrated data be-
fore the time remigration procedure. In terms of kine-
matic imaging, we state that these filtering proved to
be quite satisfactory.

Due to these problems, we have chosen two spe-
cific time samples of reflection events of the modeled
data in order to compare to the same values of picked
amplitudes along migrated and remigrated sections
(Figure 10). These samples are very close to each
other in time and are representative of reflections of
the top of the salt layer of the geological model (see
Figure 1b). Since the picked events are referred to a
single sample in time, the lateral variation of picked
values along midpoints in this example shall not fol-
low a continuous trend, but sometimes even oscillate
between positive and negative values (change of po-
larity) due to time-skewing. Notice that, in the areas
of the two salt domes (in the range of distances 5 km
to 10 km and 20 km to 25 km, respectively; see Fig-
ure 5) the picked values for the chosen constant sam-
ple must be disregarded, since there are no seismic
events there (just noise) and any value picked there
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12 2.5-D AMPLITUDE STUDIES

Table 2: Pre-salt model contribution to amplitudes.

Numerical operation Contribution (dimension) Amplitude ("density") Scaling (factor)

Modeling 1√
2

dx
m3/2

1√
2m

√
2dx

Weighted-Kirchhoff 1√
2m

√
2s
2

dx
m

1
2

√
s
m 2

√
dx
s

Unity-Kirchhoff 1√
2m

dx
m

1√
2m

√
2dx

Remigration
√
2
4

s
m2 dx

√
2
4

s
m 2

√
2dx
s

must be close to zero in either of the scales used on
the following figures. In the case of the input seismic
section in these ranges, the picked values are located
between two distinctive spikes that indicate the re-
gion where edge diffractions of the salt domes occur
(see Figure 3).

Figure 10a then depicts the picking profiles for
an event located at t = 3.54 s. As before, we
note an agreement and a proportionality of val-
ues in all profiles derived from the modeled (ma-
genta), weighted-Kirchhoff (blue), unity-Kirchhoff
(black) and Kirchhoff-remigrated (green) sections.
The weighted-Kirchhoff and unity-Kirchhoff follow an
equal, proportional and significative trend along the
range of distances (and according to their scales),
which reflects the fact that their operators perform
the same imaging task and adequately locate reflec-
tion events, although the derived amplitudes are dif-
ferent in values. This similarity is most noticeable in
the range of distances 20 km to 29 km in Figure 10a,
but in a general sense the same feature is recognizable
along the rest of midpoints. The time-remigrated pro-
file also presents the same feature along all midpoints,
but resembles a smoother curve and seems to be af-
fected by some edge effects.

Now let us consider the case of one event located
at t = 3.64 s. Figure 10b depicts the representative
profile section showing the same results as in the pre-
vious example. This time, the time-remigrated result
(green) is the only profile that presents an distinct be-
havior, which is negative polarity along most ranges
of midpoints. In order to check this proportionality
of values with respect to the weighted-Kirchhoff and
unity-Kirchhoff, in Figure 10c we have artificially in-
verted the polarity of the remigrated result. Notice
now that the new remigrated profile is most equiva-
lent to the latter ones. Our opinion about this fact
is that since time remigration is a weighted-stacking
operation, the change of polarity may be associated
with some acquired complex phase due to its weight
function.

As a final example for this pre-salt model, Fig-
ure 10d depicts a careful picking of values of the top
of salt reflections (again, considering reflections un-

der the domes to be near zero). This time, an initial
time at t = 3.588 s is selected as a linear coefficient
for a straight line direction following a specific angu-
lar coefficient, corresponding to the top of salt reflec-
tions that are skewed upwards in time. The picking
under theses conditions is still automatic, but now
follows a more oriented direction and as close as pos-
sible of an example of a manual picking. Then, Fig-
ure 10d depicts the fact that all profiles present a
common morphology; the only difference is the scale
and proportion of picked values. This last example
proves our claim that manual picking procedure pro-
vides straightforward and meaningful results.

As before, it must be noticed that the picked time-
migrated and time-remigrated amplitudes are propor-
tional to the ones from the input seismic data, ac-
cording to their respective scales, after the use of the
scaling factors listed in Table 2. Also, it is important
to notice that, in all examples, the remigrated picked
values follow closely and proportionally the weighted-
Kirchhoff values, as already shown in previous exam-
ples and theoretical predictions (Hubral et al., 1996;
Tygel et al., 1996).

CONCLUSIONS

We have successfully studied the scaling of amplitudes
derived from weighted time migration and time remi-
gration processes and their comparison to scaled am-
plitudes picked along modeled seismic data. In this
study, we have made use of 2-D synthetic data only.

