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ABSTRACT. The Inverse-Scattering Imaging Condition (ISIC) is an imaging condition for Reverse-Time
Migration (RTM) that attempts to recover the medium reflectivity. It is theoretically based on the asymp-
totic inverse to the Born approximation and can be represented in several approximately equivalent forms. Its
application leads to more reliable reflectivity estimates and strongly reduces backscattering artifacts. In this
work, we demonstrate that an ISIC formulation involving a Laplacian filter can be used as an effective precon-
ditioning for Least-Squares RTM (LSRTM). The Laplacian-filter ISIC does not increase the computational cost
over conventional imaging conditions. Our numerical experiments using synthetic seismic data from the Mar-
mousi II model demonstrate that this preconditioning leads to faster convergence and superior final images of
LSRTM, both in the image domain (ID-LSRTM) and data domain (DD-LSRTM), in this way actually reducing
computational cost and turnaround time.

Keywords: illumination compensation in LSRTM; reflectivity recovery; ISIC; seismic-migration precondition-

ing; backscattering-noise reduction.

INTRODUCTION

Seismic migration is a process that aims at generat-
ing detailed images of reflecting subsurface structures.
This can be realized by means of various methods,
one prominent example being reverse-time migration
(RTM) (Schultz and Sherwood, 1980; Baysal et al.,
1983; McMechan, 1983). Unlike other methods, RTM
is based on the full wave equation, granting it the ca-
pability to produce images in models with strong ve-
locity contrasts. Moreover, this approach offers the
particular advantage of allowing to accurately image
reflectors with arbitrary dip, making use of prismatic
and diving waves (Leveille et al., 2011).

The RTM methodology relies on extrapolating the
(forward) source and (backward) receiver wavefield,
culminating in the construction of the migrated im-
age via the application of the so-called imaging condi-
tion. The conventional imaging condition employed in
reverse time migration (RTM) is a zero-lag crosscor-

relation of the source and receiver wavefields, which
finds its origins in the work of Claerbout (1971).

In spite of the many advantages of RTM, there are
a few drawbacks. Depending on the geological com-
plexity of the medium, the extrapolated wavefields
can encompass waves traveling in both ascending and
descending directions, such as diving waves, head
waves and prismatic waves (Fletcher et al., 2005).
In this situation, the correlation between forward
and backward propagated wavefields introduces low-
wavenumber noise in the image, commonly referred
to as backscattering noise.

Another factor that frequently degrades the am-
plitude distribution in the final migrated image is
uneven illumination of the subsurface target area.
This may be caused by inadequate positioning of the
sources and receivers and by the focusing and defocus-
ing of the extrapolated wavefields, possibly including
geometrical-spreading effects.
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To mitigate these problems, a common practice
involves post-processing the image resulting from
zero-lag crosscorrelation as introduced byClaerbout
(1971). Two frequently employed corrections are
the application of a Laplacian filter to reduce
backscattering mnoise, and the correction of the
image amplitudes by the subsurface illumination
of the source wavefield to account for focusing
and defocusing effects (Biondi, 2006). This leads
to the improved crosscorrelation-with-Laplacian-
filter-and-illumination-compensation imaging condi-
tion (CLIIC).

Although the CLIIC produces a good estimate of
the structures of subsurface reflectors, their ampli-
tudes do not correspond to the true reflection coeffi-
cients of the subsurface (Kiyashchenko et al., 2007).
Also, the image quality is frequently degraded by ad-
ditional problems, such as the limited aperture of
the acquisition geometry, illumination variations and
band-limited frequency content of the source wavelet.
Moreover, mathematically speaking, migration is the
adjoint rather than the inverse operation to forward
modeling, which causes a blur of the image points
(Claerbout, 1992).

To further improve the migrated seismic images
and make the amplitudes of the reflectors propor-
tional to reflection coefficients, Kiyashchenko et al.
(2007) and Op’t Root et al. (2012) tried to formu-
late approximate inverse operators to forward mod-
eling. Based on inverse-scattering theory, the latter
authors carried out a microlocal analysis to derive the
so-called inverse-scattering imaging condition (ISIC)
that makes RTM the asymptotic inverse operation to
acoustic forward modeling in the Born approxima-
tion.

The original ISIC formulation of Op’t Root et al.
(2012) and its first time-domain implementations con-
sist of the sum of two separately generated images,
one of which is formed by the correlation of the time
derivatives of the downward extrapolated source and
receiver wavefields and the other by the correlation of
the corresponding spatial derivatives (Whitmore and
Crawley, 2012; Pestana et al., 2014; Fang et al., 2017).
The first implementations demonstrate that the ISIC
can help to produce seismic images in which backscat-
tering noise is greatly reduced and amplitudes become
correlated with reflection coefficients. Because this
original form of the ISIC requires the generation and
sum of two images, its application is computationally
more expensive than a conventional crosscorrelation
imaging condition, even in the form of the CLIIC,
where Laplacian filtering and illumination correction
are included.

Recently, Albano et al. (2023) have compared sev-
eral implementational forms of the ISIC, which are
theoretically equivalent, except for a slightly differ-
ent approximation of the inherent illumination cor-
rection. In two of these ISIC forms, the two images
are mathematically combined into a single one. This
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is achieved by using the wave equation to substitute
the temporal wavefield derivatives by spatial ones. In
this way, the combination of the derivatives gives rise
to the Laplacian operator, making the computation
cost of these ISIC versions the same as that of the
CLIIC.

