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ABSTRACT. Ocean bottom nodes (OBNs) are a recent technological solution used for seismic data acquisition. 

Despite of various advantages compared to conventional methods of measurement, the amount of data acquired 

in OBNs campaigns poses challenges to energy management and data transmission, ultimately limiting the time 

the device can acquire data on the seabed. To deal with these disadvantages, compression techniques and 

prediction models have been proposed in the literature and in both approaches the type of trace is an important 

information. In this work, strategies for developing seismic trace classifier models are assessed aiming to classify 

seismic traces from ocean bottom nodes into active, passive and microseism. The models were developed based 

on the machine learning algorithms decision tree and neural networks. Moreover, different features were used in 

the training process in order to analyze physical quantity dependent and agnostic classifier models. Five different 

datasets and thousands of traces were used for training and testing the models developed. Models outputs are 

explored in terms of confusion matrix, accuracy, precision and recall. Results have shown that the use of 

acceleration and velocity data for classification of microseism and passive traces led to a lower accuracy when 

compared to the use of sound pressure data. In addition, no relevant difference was found between the decision 

tree and neural networks for the classification task. 

Keywords: machine learning in geophysics; machine learning models; neural networks for seismic analysis; 

decision tree classifier; seismic data compression. 

INTRODUCTION 

In the hydrocarbon industry, seismic data acquisition is the most widely used and well-known geophysical 

technique (Kearey et al., 2013). According to Kearey et al. (2013), the seismic reflection method, which generally 

consists in emitting an acoustic pulse and measuring the reflected sound and vibration, can reveal details about 

the geological structures from tens of meters up to the whole lithosphere. In underwater scenarios, the reflected 

sound can be measured by hydrophone systems, called streamers, at the surface of the sea, while sensors at 

the seabed can acquire both sound and vibration data. Ocean bottom based sensors systems such as Ocean 

Bottom Cables (OBCs), Permanent Reservoir Monitoring (PRM) systems and Ocean Bottom Nodes (OBNs) for 

seismic data acquisition present several advantages when compared to conventional streamer systems, such as 

measuring wider azimuth, possibility to characterize P and S waves, by means of sound pressure and acceleration 

or velocity, respectively, be less sensitive to noise produced by adjacent vessels and better repeatability (Hays 

et al., 2008; Zhang et al., 2021). While OBCs and PRM systems use sensors that are connected by cables to a 

hub that provides energy and allows data transfer, OBNs are autonomous sensor suites that rely on a battery 

Draft 

http://dx.doi.org/10.22564/brjg.v43i1.2334
mailto:lucascostalobato@gmail.com
https://orcid.org/0000-0002-6915-3537
https://orcid.org/0009-0008-2182-7708
https://orcid.org/0009-0008-6563-0050
https://orcid.org/0000-0001-8181-1048


2

for its energy requirements and need to be collected to get access to the data collected by its integrated sensors.

However, for OBNs, the amount of data acquired limits the energy autonomy, the time of the OBNs residence

on the seabed and hinders the communication among nodes and between nodes and the surface. Consequently,

many recent publications aimed to assess different techniques to compress seismic data using both classical

compress techniques and machine learning predictive models (Nuha et al., 2020, 2021; Helal et al., 2021; Lajús

and Paul, 2023).

The time-continuous seismic data measured are normally segmented, being each segment called trace (Scales,

1995). Seismic traces can be classified into active, passive or passive microseismic ones. We consider active

traces, in the context of seismic acquisition, to be traces that contain the seabeds and watercolumns response

to active excitation by an acoustic source, generally an air gun. On the other hand, passive traces only contain

background noise, while microseismic traces contain both background noise and the response of the watercolumn

and seabed to excitations from microseisms (Artman, 2006). These different types of traces can present very

different characteristics in terms of stationarity, amplitude, spectral content, etc. As an example, Figure 1 shows

active and passive traces in terms of sound pressure and acceleration, measured on the seabed. In Figure 1,

the differences between active and passive traces are graphically evident. It should be noted that active traces

are composed by passive portions, before the arrival of the first wavefront from the air gun, and by an active

portion after the arrival of the first wavefront, as can be seen in Figure 1.