Recognizing that numerically modeled 2.5-D am-
plitudes work as “densities” (i.e., they are physical
constants), we have devised some scale factors for
modeling, migration and remigration that make am-
plitudes dimensionless. When these factors are di-
rectly multiplied to picked amplitude values of reflec-
tion events, the magnitude of each event is equal-
ized and the scales of their values become propor-
tional. Following this reasoning, we have shown ad
hoc that picked time-migrated and time-remigrated
amplitudes (i.e., corrected for geometrical spreading)
are also proportional to amplitudes picked from their
input seismic data in a true sense (Schleicher et al.,
1993).
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(a) Event at t = 3.54 s.

(b) Event at t = 3.64 s. Negative polarity (remigration).

(c) Event at t = 3.64 s. Positive polarity (remigration).

(d) Event at t = 3.588 s. This time all amplitudes were picked along a linear trend at the base of salt.

Figure 10: Picked amplitudes for events at 3.54 s, 3.64 s and 3.588 s, representative of the top of the salt layer.
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We have tested the present procedure in two syn-
thetic, common-offset, 2.5-D seismic dataset. The
input dataset of the first model considers only an
interface separating two media, where, for the first
layer, cases of constant velocity and initial velocity
with lateral variation along the x-direction were ac-
counted for. The input dataset of the second model
is representative of a 2-D marine acquisition over a
regional pre-salt area derived from any of the Brazil-
ian East Margin offshore basins (Oliveira and Fer-
reira, 2009), including lateral velocity variations in
the Cretaceous and SAG/rift sections. In both cases,
each input seismic section was then time-migrated
using a weighted-Kirchhoff (Schleicher et al., 1993)
and an unity-Kirchhoff algorithm to provide the main
migrated sections containing reflection horizons that
may be used for picking. In order to generate in-
put data to the remigration procedure in the time
domain (Oliveira et al., 2023), we have also gener-
ated weighted-undermigrated results using the same
algorithm. These additional imaging results are not
shown here, just their picked values.

The results obtained in all examples showed that
the scaling of amplitudes by dimensional factors is ca-
pable of equalizing magnitudes of the picked events,
at least proportionally, increasing the confidence of
their physical interpretation.
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APPENDIX A. KIRCHHOFF-TYPE
REMIGRATION
THEORY

In this appendix we present a brief description of the
remigration theory (Hubral et al., 1996; Tygel et al.,
1996), considering its counterpart in the time domain
(Oliveira et al., 2023).

Similar to the Kirchhoff-type theory described in
Tygel et al. (1998) and Schleicher and Bagaini (2004),
for each point (x̃, τ̃) in the output time-remigrated
section to be simulated, the stack result Ĩ(x̃, τ̃) is ob-
tained by a weighted stack of the input data, repre-
sented by the following integral

Ĩ(x̃, τ̃) =
1√
2π

∫
A

dxK
(2.5D)
RM (x; x̃, τ̃)

× ∂1/2
τ I(x, τ)

∣∣
τ=tRM (x;x̃,τ̃)

.

(A1)

where I(x, τ) is the input time-migrated (an-
alytic) seismic section that is to be weighted by
K

(2.5D)
RM (x; x̃, τ̃) and then summed up along the stack-

ing line or inplanat τ = tRM (x; x̃, τ̃) (Tygel et al.,
1996). The time-reverse generic half-derivative

∂
1/2
−t [f(t)] =

1√
2π

∫ +∞

−∞
dω |ω|1/2e−iπ

4 sign(ω)

× F (ω) e−iωt.

(A2)

is applied to input traces in order to correct the
pulse shape. Here, f(t) is any function of its argu-
ment.

In inhomogeneous medium and considering the
presence of mild lateral velocity variation, for a finite-
offset (2h) configuration, the stacking line for the rem-
igration procedure is given by Equation (A3) (Mar-
tins, 2001):

t
(ξ)
RM (x; x̃, τ̃) =

√
τ̃2D − 4h2

v2RMS

√
1− (x− ξ∗(x))2

v2
RMS

4 τ̃2D

.

(A3)

In (A3), τ̃D is the diffraction traveltime for coordi-
nate (x̃, τ̃) in the output space, represented by two
DSRs for two branches of the traveltime to the image
point, wherein velocity ṽRMS is used relative for each
source and geophone in that domain. Here, the sta-
tionary value ξ∗(x) is the coordinate that relates the
inplanat τ = tRM (x; x̃, τ̃) with its respective coordi-
nates in the input and output domains (Tygel et al.,
1996).

Two conditions constrain the aperture A range
for time remigration following Equation (A3). The
first is offset-dependent (i.e., τ̃2D > 4h2/v2RMS), which
means that, in all offsets, very shallow to shallow
events (whenever they are recorded) must be disre-
garded or are not imaged around any stationary value
ξ∗(x) that may exist along these shallow time inter-
vals. The second constraint is related to the condition
(x − ξ∗(x))2 <

v2
RMS

4 τ̃2D, which restricts the number
of traces to be stacked around the stationary value
ξ∗(x).