However, the formulation of an adequately cor-
rected migration operator as an asymptotic inverse
to forward modeling is not able to solve all image de-
ficiencies. Though it significantly reduces backscat-
tering and image blurring, it does not consider the
acquisition footprint or the band-limited nature of the
data (Albano et al., 2023). These effects can be taken
into account when migration is formulated as an in-
verse problem in the sense of Tarantola (1984), i.e.,
minimizing the discrepancy between the observed and
modeled data. In its linearized form, with the data
discrepancy measured by the squared data residual,
this inverse problem is called least-squares migration.
It aims at iteratively converting the adjoint opera-
tor into the best possible estimate of the true in-
verse operator, given a (fixed) background velocity
model, in this way determining the model perturba-
tions (also called reflectivity) with the best possible
resolution (Nemeth et al., 1999; Dai and Schuster,
2009; Trad, 2015). The least-squares formulation can
be applied to any seismic migration method. Here,
we specifically consider least-squares reverse-time mi-
gration (LSRTM, see, e.g., Dai et al., 2012; Zhang
et al., 2015; Feng and Schuster, 2017).

LSRTM can be implemented in two distinct do-
mains, the data domain (DD-LSRTM) and the image
domain (ID-LSRTM). In the data domain, it requires
the iterative solution of a linear system. At each it-
eration, the scattered wavefield is modeled using the
Born approximation. Subsequently, the residual be-
tween the modeled and the observed reflected data
is migrated. The update of the reflectivity model is
carried out in the direction of the steepest descent of
the quadratic data residual (Duan et al., 2017; Yang
et al., 2019). More advanced and costlier methods
attempt to accelerate convergence by preconditioning
the gradient direction with (an approximation of) the
inverse Hessian.

In the image domain, the residual is defined as the
difference between the migrated images of the mod-
eled and the observed data. In this domain, the com-
bined effect of all practical limitations, whether aris-
ing from the observed data, acquisition geometry, or
employed migration method, can be simulated by de-
termining the impulse responses to point sources dis-
tributed throughout the model, the so-called point-
spread functions. The least-squares solution to the
original inverse problem can then be expressed as a
deconvolution of the initial migrated image with the
inverses of these point-spread functions, eliminating
the need for an iterative solution (Aoki and Schus-
ter, 2009; Fletcher et al., 2016; Schuster, 2017). As a
consequence, ID-LSRTM yields migrated images with
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enhanced resolution at a reduced computational cost
as compared to DD-LSRTM.

In this work, we investigated if the ISIC can help
to precondition LSRTM so as to improve the con-
vergence and/or increase the quality of the resulting
migrated image without increasing the cost over the
CLIIC. For this purpose, we implemented ISIC pre-
conditioning for both ID-LSRTM and DD-LSRTM.
By means of numerical experiments using the Mar-
mousi II synthetic dataset, we show that, in both
approaches, the preconditioned algorithm reaches a
lower residual and converges faster to the solution, in
this way reducing the computational cost.

LSRTM

Any kind of wave equation represents the wavefield to
be determined as a nonlinear function of the medium
parameters. The Born approximation linearizes the
forward problem, calculating a wavefield perturbation
as a function of a perturbation of the (fixed) back-
ground velocity distribution. In this linearized for-
mulation of the forward problem, the modeled data
d are obtained as a result of applying a linear mod-
eling operator L (which depends only on the velocity
background) to the model reflectivity m (Snieder and
Trampert, 1999). In matrix form, this can be written
as

d=Lm. (1)

The inverse problem can then be formulated as a
least-squares problem, where the objective is to find
that particular model m* that minimizes the square
of the mismatch between the modeled data d and the
observed reflection data d,ps. In other words, the
problem becomes to minimize the objective function

1
Jpp(m) = 2 dops — d|I*, 2)

where the sums are carried out over all sources and
receivers. This is achieved in an iterative form, where
each iteration uses a migration of the data residual
d — d,ps to estimate a model update Am that fur-
ther reduces the value of the objective function in the
data domain, equation 2. In this way, DD-LSRTM
aims at constructing the best possible migrated im-
age m* for a given background velocity distribution
(Nemeth et al., 1999; Prucha and Biondi, 2002; Dai
et al., 2012; Duveneck et al., 2021).

According to Menke (1989), the least-squares solu-
tion to the minimization problem 2, given the forward
modeling operation 1, can be expressed as

LT'Lm* = L%d,s. (3)

where LT denotes the adjoint to the modeling opera-
tor L.

Recognizing this operator as a migration, to be
carried out as an RTM here, we can identify the right-

hand side of equation 3 as the migrated data

m,,;, = LT dps. (4)

Applying the migration operator LT to both data
terms in equation 2, we can reformulate the least-
squares problem as the one of minimizing the objec-
tive function in the image domain

2

: (5)

1
Jrp(m) = 3 HLTLm — Myyig

with the same theoretical solution given in equation
3. We can then proceed iteratively in a similar way as
previously to find the solution that minimizes equa-
tion 5, where at each iteration, the data d need to be
remodeled and then migrated.

However, equation 3 allows for a different inter-
pretation. It demonstrates that the best model m* in
a least-squares sense is obtained when the migrated
data m,,;4 can be represented by multiplying m* with
a blurring operator, ¥ = LTL. If ¥ can be, at least
approximately, inverted, we can represent the desired
solution m* as

m* = \Ilflmm,'g. (6)

This gives rise to an alternative way of approximately
determining m* in the image domain, directly from
m, g, using an estimate of ¥ or ¥~!, without the
need for an iterative minimization of the objective
function 5.