As a consequence of these differences illustrated by the traces shown in Figure 1, it is less likely to obtain

compression techniques and specially seismic data prediction models that are generic enough to be effective

and accurate for both passive and active seismic data. The same reasoning can be extended to microseism

traces. On the other hand, if there are differences that can be identified consistently, compression techniques

and predictive models of seismic data can be optimized according to the physical quantity described by the

trace. In this context, an autonomous seismic trace classifier is necessary. Such model is considered herein a

trace classifier model.

Studies reported in the literature have been focused on the detection of earthquakes (Li et al., 2018; White

et al., 2023), volcano-seismic data (Bueno et al., 2020) and also the classification of wave dip in seismic reflection

data (Geng and Wang, 2020). However, to our best knowledge, no work reporting on an autonomous classifier

of seismic data (traces) into active, passive and passive with microseism (called henceforward as “microseism”

only) traces was found in the literature. Therefore, this work aims to develop an approach to classify seismic

traces into active, passive or microseismic data. It should be noted that the task of trace classification can

be trivial for geophysicists. However, the goal of this work is to build a trace classifier model for seismic data

measured by ocean bottom seismic acquisition systems in general (OBNs, OBCs and PRM). Consequently, not

only sound pressure traces are considered but also acceleration and velocity (S-wave) traces should be classified.

To achieve this goal, two consolidated machine learning algorithms are used and different features are tested. In

Section Methods the experimental seismic data used to develop and test the trace classifier models are described

as well as the feature engineering process and machine learning algorithms. Section Results presents the results

obtained while Section Final Remarks addresses a discussion on the results, models applicability, future works

and the final remarks.
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METHODS

This section details the methods used to develop the different trace classifier models that will be evaluated.

Firstly, Section Seismic datasets describes the experimental datasets used in the training and testing proce-

dures. Then, in Section Classification algorithms the two machine learning algorithms are briefly described. In

Section Feature engineering, the features used in the classification models and the reason to use normalized fea-

tures are presented. Finally, Sections Training and testings procedures and Metrics of performance define the

training and testing procedures used to develop the trace classifier models and the metrics used to evaluate the

models, respectively.

Seismic datasets

Five datasets were used in this work: set A (active), set B (passive), set C (microseism), set D (active) and

set E (passive). All datasets were kindly provided by Petrobras S.A in .SEG-Y format and were acquired by

a PRM system, between 2013 and 2014, at Jubarte field (Thedy et al., 2014). The datasets are composed by

the raw measurement data, without any signal preprocessing. Figure 1 shows examples of passive and active

seismic traces in terms of sound pressure and acceleration. For the following analyses, only the dead traces, i.e.,

the traces containing only zeros due to some error during the acquisition, were removed previously.

(a) Sound pressure (b) Acceleration

Figure 1: Active and passive seismic traces in terms of (a) sound pressure and (b) acceleration.

Datasets A and B were used in the training and testing procedures. Datasets D and E were used in a sec-

ond test procedure (better described in Section Training and testings procedures), using the models already

developed, in order to assess the generalization of the built models. Since dataset C is the only one with micro-

seims, this dataset was used in model training and testing procedures as well as in the second test procedure.

It should be noted that all datasets were previously classified by geophysicists into active, passive and micro-

seism and these labels are used as reference in the training and test steps. The classification of an active event

can be considered a trivial task since the traces from active and non-active seismic events are quite different.

However, the difference between pure passive or passive with microseism traces is not so clear. Therefore, there

is a probability of mislabeling of passive and passive with microseism traces. Nevertheless, The error rate in

trace labeling is considered low because the data was labeled based on events detected by experienced geophysi-
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cists. Given their expertise, microseisms in the time-space domain are easily visualized, reducing the likelihood

of incorrect labels in the provided dataset.

And while the Jubarte field’s datasets in terms of sound pressure and three-dimensional acceleration (Thedy

et al., 2014) were obtained using a permanent reservoir system, our study aims to create a classifier for ocean

bottom seismic acquisition systems in general, so traces in terms of particle displacement velocity must also be

taken into account. Therefore, the acceleration traces used in the training and testing processes were converted

into velocity to form a more complete dataset including sound pressure, acceleration, and velocity traces. This

transformation was achieved through numerical integration using the cumsum() method from the Numpy library

s1.23.5 (Numpy, 2024), to perform comulative summation, along with a high-pass filter with a cutoff frequency

of 0.1 Hz. Figure 2 shows an example of an active trace converted from acceleration to velocity, with and without

filtering. Additionally, a close-up of the active segment (following the arrival of the first wavefront from the

air gun) is provided. This figure emphasizes the significance of filtering and demonstrates that the conversion

yields reliable results, as evidenced by the consistent behavior of the first wavefront arrival and reflections.