The remigration weight function for the numeri-
cal procedure – see Equation (1) of the main text – is
given by the direct multiplication of two weight func-
tions (migration and demigration). Another simplifi-
cation of the same weight function is obtained when
it is replaced by a pseudo-depth or time domain ver-
sion proportional to the so-called Beylkin determinant
(Martins et al., 1997), dimensionally equivalent to its
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depth version. In 2.5-D, the Beylkin determinant in
depth is reduced to a form that is proportional to a
2-D version, because in this case the 2.5-D migration
weight function is defined in terms of this determi-
nant and other ray theory elements (i.e., product of
geometrical spreadings for each source and receiver
ray branch) as the 2.5-D demigration weight func-
tion is proportional to the reciprocal of the products
of the geometrical-spreadings (Martins, 2001). Since
in remigration there is numerical multiplication of
migration/demigration weight functions, there is an
explicit possibility that these geometrical-spreading
terms cancel each other when a stationarity condi-
tion holds (Tygel et al., 1996).

A special computer code was written in order to
use the cascaded remigration operator with a weight
function proportional to the Beylkin determinant,
h̃
(2D)
B (ξ; M̃), in the time domain (see Appendix B).

As a result, and considering that at the image condi-
tion during migration (t = 0) there will be stationar-
ity, the product of the migration/demigration weight
functions will have the following format:

K
(2.5D)
RM (x; x̃, τ̃) = K̃

(2.5D)
DS (ξ; M̃)K

(2.5D)
IS (x;N)

=
v
3/2
RMS

4
h̃
(2D)
B (ξ; M̃)

√
mD(x).

(A4)

where M̃ = M̃(x̃, τ̃) and N = N(x, τ) are loca-
tions in the input and output spaces, respectively.
The function mD(x) is the stretch factor defined in
Tygel et al. (1994). It is important to specify that
to all examples followed in this paper, the meaning
of vRMS = vRMS(x̃, τ̃) is mandatory and assumed a
priori.

Considering this new notation, the final stacking
integral of the numeric chained process shall have the
following form:

Ĩ(x̃, τ̃) =
1√
2π

∫∫
A

dξ dxK
(2.5D)
RM (x; x̃, τ̃)

× d

dτ
I(x, τ)

∣∣∣∣
τ=t

(ξ)
RM (x;x̃,τ̃)

.
(A5)

It must be emphasized that the double integral in
Equation (A5) refers to a 2-D process and that it is a
one-step chained migration/demigration procedure.

APPENDIX B. THE BEYLKIN
DETERMINANT IN THE
TIME DOMAIN

In equation (A4), the so-called 2-D Beylkin determi-
nant h̃(2D)

B (ξ; M̃) must be evaluated in pseudo-depth,
where generically z = vt/2. Thus, it is defined:

h̃
(2D)
B (ξ; M̃) = det

 ∂τ̃D(ξ;M̃)
∂x̃

2
ṽRMS

∂τ̃D(ξ;M̃)
∂τ̃

∂2τ̃D(ξ;M̃)
∂ξ∂x̃

2
ṽRMS

∂2τ̃D(ξ;M̃)
∂ξ∂τ̃ .

 .

(B6)

In this appendix let us study the explicit form of this
function, which is part of the weight function in Equa-
tion (A5) used in some cases in this paper.

Let the first row of the Beylkin determinant be
given by the following elements

B11 =
∂τ̃D
∂x̃

=
1

ṽ2RMS

[
(x̃− ξ − h)

t̃S
+

(x̃− ξ + h)

t̃G

]
(B7)

and

B12 =
2

ṽRMS

∂τ̃D
∂τ̃

=
τ̃

2ṽRMS

(
1

t̃S
+

1

t̃G

)
. (B8)

Here, t̃S and t̃G are traveltime branches of the double-
square-root equation for the diffraction point (x̃, τ̃)
in the output space, whereas ṽRMS is its respective
stacking velocity.

The second row of the matrix presents the follow-
ing elements

B21 =
∂2τ̃D
∂ξ ∂x̃

= − 1

ṽ2RMS

(
1

t̃S
+

1

t̃G

)
+

(x̃− ξ − h)2

t̃3S ṽ4RMS

+
(x̃− ξ + h)2

t̃3G ṽ4RMS

.

(B9)

and

B22 =
2

ṽRMS

∂2τ̃D
∂ξ ∂τ̃

=
τ̃

2 ṽ3RMS

[
x̃− ξ − h

t̃3S
+

x̃− ξ + h

t̃3G

]
.

(B10)

Therefore, all elements of the Beylkin determinant
described above are expressed as functions of trav-
eltimes and other parameters related to seismic ac-
quisition (source-geophone pair coordinates, parame-
terized by midpoints and half-offset), besides output
space coordinates and RMS stacking velocities. Then,
in numerical implementations of equation (A5), one
just have to do h̃

(2D)
B (ξ; M̃) = B11B22 − B12B21 in

order to calculate the Beylkin determinant.
Finally, it is important to state that, dimension-

ally, [h̃(2D)
B (ξ; M̃)] = [ s2

m3 ]. This dimension is equiv-
alent to the one of the Beylkin determinant in the
depth domain.
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