Because it is generally easier to estimate ¥ rather
than W1 the solution 6 is usually constructed by (it-
eratively) solving the linear problem ¥m®* = m,,;g,
where the migrated image m,,,;; and an estimate of ¥
are known (Guitton, 2004; Valenciano, 2008; Fletcher
et al., 2016; Guo and Wang, 2020; Osorio et al., 2021).

DD-LSRTM

In the data domain, LSRTM aims at iteratively es-
timating the solution m* defined in equation 3 that
minimizes the objective function 2. The iterative pro-
cedure is obtained by noting that, at m*, we expect
the gradient of the objective function in equation 2
to be zero, i.e., VJ(m*) = 0. Under the assumption
that we are at a point m close to m*, i.e.,

m*=m+ Am, Am < m, (7)

we can write, up to first order in Am,
VJm*) =VJ(m)+Hm)Am =0, (8)

where H(m) denotes the Hessian of the objective
function. As long as H(m) is invertible, we can con-
clude that the difference between the present model
m and the desired model m* is

Am = -H '(m)VJ(m) . (9)
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Since equation 8 is a linear approximation of the gra-
dient at m*, equation 9 is also an approximation. It
gives rise to an iterative model updating technique.
In its most basic version, the inverse of the Hessian is
replaced by a multiple of the identity matrix, result-
ing in (see, e.g., Schuster and Liu, 2019)

m*D = m®) — oV (m), (10)

where a denotes the step size. In this work, we adopt
the iterative model-updating procedure described by
equation 10, known as the gradient method.

Also, we consider the forward problem to be de-
scribed by the Born approximation to the acoustic
wave equation for constant density (see Appendix A),
given by

2 2
21 9*Ap(t,x) V2 Ap(t,x) = n;(x) 0 po(t,x)7
cg(x) o2 cg(x)  Ot?

(1)
where Ap(t,x) is the scattered wavefield, and cy(x)
and py(t,x) denote the wave-propagation velocity and
the acoustic pressure wavefield in the background
medium. Note that equation 11 depends linearly on
the medium reflectivity, m(x), which represents the
model parameter to be recovered by LSRTM.

In this situation, the gradient of the objective
function can be expressed as

m) = R 0 &ps(t:%)
VJ( )_;/Q(x)dﬂcg(x)/o dt[pr(u )5

(12)
where p;(t,x) denotes the source-side wavefield at an
image point x, modeled directly by means of equa-
tion 11, and p,(¢,x) is the receiver-side wavefield at
the same image point, obtained by backward propa-
gation of the data residual d — dgps, i.e., p-(£,%) is
the solution of the adjoint wave equation

1 8p,(t,x)

c2 8t2 — V2p7“ (ta X) = Z [pobs (t, X) — Ap(t,x)]

Xr

0(x — x). (13)

Thus, the gradient of the objective function is the
result of the zero-lag crosscorrelation between the
second temporal derivative of the forward modeled
source wavefield p,(t,x) and the backward modeled
receiver wavefield p,(t,x), weighted by the inverse
square of the velocity. In other words, it is deter-
mined by an RTM of the data residual.

ID-LSRTM

In the image domain, LSRTM aims at minimizing
the objective function 5. However, as mentioned ear-
lier, the iterative minimization in the image domain is
rather expensive, because it requires a modeling plus
migration at every iteration. An alternative approach
to ID-LSRTM makes use of equation 3, which is the
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least-squares solution to the minimization problem in

both formulations of equations 2 and 5. It can be
reformulated in the image domain as
¥m” = m,,;, , (14)

where ¥ = LTL is the blurring operator that con-
tains the combined effect of the modeling and mi-
gration operators. Equation 14 expresses the fact
that the migrated image my,,;, is a blurred version
of the reflectivity that results from the convolutional
relationship between the subsurface reflectivity and
the subsequent application of the modeling and mi-
gration operators (Valenciano, 2008). Thus, instead
of the computationally expensive procedure of iter-
atively minimizing the objective function 5, another
way of estimating the desired model m* is to approx-
imately invert the blurring operator W.

Because of its high computational cost, an exact
implementation of the blurring operator is highly im-
practical. For this reason, several approaches to ap-
proximately computing this function have been pro-
posed in the literature. Guitton (2004) directly ap-
proximates ¥~! by employing a set of non-stationary
matching filters. Valenciano et al. (2006) introduce a
target-oriented, sparse version of the blurring opera-
tor, significantly reducing its dimensions. In a con-
curring approach, Jiang and Zhang (2019) propose a
strategy involving a localized approach that amounts
to breaking down the blurring operator into a series
of smaller matrices, which are computationally man-
ageable.

A particularly attractive procedure to estimate
the blurring operator ¥ is to study its impulse re-
sponses for specific isolated points in the image. In
other words, one replaces the model m* in equation
14 by a 6(x) matrix representing a point source at
image point x and carries out a modeling followed by
a migration. The result is

Wo(x) = 1(x), (15)

known as the point-spread function (PSF) for image
point x (Lecomte, 2008). Generally, a PSF is spa-
tially limited around the image point for which it is
calculated. Thus, after determining PSFs for a suffi-
ciently dense grid of image points, they can be used
to locally deconvolve the migrated image, in this way
reconstructing an approximation to m* at an accept-
able cost (Valenciano, 2008; Fletcher et al., 2016; Os-
orio et al., 2021).