Figure 2: Example of an acceleration to velocity conversion, with and without filtering.

Classification algorithms

In this study, two distinct machine learning algorithms were used to develop classification models and evaluate

their performance according to the algorithm employed. Certainly, there is a large number of machine learning

techniques and algorithms that could be used to build a classifier model (Saravanan and Sujatha, 2018). Here,
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a decision tree and a neural network techniques were chosen for the investigation and they are briefly described.

All implementations were carried out using Python 3.10.

Decision tree (DT) is a supervised machine learning approach and was firstly presented by Quinlan (1986). It

provides a hierarchical partition of the training data space Saravanan and Sujatha (2018). In this work, the class

model ExtraTreesClassifier() was used (Scikit-Learn, 2023a). The ExtraTreesClassifier() model is an

ensemble of randomized decision trees and we have used the implementation available in the open source library

Scikit-learn s1.3.2. While the ExtraTreesClassifier() class has several parameterizable inputs (also known

as hyperparameters), in our work the default values were used because we understand that the optimization of

the hyperparameters requires a dedicated work. Thus, the number of trees was 100, and the Gini criterion was

used for the trees’ partition. For details, please see (Scikit-Learn, 2023a).

Neural Networks (NNs) are defined by mathematical models motivated by the behavior of neurons of the

brain, which are the fundamental entity of a NN model (Chollet, 2017). The idea of a neuron model is to sum-

marize an input vector x by the transformation applied by an activation function ϕ on the linear combinations

of the inputs given by

y = ϕ(wTx+ b), (1)

being w and b the weights and biases of a given NN layer. Thus, the NN algorithm aims to obtain the weights

w and biases b for using Equation 1 to achieve the desired output y. In this case, the input x vector is the set

of features computed from a single seismic trace (please see Section Feature engineering) while the output y is

a vector of the transformed input. Then, the number of neuron defines the size of the output. In our model,

an output vector size of three is desired, wherein each output value expresses the probability of the input to

belong to a given class (active, passive or microseism).

In this work the library Keras s2.15.0, with the class model Sequential() (Keras, 2023) was used. A

feed-forward NN was built with four layers, being the number of neurons and activation function of each layer

presented in Table 1. The input dimension of the first layer depends on the number of features used as input,

as detailed in Section Feature engineering. Moreover, the Adam optimizer with learning rate of 0.001 and the

categorical_crossentropy loss function were used in the training process. The ReLU activation function was

used due to the nature of the input, i.e., real non-negative values. The softmax activation function was used in

the last layer to obtain an output that describes the probability of the input to belong a given class. Finally,

the categorical_crossentropy loss function was selected once it is suitable for multi-class classification.

The number of epochs was defined by a convergence analysis, as shown in Section Number of epochs of the

Neural Networks models.

Table 1: Description of the neural network model.

ine Layer Number of neurons Activation function Input dimension

ine 1 500 ReLU Number of features used

ine 2 100 ReLU -

ine 3 50 ReLU -

ine 4 3 Softmax -

ine
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It should be noted that, unlike the DT, models based on NN algorithms may not be discrete classifiers,

depending on the activation function. Since the ReLu activation function is used, the NN algorithm yields a

discrete classifier. In other words, the results are presented as scores indicating the prediction probabilities for

each class. In this study, the NN results were discretized by selecting the class with the highest score as the

discrete prediction. This was done to facilitate comparison between the results of DT and NN models.

Feature engineering

Ocean bottom seismometers typically collect 4C data, including sound pressure and three components of accel-

eration (or velocity), like the seismic data utilized in this study (Thedy et al., 2014). Furthermore, this study

aims to introduce a trace classifier model for ocean bottom seismometers in general, meaning that sound pres-

sure, acceleration, and velocity should all be taken into account. However, it is important to note that the sound

pressure, acceleration, and velocity traces vary significantly in magnitude, as illustrated in Figure 3. Therefore,

in order to create a model that can be applied to all three physical quantities, the features were normalized

based on the maximum value (also known as peak value) of each trace, resulting in normalized features. Fig-

ure 3 displays both the absolute and normalized features of RMS (root mean square) and RMS divided by the

maximum value of each trace from a dataset of active traces. The large differences in sound pressure, accelera-

tion, and velocity regarding their RMS magnitudes are clearly observed in Figure 3. Additionally, it is evident

that the normalized features have the potential to be utilized in the development of a model that is indepen-

dent of the physical quantity, capable of handling all types quantities simultaneously. Furthermore, we believe

that classifiers based on normalized features tend to be less sensitive to different amplitudes measured by ocean

bottom seismometers caused by changes in the propagation medium, different distances between source and

receiver or different sources that can be used.

Five features are examined in this research, all calculated in the time domain and normalized by the maximum

value of each trace: RMS (rms/max), percentile 80% (perc80/max), standard deviation (std/max), skewness

(skew/max) and kurtosis (kurt/max). It should be noted that the features were calculated separately for each

physical quantity (sound pressure, acceleration and velocity), being therefore independent from each other.

Figure 4 shows a contour plot using Kernel Density Estimate (KDE) of the five features, illustrating their

relationship. The figure includes 700 traces of sound pressure from datasets A, B and C. In addition, a probability

density function also using KDE for each feature is shown in the main diagonal of Figure 4. It can be seen

that the active traces differ very well from the passive and microseism for rms/max, perc80/max, std/max and

kurt/max features. For these four features, the passive and microseism traces are partially overlapped. On

the other hand, for the skew/max feature the active, passive and microseism traces are overlapped. Moreover,

the sub scatter plot correlating rms/max and std/max reveals an almost linear relationship between the two

features, indicating redundancy in utilizing both features. The relationship among features, presented by the

scatter plot in the off-diagonal of Figure 4 do not clearly show a potential of properly clustering the passive and

microseism traces.

Figure 5 shows a contour plot of the same five features shown in Figure 4, but for one component of

the acceleration traces. Contrary to the features observed for the sound pressure traces, the features of the

acceleration traces show the microseism traces overlap partially the active and almost totally the passive ones.

Braz. J. Geophys.

Draft 



7

(a) Absolute feature

(b) normalized feature

Figure 3: Absolute (a) and normalized (b) feature RMS from a dataset of active traces.

Additionally, note that for kurt/max feature, the passive data is too concentrated so that the active and

microseism data are hidden. Figures 4 and 5 suggest the microseism and passive traces are better differentiated

by features based on sound pressure traces than by those features based on acceleration traces. As a consequence

of the observations from Figures 4 and 5, beyond the two different machine learning algorithms, two sets of

features and two set of physical quantities are employed in the training phase, as elaborated in the subsequent

section.

Training and testings procedures

The models were trained using two sets of features: the first, called s1, considers only rms/max and the

second, called s2, considers the five features described in Section Feature engineering. Also, the models were

trained considering only the sound pressure traces, identified by the superscript p, and also considering sound

pressure, acceleration and velocity, identified by the superscript all. It should be noted that, for models with

the superscript all, one shot is classified seven times: once using its sound pressure measurement, three times

using its three-component acceleration measurements, and three times using the velocity integrated from the

acceleration measurements. The distinction between models trained only with sound pressure or trained with

sound pressure, acceleration, and velocity was made to analyze if the classification based on different physical

quantities impacts the accuracy of the model.
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Figure 4: Contour plot of the normalized features considered in this study and computed using the sound
pressure traces from datasets A, B and C.

Figure 5: Contour plot of the normalized features considered in this study and computed using one component
of the acceleration traces from datasets A, B and C.

In the validation process, the models based only on sound pressure traces have been trained with 500

traces of sound pressure from datasets A, B, and C, composing 1500 traces. The models based on all physical

Braz. J. Geophys.