In this work, we estimate the PSFs as follows.
Initially, we generate linearized data using a model
consisting of a grid of point scatterers added to the
given background model. The grid points must be ad-
equately spaced to strike a balance: they should be
spread far enough apart to prevent interference of the
PSFs while being also positioned closely enough for
effective interpolation, ensuring comprehensive cov-
erage of the entire model. Then, the wavefield re-
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sulting from Born modeling in this model is injected
at the receiver positions and backward propagated in
time. Finally, the PSFs are obtained by applying an
imaging condition using the forward and backward
propagated wavefields at each of the considered grid
points.

When migrating the scattered data originating
from the diffraction points, the imaging condition will
exhibit constructive interference only at image points
in the vicinity of actual scatterer positions, in this
way generating the PSFs associated with these image
points, as illustrated in Figure 1.

Modeling
> and
Migration

Point scatterer

Figure 1: Schematic explanation of the generation of
PSFs. Scattered data are generated with the model
on the left-hand side and then migrated to obtain the
image on the right-hand side. The blurred image of
each diffractor is the PSF associated with the corre-
sponding location in the model.

Each PSF 4 (x) forms a column in the overall blur-
ring matrix ¥ in equation 14. A window is used to
extract a single PSF from the image in Figure 1. This
windowing technique helps ensure that the solution
remains free from unwanted influence, in this way as-
suring the accuracy of the estimated PSFs. At im-
age points where no PSF can be estimated because
of the required spacing between the point scatterers,
it is necessary to calculate them using interpolation.
Frequently, it is necessary to perform additional PSF
estimations with displaced grids of point scatterers,
because the modeling-plus-migration procedure can
result in rather broad or irregular PSFs.

Specifically, for acoustic modeling as adopted in
this work, the forward wavefield is modeled using
the Born approximation 11 and the backpropagation
carried out solving equation 13, where the adjoint
sources are substituted with the scattered wavefield
at the receivers. The imaging condition commonly
applied in the literature is the crosscorrelation of the
forward and backward propagated wavefields (Claer-
bout, 1971), enhanced with a Laplacian filter and il-
lumination compensation (CLIIC), given by

Each PSF 1 (x) forms a column in the overall blur-
ring matrix ¥ in equation 14. A window is used to
extract a single PSF from the image in Figure 1. This
windowing technique helps ensure that the solution
remains free from unwanted influence, in this way as-
suring the accuracy of the estimated PSFs. At im-
age points where no PSF can be estimated because
of the required spacing between the point scatterers,
it is necessary to calculate them using interpolation.

Frequently, it is necessary to perform additional PSF
estimations with displaced grids of point scatterers,
because the modeling-plus-migration procedure can
result in rather broad or irregular PSFs.

Specifically, for acoustic modeling as adopted in
this work, the forward wavefield is modeled using
the Born approximation 11 and the backpropagation
carried out solving equation 13, where the adjoint
sources are substituted with the scattered wavefield
at the receivers. The imaging condition commonly
applied in the literature is the cross-correlation of the
forward and backward propagated wavefields (Claer-
bout, 1971), enhanced with a Laplacian filter and il-
lumination compensation (CLIIC), given by

) =Y ﬁv? / dt [ps (£, ), (1,%)]

(16)
where pg(t,x) and p,(t,x) are the source and re-
ceiver wavefields, and P(x,x;) is the illumination-
compensation factor, calculated as the autocorrela-
tion of the source wavefield, i.e.,

P(x,x.) = /t Ip (%)% dt. (17)

INVERSE-SCATTERING IMAGING CON-
DITION

The inverse-scattering imaging condition (ISIC) as
derived by Op’t Root et al. (2012) is the asymptotic
inverse operator to Born modeling. Its primary pur-
pose is to correctly treat the image amplitudes, ensur-
ing that they are directly proportional to the subsur-
face reflectivity. The ISIC is typically implemented
in the time domain. It forms the image as the sum of
two contributions. One of these contributions results
from the multiplication of the temporal derivatives
of the source and receiver wavefields, weighted with
the sloth, i.e., the square of the slowness, at the im-
age point. The second contribution arises from the
multiplication of the spatial derivatives of these same
wavefields. Finally, after the sum, an illumination-
compensation factor guarantees amplitude balancing
among different parts of the image (see, e.g., Whit-
more and Crawley, 2012; Pestana et al., 2014). Thus,
in its most basic form, the ISIC in the time domain
reads

Ops(t,x) Op,-(t,x)

1 1
I(x) = ZS: P(x,xs) /tdt [02()() ot ot
N Ops(t,x) Op,(t, X):|

18
ox ox (18)
We will refer to this form of the ISIC as the basic ISIC
(B-ISIC).

As discussed in Whitmore (2013), equation 18
is intended to mitigate backscatter noise in the im-
age. However, factors like the structural complexity
of the medium, the presence of caustics, variable den-
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sity, elasticity and anisotropy can lead to incomplete
elimination of low-wavenumber artifacts from migra-
tion when the two contributions are equally weighted.
To address this challenge, the authors propose the
use of customized weights for each of the contribu-
tions. They demonstrate that a careful choice of
these weights can lead to a resulting image that is
almost completely free from backscatter noise, in this
way offering a better representation of the subsurface.
Unfortunately, Whitmore (2013) did not specify the
explicit form of the illumination-compensation factor
P(x,x;) he used in his experiments. We suppose here
that he use the form given in equation 17.