Draft 



9

Table 2: Summary of every model assessed, being ML machine learning and “all” the features described in
Section Feature engineering. The number of traces is related to the total traces used in training and testing
procedures. In this study, the number of traces was split 50% for training and 50% for testing.

ine ine Model’s name ML algorithm Features Physical quantities Number of traces

ine DT s1p Decision tree rms/max sound pressure 1500

ine DT s1all Decision tree rms/max sound pressure, acceleration, velocity 10500

ine DT s2p Decision tree all sound pressure 1500

ine DT s2all Decision tree all sound pressure, acceleration, velocity 10500

ine NN s1p Neural network rms/max sound pressure 1500

ine NN s1all Neural network rms/max sound pressure, acceleration, velocity 10500

ine NN s2p Neural network all sound pressure 1500

ine NN s2all Neural network all sound pressure, acceleration, velocity 10500

ine ine

quantities have been trained with 1500 traces of acceleration (500 for each Cartesian component), the velocity

traces converted from these 1500 acceleration traces, and 500 sound pressure traces from datasets A, B, and

C, composing 10500 traces. Table 2 summarizes all models evaluated in this study. Once the features were

computed for these 10500 traces, the set of traces was randomly split using the train_test_split() (Scikit-

Learn, 2023b) function from Scikit-learn s1.3.2 library. In this function, 50% of the datasets are defined for

training and 50% for testing because we aimed to evaluate the model during the testing process with as many

traces as possible. This test using the same dataset for training (but with different traces) is called here

validation tests.

After the validation procedure, another test was applied to verify the models’ generalization. This procedure

is called here a generalization test. Thus, datasets C, D and E were used. Due to the lack of alternative

microseismic datasets, dataset C was used for validation and generalization testing, but different trace subsets

were used for each purpose. In the generalization test, 10500 traces were used, being 1500 acceleration traces

(500 for each Cartesian component), 1500 velocity traces converted from these 1500 acceleration traces, and 500

sound pressure traces, similar to what was described above, but now from datasets C, D, and E. In summary,

the classifiers were trained with 5250 traces and tested against 5250 traces in the validation test and against

10500 traces in the generalization test.

Metrics of performance

To evaluate the performance of the trace classifier models developed, the results are presented through confusion

matrices, which show the relationship between the occurrences of the references and the predictions (Grandini

et al., 2020). From a confusion matrix, various metrics can be calculated, and three of them are utilized to

assess the multi-class classification models in this study: overall accuracy, precision, and recall (Grandini et al.,

2020). Additionally, the Receiver Operating Characteristic (ROC) curve for each model is generated. All three

metrics, along with the ROC curve, are based on the classifications of true positive (TP), true negative (TN),

false positive (FP), and false negative (FN). TP and TN indicate correct classification by the model, while FN
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and FP represent incorrect classification.

The general accuracy, given by

Accuracy =
TP + TN

TP + TN + FP + FN
, (2)

relates the sum of TP and TN to the total number of samples. Accuracy is a general measure of the model.

On the other hand, precision and recall are measures of the model’s performance related to a specific class.

Therefore, for a specific class, precision is given as

Precision =
TP

TP + FP
, (3)

and recall is given as

Recall =
TP

TP + FN
. (4)

Precision is the percentage of samples classified as class x that truly belong to class x, while recall is the

percentage of samples that truly belong to x that were classified as class x. Therefore, both precision and recall

evaluate a model’s performance from different points of view.

Additionally to the aforementioned measures the analysis of the ROC curve is a useful method to evaluate

a classifier’s performance (Fawcett, 2006). The ROC displays the TP rate (TPR) at the y-axis, which has the

same definition of recall (see Equation 4), over the FP rate (FPR) at the x-axis, given as

FPR =
FP

FP + TN
. (5)

Since the ROC graph deals with binary classification scenarios, and in this work a multi-class scenario is

considered, the results from the models developed here were binarized using the one-vs-rest approach. In other

words, the ROC graphs are built with Recall and FPR of one class with relation to the others.

RESULTS

The results are organized in two sections: firstly, the results from the validation and cross-validation using k-fold

tests are presented in Section Validation tests. Then, the best two models identified in the validation test are

used in the generalization test and results are presented in Section Generalization tests.

Number of epochs of the Neural Networks models

The training procedure of the models based on NN algorithms depends on the number of epochs defined.

In order to define the suitable number of epochs, a convergence analysis was performed. Figure 6 shows the

convergence of the accuracy and the time required for the fitting process of model NN s2p for nine different

numbers of epochs used in the training procedure. Results show that while the accuracy converges around 80

epochs, the fitting time increases almost linearly with the number of epochs. Note that only the fitting time was

assessed since the prediction time and model size are not affected by the number of epochs used in the training
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process. Therefore, for the remaining analyses presented in this study using NN models, 80 epochs were used

in the training process.
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Figure 6: Convergence of the accuracy and fitting time of model NN s2p as a function of epochs used in the
training procedure.