Using microlocal analysis in the frequency do-
main, Op’t Root et al. (2012) derived a theoretically
more precise version of the ISIC as an asymptotic
inverse of Born scattering. In a recent study, Al-
bano et al. (2023) demonstrated that their form of the
ISIC can be realized in the time domain through var-
ious expressions that are theoretically approximately
equivalent. Three of these ISIC formulations closely
resemble equation 18, i.e., they involve the sum of
products of the temporal and spatial derivatives of
the source and receiver wavefields. The key difference
lies in how time derivatives or time integrals of the
involved wavefields are used in the expressions. One
favorable form reads

_ 1 Ops(t,x) 0g,(t,x)
I’r(X) - 2 P’(x,ixs) /tdt |: 6t 8t

Ops(t,x) 0g.(t,x) ]

ox ox

+ (%)

(19)

where the illumination-compensation factor P’(x, x;)
is calculated using the time-differentiated source
wavefield, i.e., it is given by

P'(x,%,) = /t [apsé()i’x)} : dt. (20)

The main difference of equation 19 with respect to
equation 18 is the use of the time-integrated receiver
wavefield

qr(t,xs):/0 pr(t',x)dt’ (21)

instead of p,-(¢,x) in both contributions, which is com-
pensated by the different illumination compensation.
We will refer to version 19 of the ISIC as the inte-
grated ISIC (I-ISIC). Another noteworthy difference
is the scale factor of ¢? multiplying both contributions
and canceling the 1/c? weight of the time-derivative
contribution in equation 18. As shown by Albano
et al. (2023), in the form of equation 19, the ISIC does
not require amplitude balancing between the two con-
tributions to achieve almost complete elimination of
backscattering noise.

Note that because of the necessary time deriva-
tives, both ISIC versions in equations 18 and 19 come
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at a somewhat higher computational cost than the
basic CLIIC of equation 16. Making use of the wave
equation, Albano et al. (2023) demonstrated that the
ISIC can be reformulated only with spatial deriva-
tives. The resulting ISIC versions can be expressed
in terms of the Laplacian operator applied to a sin-
gle crosscorrelation term, in a very similar way to the
CLIIC of equation 16. One of these Laplacian-based
ISIC (L-ISIC) versions reads

I (X)ZCQ(X)VQ/dt [rs(t, %; X )qr (t, X))
T - 2R(X7 XS> . S\Vy ¥y s T\ J
(22)
where r4(t,x) is twice time-differentiated receiver
wavefield. Moreover, in this L-ISIC version, the

illumination-compensation factor needs to be modi-
fied to

R(x,x,) = / [rs(t,x)]? dt. (23)

t
When implemented in this form, the L-ISIC has a
nearly identical computational cost as the CLIIC.
However, it retains the same benefits as the two-term
ISIC expression of equation 19.

LSRTM preconditioning based on the ISIC
Taking into account the advantages of the ISIC dis-
cussed in the previous section, we study its applica-
tion as a preconditioner for LSRTM. To avoid a sig-
nificant increase in computational cost as compared
to the conventional approach, we adopt the formu-
lation based on the Laplacian operator with only a
single crosscorrelation term, as expressed in equation
22. For the purpose of comparison, we also include
the results obtained with the basic form of the ISIC
(B-ISIC), equation 18 and with the two-term form
using the integrated receiver wavefield (I-ISIC), equa-
tion 19.

For DD-LSRTM, we replace the imaging condition
12 in the calculation of the objective-function gradient
with the different versions of the ISIC from equations
18, 19, and 22, to proceed with the iterative model-
updating procedure of equation 10. For application
in ID-LSRTM, we construct the migrated image of
the scatterer grid to generate the PSFs using the four
tested imaging conditions. Then, we construct ma-
trix ¥ from the individual PSFs to proceed with the
solution of the linear system 14.

NUMERICAL RESULTS
We evaluate the results of LSRTM preconditioned
with the L-ISIC, both in the data and in the image do-
mains, by means of experiments with the Marmousi I1
velocity model (Figure 2). We used the true P-wave
velocity model, depicted in Figure 2, to model the
observed data, necessary to construct the migrated
image, with an implementation of the acoustic wave
equation with constant density, equation Al.

The acquisition geometry for this study involved
a total of 90 sources, evenly spaced at 100 m inter-
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vals along the length of the model. The first source
was positioned laterally at 15 m. Additionally, 175
receivers were placed along the surface, also starting
at 15 m and regularly spaced at 50 m intervals. The
depths of the sources and receivers were 50 m and
125 m, respectively. For reference, the remaining pa-
rameters utilized in data modeling are summarized in
Table 1.

Lateral location (km)
5

Depth (km)
Velocity (m/s)

Figure 2: True P-wave velocity distribution of the
Marmousi IT velocity model.

Table 1: Modeling parameters used for the generation
of the observed data.

Source pulse Ricker wavelet

Peak frequency (Hertz) 15.0

Acquisition time (seconds) 5.0

Sampling rate (seconds) 0.004

Boundary conditions Absorbing boundary

Boundary-layer size (points) 50

Prior to migration, we preprocessed the simulated
data to eliminate direct waves. Subsequently, we ap-
plied an RTM using a smoothed version of the Mar-
mousi IT velocity model (Figure 3a) to generate the
initial migrated data. The final objective of LSRTM
is to recover the reflectivity (Figure 3b), i.e., the nor-
malized difference between the true model and the
smooth background model.