Validation tests

Figure 7 shows the confusion matrices of the results obtained from the validation test of the eight classifier

models described in Table 2. In addition, Table 3 presents the accuracy, recall and precision of the models.

Decision tree vs Neural Networks

At first, the results are compared in terms of the machine learning algorithm used. Results presented in

Figure 7 and Table 3 show that the use of Decision tree or Neural Network algorithms does not seem to impact

the performance of the classifier. Comparing the accuracy of models based on DT and NN while varying the

set of features and physical quantities considered, no considerable differences could be observed. For instance,

the models based on both machine learning algorithms presented great performance in classifying active traces

correctly but resulted in misclassifications between microseism and passive traces. However, it should be noted

that the hyperparameters of the algorithms were not optimized. In other words, if the hyperparameters are

adjusted, differences among the models based on different algorithms might be found.

One feature (v1) vs all features (v2)

Results presented in Figure 7 and Table 3 show that the performance of the model for classifying the active

traces was not affected by the set of features tested in this study. For the active traces, recall was 100% for

all models while the precision was equal or higher than 99.8% for all models. However, for the classification of

passive and microseism traces, the set of features used presented a considerable impact.

When only the feature rms/max is used (set s1), models were unable to separate microseism and passive

traces. This is evidenced by recall and precision for this classification attempt being lower or equal than 88.4%

for all models. For instance, recall for passive trace classification by model NN s1all is only 34.2%. On the

other hand, using all five features proposed (set s2), misclassification between the microseism and passive traces
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(a) DT, s1p (b) NN, s1p

(c) DT, s1all (d) NN, s1all

(e) DT, s2p (f) NN, s2p

(g) DT, s2all (h) NN, s2all

Figure 7: Confusion matrices of the results obtained from the validation tests of the eight trace classifier models
described in Table 2, being: A - active; M - microseism; and P - passive.
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was reduced. For instance, models based only on sound pressure traces, such as DT s2p and NN s2p, showed

precision and recall for the microseism and passive trace classification problem in excess of 96.8%.

For a better visualization of the impact of the set of features, results from models based on all physical

quantities are shown by means of a ROC graph, in Figure 8. The ROC graph displays points corresponding

to models DT s1all and NN s1all, with the microseism and passive classes (blue/red square/diamond markers)

being in close proximity to the dashed line, that corresponds to random classification (Fawcett, 2006). In the

case of model DT s1all, the misclassifications between the microseism and passive classes appear more random

compared to model NN s1all, as the ROC points are nearer to the (0.5, 0.5) coordinate. However, there was an

improvement in the classification of microseism and passive traces when all features are used. The ROC graph

illustrates that by the points associated with DT and NN s2all (x and hourglass markers) for the microseism

and passive classes (blue and red markers) are closer to the (0, 1) coordinate when compared to DT and NN

s1all.

Table 3: Summary of the accuracy, class, recall and precision from all models in the validation test.

ine ine Model Accuracy Class Recall Precision

ine

DT, s1p 90.8%

Active 100% 100%

Microseism 87.6% 84.4%

Passive 84.3% 87.5%

ine

DT, s1all 74.9%

Active 100% 99.9%

Microseism 58.3% 63.5%

Passive 66.5% 61.1%

ine

DT, s2p 99.6%

Active 100% 100%

Microseism 99.5% 99.2%

Passive 99.2% 99.6%

ine

DT, s2all 85.5%

Active 100% 99.8%

Microseism 71.8% 82.1%

Passive 84.3% 75.0%

ine

NN, s1p 92.1%

Active 100% 99.8%

Microseism 88.3% 87.9%

Passive 88.0% 88.4%

ine

NN, s1all 73.0%

Active 100% 99.8%

Microseism 84.1% 56.3%

Passive 34.2% 68.3%

ine

NN, s2p 98.0%

Active 100% 100%

Microseism 96.8% 97.2%

Passive 97.2% 96.8%

ine

NN, s2all 85.8%

Active 100% 99.9%

Microseism 65.1% 88.7%

Passive 91.8% 72.7%

ine ine
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Sound pressure vs all physical quantities

Regarding the classification of the active traces, the physical quantity of the trace does not affect the performance

of the models in classifying these traces. However, for the classification of passive and microseism traces, the

physical quantities used for the trace classification showed to have a significant impact on the performance of

the models.