Figure 4 compares the effect of employing the ISIC
versions (B-ISIC, I-ISIC and L-ISIC, equations 18, 19,
and 22, respectively) with the conventional CLIIC,
equation 16, in the initial RTM. We note that all
four images present no backscattering artifacts and
are similar with respect to resolution. When compar-
ing the initial RTM image obtained with the CLIIC
(Figure 4a) with the corresponding images using the
ISIC versions (Figures 4b, 4c and 4d), it becomes ap-
parent that the CLIIC image exhibits inferior am-
plitudes, diminishing from top to bottom, than the

images obtained with all three versions of the ISIC.
Figure 4b shows that the basic ISIC version of equa-
tion 18 slightly improves amplitude balancing, but the
image is still very similar to that obtained with the
CLIIC of equation 16 (Figure 4a). It is important
to stress that our version of the B-ISIC did not need
any additional amplitude balancing between the two
contributions.
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Figure 3: (a) Smoothed Marmousi I velocity model
used as the background model for migration. (b) Re-
flectivity, i.e., normalized difference between (a) and
the true model in Figure 2.

The two ISIC versions that theoretically honor the
derivation of Op’t Root et al. (2012) produce very
similar images (Figures 4¢ and 4d) with amplitude
distributions that closely resemble that of the true
reflectivity (Figure 3b). The image obtained with the
L-ISIC (equation 22, Figure 4d) presents a slightly
better resolution than the one with the I-ISIC (equa-
tion 19, Figure 4c). It is to be observed that the
L-ISIC image (Figure 4d) comes at a computational
cost that is practically the same as that of the CLIIC
(Figure 4a), while the two-term images of Figures 4b
and 4c require more computational effort.

DD-LSRTM
For the implementation in the data domain, the up-

date of the reflectivity model was carried out using
ADAM optimization (Kingma and Ba, 2014; Kim
et al., 2019), because the available Limited-memory-
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) opti-
mization algorithm (Liu and Nocedal, 1989) did not
work equally well with all tested imaging conditions.
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Figure 4: RTM images using different imaging condi-
tions. (a) CLIIC, equation 16, (b) B-ISIC, equation
18, (¢) I-ISIC, equation 19, (d) L-ISIC, equation 22.

The LSRTM results in the data domain after 30
iterations with the four imaging conditions discussed
here are presented in Figure 5. Figures ba and 5b
present the results of DD-LSRTM with the CLIIC
and B-ISIC, and Figures 5¢ and 5d show the results
using the I-ISIC and L-ISIC, respectively. For com-
parison with the true reflectivity model, please refer
to Figure 3b, and to compare with the original RTM
images, look at Figure 4.
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Figure 5: DD-LSRTM images of the Marmousi II
model after 30 iterations using different imaging con-
ditions. (a) CLIIC, equation 16, (b) B-ISIC, equation
18, (c) I-ISIC, equation 19, (d) L-ISIC, equation 22.

The differences among the DD-LSRTM images in
Figure 5 are much more subtle than among the corre-
sponding original RTM results of Figure 4, indicating
that the least-squares process is able to significantly
improve the image quality even when starting from
a worse initial image. Nevertheless, the overall im-
pression is that the ISIC images (Figures 5b, 5¢ and
5d) appear cleaner than the CLIIC image (Figure 5a).
The amplitudes of the theoretically equivalent I-ISIC



ALBANO ET AL. 9

and L-ISIC images (Figures 5c and 5d) are a bet-
ter match to the true reflectivity (Figure 3b) than
the CLIIC and B-ISIC images (Figures 5a and 5b).
Again, similarly to the pure RTM images of Figure 4,
the overall impression is that the best image in terms

of artifacts and resolution is the L-ISIC image (Figure
5d).

ID-LSRTM

In the image domain approach, the first step involves
estimating the PSFs in the initial model. For that
purpose, we define four grids of point scatterers, each
shifted by half the grid spacing of the first grid in
the vertical, horizontal and diagonal directions. In
each section, the scatterers were spaced at 0.5 km
in both directions. This arrangement ensures that
the scatterers are placed at sufficient distance from
each other to prevent interference between neighbor-
ing PSFs. For the unsampled points on the dense ve-
locity grid between the scatterers, we computed the
PSFs using bilinear interpolation so as to construct
the full blurring matrix ¥. We then solved the linear
system 14 using the Conjugate Gradient optimization
algorithm to recover an approximation to m*.

Figure 6 shows the sets of PSFs estimated using
the different imaging conditions: CLIIC (Figure 6a),
B-ISIC (Figure 6b), I-ISIC (Figure 6¢) and L-ISIC
(Figure 6d). We note that the set of PSFs estimated
with the I-ISIC (Figure 6¢) and the L-ISIC (Figure
6d) exhibit more uniform illumination than the PSFs
obtained with the CLIIC (Figure 6a) and the B-ISIC
(Figure 6b), particularly in the deeper areas of the
model. This is in agreement with the previous obser-
vation (see also Albano et al., 2023) that the ISIC pro-
vides a better amplitude balance in the image. When
comparing the PSFs of the I-ISIC (Figure 6¢) and of
the L-ISIC (Figure 6d), we note that they are very
similar, but the latter are a little more compact than
the former. This is consistent with the observation
that the migrated image using the L-ISIC (Figure 5d)
presents a slightly better resolution than the one us-
ing the I-ISIC (Figure 5c). Though the PSFs are de-
signed to remove these effects by deconvolving each
image with the associated blurring operator ¥, it can
be expected that any lack of information in the PSFs
will lead to less quality in the final least-squares im-
age.

The resulting ID-LSRTM images are shown in Fig-
ure 7. At first glance, the four images look very
similar, indicating that the deconvolution with the
PSFs has done a good job in removing the differences
among the images of Figure 4. This could be inter-
preted as a sign that the employed imaging condition
is of little importance in ID-LSRTM. However, closer
inspection reveals a few differences like, e.g., the noise
in the center of the image at 2 km depth and 5.5 km
lateral position, which is rather strong in the CLIIC
image (Figure 7a), a bit weaker in the B-ISIC image
(Figure 7b), and almost completely absent in the I-

ISIC and L-ISIC images (Figures 7c and 7d). Also,
there are a few differences in resolution, e.g., at the
salt wedges on both sides of the model at about 2.5 km
depth, which are visibly best resolved in the L-ISIC
image (Figure 7d).
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Figure 6: Point-spread functions for a grid of point
scatterers as obtained from RTM using different imag-
ing conditions. (a) CLIIC, equation 16, (b) B-ISIC,
equation 18, (¢) I-ISIC, equation 19, (d) L-ISIC, equa-
tion 22.
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Figure 7: ID-LSRTM image of the reflectivity of the
Marmousi II model with different imaging conditions.
(a) CLIIC, equation 16, (b) B-ISIC, equation 18, (c)
L-ISIC, equation 19, (d) L-ISIC, equation 22.

Comparison

When comparing the images in the data domain (Fig-
ure 5) with those in the image domain (Figure 7), we
note that the latter are superior in resolution, but
appear generally noisier. The PSF deconvolution in
the image domain has done a better job of removing
the differences caused by the different imaging con-
ditions than the data-domain optimization. It must
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be noted, though, that at several locations, coherent
noise that was very weak in the original RTM images
(Figure 4) has been enhanced in the DD-LSRTM im-
ages (Figure 5), and even more so in the ID-LSRTM
versions (Figure 7).

Convergence rate

There is one significant difference of preconditioning
LSRTM with the four different imaging conditions,
which is the convergence rate. As illustrated in Fig-
ure 8, the convergence rate varies in both the data
(Figure 8a) and image (Figure 8b) domains in depen-
dence on the imaging condition. In both domains,
convergence with all forms of the ISIC is much faster
than when using the CLIIC. The two theoretically
correct forms (I-ISIC and L-ISIC) achieve the best
convergence, while B-ISIC remains intermediate.
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Figure 8: Convergence rate of LSRTM preconditioned
with different imaging conditions. (a) Data domain;
(b) image domain.
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In the data domain, we stopped the inversion after
30 iterations. We see in Figure 8a that I-ISIC or L-
ISIC preconditioned LSRTM reaches a residual value
at a little more than two thirds of the value obtained
with the CLIIC. Even after just 5 iterations, the resid-
ual obtained with I-ISIC or L-ISIC preconditioning is
already smaller than that using the CLIIC after 30
iterations. In the image domain, the advantage in
convergence of the ISIC versions over the CLIIC is
even greater. Both I-ISIC and L-ISIC reach the con-
vergence criterion at a residual value of 0.95 after 31
and 28 iterations, respectively, dropping down to be-
low 0.1 in only 7 iterations. B-ISIC takes 48 iterations
to converge to 0.1,reaching this level after about 20
iterations, and CLIIC converges only after 85 itera-
tions at a residual of 0.15, reaching this level at about
35 iterations.

When we recall that the CLIIC and L-ISIC are
one-term imaging conditions, thus being computa-
tionally less expensive than the other two, it becomes
clear that L-ISIC preconditioning is the most favor-
able choice in both domains.

DISCUSSION

We have studied the effect of preconditioning least-
squares reverse-time migration (LSRTM) by means
of a computationally efficient implementation of the
inverse-scattering imaging condition (ISIC) that uses
the Laplacian operator (L-ISIC) as recently derived
by Albano et al. (2023). The ISIC was derived by
Op’t Root et al. (2012) using microlocal analysis as
the asymptotic inverse to Born scattering. In its orig-
inal form, it consists of two contributions that are
summed to form the final image. It aims at provid-
ing amplitudes that are proportional to the medium
reflectivity. The implementational form of Albano
et al. (2023) is computationally superior to the two-
term version (Op’t Root et al., 2012), both in terms
of quality and cost. When implemented in its basic
form (which is slightly different from the correct theo-
retical expression), additional weights may be needed
to balance the two contributions (see, e.g., Whitmore
and Crawley, 2012).

The computational cost of the L-ISIC is the same
as that of the conventional crosscorrelation imaging
condition (Claerbout, 1971) with illumination com-
pensation and Laplacian filtering (CLIIC), but lower
than that of the basic form (B-ISIC) and of another
two-term version that is theoretically correct (I-ISIC).
When applying these imaging conditions in a single
RTM, L-ISIC provides clearly superior images (Al-
bano et al., 2023, see also Figure 4). Thus, the nat-
ural question arises whether it can be beneficial as
a preconditioner for LSRTM. In this work, we have
demonstrated that this is indeed the case.