Figure 7 and Table 3 show that misclassifications are more likely to occur when the classification is based on

acceleration or velocity traces compared to the classification based on sound pressure traces. For instance, while

model DT s1p presented recall and precision for microseism and passive traces greater than 84%, model DT s1all

that seeks to classify traces of acceleration and velocity too, achieves recall and precision for microseism and

passive not larger than 66.5%. Similarly, model NN s1p presented recall and precision for microseism and passive

traces around 88% while NN s1all only achieved recall and precision equal to 34.2% and 68.3%, respectively,

for passive traces. The same was observed for the model trained with set of features s2. These results indicate

that the distinctions between microseism and passive traces are more noticeable in the sound pressure traces if

compared to the acceleration and velocity.

Figure 8: ROC graph from all models based on all physical quantities with relation to all one-vs-rest combina-
tions from the validation test. The superscript “all” was omitted since it is common to all models presented in
this figure. It should be noted that the same marker symbols are used for the same models and the same col-
ors are used for the same classes.

Cross-validation using k-fold

In this section, a k-fold cross-validation approach (Wong, 2015) is applied to evaluate the performance of the

best two classifier observed in previous sections. Here, 10 k-fold were used to split the training and testing data

for models DT s2p and NN s2p. Thus, the classifiers are trained and tested 10 times with different separation of

training and testing data. This analysis allows us to verify the accuracy of the classifiers over different training

and test data separation, avoiding a possible optimistic accuracy from only one training and test running (also

known as leave-one-out cross-validation) (Wong, 2015). The results of the 10 k-fold cross-validation in terms
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of accuracy’s mean and standard deviation of the models DT s2p and NN s2p are shown in Table 4. The low

standard deviations observed – 2.2% for DT s2p and 2.9% for NN s2p – indicate a very stable accuracy of the

classifiers for the different folds of training data.

Table 4: Accuracy’s mean and standard deviation of the models DT s2p and NN s2p obtained from 10 k-fold
cross-validation.

ine ine Model Mean Standard deviation

ine DT s2p 97.5% 2.2%

ine NN s2p 95.5% 2.9%

ine ine

Hyperparameters grid search

Section Validation tests showed that models DT s2p and NN s2p outperformed models DT s2all and NN s2all. In

other words, classification of acceleration and velocity traces is considerably less accurate than the classification

of sound pressure traces. For this reason, this section presents a fine tuning approach of the hyperparameters

of the models to strive for an optimal model for enhanced classification of acceleration and velocity traces. To

this end, a grid search approach was applied to find a combination pf hyperparameters that provide the highest

possible accuracy.

For the decision tree model DT s2all the following hyperparameter space was evaluated: number of trees =

{20, 40, 60, 80, 100, 120, 140, 160, 180, 200}; criterion = {gini, entropy, logloss}; and maximum tree depth =

{2, 5, 10, 20, 50}. On the other hand, for the neural network model NN s2all other three characteristics were

varied: the activation function of the layers = {relu, elu, tanh, sigmoid}; the loss function used in the training

process = {mean absolute error, poisson, categorical crossentropy}; and the architecture of the neural network

(i.e., the number of layers and the number of neurons of each layer). The architectures tested were: {100, 50, 3}

(#1 - three layers), {500, 100, 50, 3} (#2 - four layers), {600, 300, 150, 75, 25, 3} (#3 - six layers) and {1000,

750, 600, 500, 300, 250, 150, 50, 3} (#4 - nine layers), wherein each value refers to the number of neurons of

each layer.

For models DT s2all and NN s2all , all combinations in the hyperparameter space were tested. The accuracy

was measured in each run. In the end, the best hyperparameters, i.e., the hyperparameters related to the

highest accuracy were identified as well as the mean, standard deviation, max and min accuracy for all runs.

Table 5 summarizes the statistics for the accuracies from the grid search fine tuning. Results show that the

maximum accuracy observed for model DT s2all was only 0.6% above that observed in Section Validation tests.