While the differences in image quality after least-
squares optimization are strongly reduced, the L-ISIC
LSRTM images are still of slightly superior quality
than those obtained with the other tested imaging
conditions.

CONCLUSIONS

In this work, we have shown that LSRTM can ben-
efit from L-ISIC preconditioning. We tested L-ISIC
preconditioning in both the data and image domains.
Our numerical tests demonstrated that the final im-
ages after L-ISIC preconditioned DD-LSRTM are of
comparable quality or even slightly superior than
those obtained with standard CLIIC preconditioning
or with two other versions of the ISIC. In the image
domain, the quality gains are more prominent, with
L-ISIC preconditioned ID-LSRTM presenting higher
resolution and less migration artifacts. However, the
principal advantage of using L-ISIC preconditioning
is the notably accelerated convergence as compared
to CLIIC preconditioning.

In the data domain, ISIC preconditioned DD-
LSRTM achieved convergence after much less itera-
tions than required with the CLIIC. In this domain,
each iteration of the optimization algorithm depends
on at least two modeling steps (direct and reverse) to
calculate the objective-function gradient. Therefore,
the L-ISIC preconditioning considerably reduced the
overall computational cost of LSRTM over using the
conventional CLIIC. While I-ISIC achieves the same
convergence rates as L-ISIC, it requires the compu-
tation of two contributions. Therefore, each iteration
comes at a somewhat higher computational cost than
in L-ISIC and CLIIC.

In the implementation in the image domain, the
number of iterations of the inversion algorithm of ID-
LSRTM with L-ISIC is even stronger reduced over the
CLIIC than in the data domain, requiring only about
one third of the iterations. Although the solution of
the linear system is not the computationally heaviest
part of ID-LRSTM, it still results in a considerable
reduction of the computational cost.

When comparing the final images obtained from
DD-LSRTM and ID-LSRTM with each other, we con-
clude that the image-domain approach yields the bet-
ter results. The reflectors are clearly better defined,
particularly in regions with low illumination, as for
example in the deeper parts of the images.
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APPENDIX A

LINEARIZATION OF THE ACOUSTIC
WAVE EQUATION

In this paper, we consider the wave propagation to be
described by the acoustic wave equation for constant
density,

1 0%p(t,x)
c2(x) Ot?

—V2(t,x) = s(t,x), (A1)

where ¢(x) is the wave-propagation velocity, p(t,x)
is the acoustic pressure wavefield and s(t,x) repre-
sents an impulsive point source. As mentioned in the
main text, because of its nonlinear relation between
the wavefield and the medium velocity, equation Al
cannot be used directly in LSRTM.

For the purpose of linearization, we assume that
the true velocity distribution ¢(x) can be represented
as a (small) perturbation of a background velocity
distribution cg(x) (see, e.g., Snieder, 2004), i.e.,

e(x) = co(x) + de(x), de(x) < co(x), (A2)
and that the wavefield po(t, x), generated by the same

source s(t,x) in a medium with the background ve-
locity, satisfies the corresponding wave equation

1 9%po(t,x)
d(x) ot?

— Vo (t,x) = s(t,x). (A3)

The difference of equations Al and A3 yields

1 9%p(t,x) 1 9%po(t,x) 2 _
02(X> 2 - C(%(X) o2 - V=Ap(t,x) =0,
(A1)

where Ap denotes the difference between the two
wavefields, i.e., the solution of equation Al can be
written as

p(t,x) = po(t,x) + Ap(t,x). (A5)

2
Adding and subtracting the term %% in equa-

tion A4, it can be recast into the form

{ 11 ] 0?p(t,x) n 1 02Ap(t,x)
A(x)  Ax) ot? d(x) ot
— V2Ap(t,x) =0, (A6)

2 = ! 1
= VZAp(t,x) = — L2(x) B C%(X)]
32p(tax)
oz A
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which demonstrates that the wavefield difference Ap
can be represented as the solution of the wave equa-
tion in the background medium, equation Al, with
the source term s(x,t) replaced by the secondary

1 1 8%p(t,x
sources s:(X,) = — |ty ~ a2t | o

Note that equation A7 is exact, but its solution
is not actually possible, because p on the right-hand
side of equation A7 depends on Ap. The Born ap-
proximation assumes small velocity and wavefield per-
turbations, i.e., ¢(x) — co(x) = de(x) < co(x) and
Ap(t,x) < po(t,x). In a Taylor expansion up to first
order in dc, we can write

1 1 1 20c(x)

e B P s e e (e I
(A8)
Using this, equation A7 becomes
1 0%*Ap(t,x
o VA =
25¢(x) 5 Ppo(t,x)  0?Ap(t,x)
| dx) +0(e (x))] ( gtz + ot2 >
(A9)

Under the specific assumption that the second time
derivative of the wavefield difference is O(d¢(x)), the
linear approximation of equation A9, i.e., up to first
order in dc(x), can be represented as

1 9?Ap(t,x) ~ m(x) 0?po(t,x)
Z oY AN = % a10)
where
_ 26c(x)
m(x) = o) (A11)

denotes the medium reflectivity. Note that this ap-
proximation considers only secondary sources that
are excited by the background wavefield and neglects
those excited by the wavefield difference, which rep-
resents the scattered wavefield. In other words, the
Born approximation is a single-scattering approxima-
tion.

In LSRTM, one aims at improving an estimate
for m(x) without changing the background velocity
model ¢o(x). Therefore, equation A3 for py needs to
be solved only once.
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