For model NN s2all, the maximum accuracy was precisely the same as observed in Section Validation tests, with

the hyperparameters being slightly different. In other words, although several combinations of hyperparameters

were tested, the performance of the models could not be considerably improved when compared to the models

validated in Section Validation tests.
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Table 5: Accuracy’s mean, standard deviation, Max and Min of the models DT s2all and NN s2all obtained
from the grid search fine tuning, being Nt the number of trees, Md the maximum depth, C the criterion, loss
the loss function, ϕ the activation function and arch the neural network architecture.

ine ine Model Mean Standard deviation Max Min Best hyperparameters

ine DT s2all 80.9% 5.2% 86.1% 69.8% Nt = 60, Md = 2, C = gini

ine NN s2all 72.4% 16.6% 85.8% 33.3% loss = categorical crossentropy, ϕ = elu, arch = #3

ine ine

Generalization tests

The results of the validation tests presented in Section Validation tests have shown that models using the set

of features s2 outperformed those using the set of features s1. In addition, models trained only with sound

pressure traces outperformed those trained with sound pressure, acceleration and velocity traces. Therefore,

models DT s2p and NN s2p, the best performing models according to the validation tests, were further evaluated

in a generalization test. Figure 9 shows the confusion matrices of the results obtained in this generalization

test. In addition, Table 6 presents the metrics of performance of each model obtained in the generalization test.

It should be noted that, due to the lack of microseism data, the same dataset C used in the validation test

was used in the generalization test. Therefore, the generalization of the model regarding microseism traces could

not be analyzed properly. From the generalization test, in general, it was observed that the models’ performance

in classifying active and passive traces was not considerably reduced when different datasets are considered. For

the active traces specifically, recall and precision were 100%, as the observed in the validation test. However,

for the passive traces, it was observed that recall and precision were reduced, being the reduction a little more

pronounced for model NN s2p.

(a) DT s2p (b) NN s2p

Figure 9: Confusion matrices of the results obtained in the generalization tests of the trace classifier models DT
s2p and NN s2p, being: A - active; M - microseism; and P - passive traces.

FINAL REMARKS

Although numerous studies have classified seismic data (Li et al., 2018; Bueno et al., 2020; White et al., 2023),

to the best of our knowledge, no dedicated work on classifying ocean bottom seismometer data into active,

passive, and microseism data has been found in the literature. In this study, eight models, utilizing Decision
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Table 6: Summary of the accuracy, class, recall and precision from the two best models in the generalization
test.

ine ine Model Accuracy Class Recall Precision

ine

DT s2p 97.1%

active 100% 100%

microseism 97.6% 94.0%

passive 93.7% 97.4%

ine

NN s2p 94.0%

active 100% 100%

microseism 94.0% 88.7%

passive 87.7% 93.5%

ine ine

Tree and Neural Networks machine learning algorithms with two different sets of features, were developed and

compared. All models used normalized features, enabling classification of traces in terms of normalized sound

pressure, acceleration and velocity. While the features analysis initially showed no clear distinction between

active, passive, and microseism traces, results achieved by using ML models indicated that models utilizing

feature set s2 (comprising five features) outperformed those with feature set s1 (containing only one feature).

Also, the classification of microseism and passive traces based on the acceleration or velocity measurements led

to a lower accuracy when compared to classifications based on sound pressure. The analysis of the features in

terms of sound pressure and acceleration showed the sound pressure traces provide a better distinction between

microseism and passive then the acceleration traces. Furthermore, there was no significant difference in the

classification performance between the DT and NN algorithms developed herein.

While the classifier described in this work is intended to be used in a seismic data compression system, such

seismic trace classifiers have several other applications. For example, an energy management system for ocean

bottom seismometers might be created to activate recording only when active traces are identified. Furthermore,

an autonomous communication system may want to transmit a specific type of trace. In all these scenarios, a

trace classifier is essential, and the models discussed in this study can be beneficial.

Even though different models were developed and analyzed, and good results were achieved in this work,

some further investigations are still needed. A critical point is the misclassification of passive into microseism

data and vice versa when classifications are based on acceleration or velocity data. Additionally, although

it was not possible to evaluate the generalization of the model regarding microseism traces, a good model

generalization related to the microseism class is less likely. While the signature of active seismic data due to

excitation of an air gun (the source commonly used in the seismic reflection method) is well defined, holding a

low variability Landrø et al. (2013), data from microseismic excitation can vary considerably since the source

is not controlled (Longuet-Higgins and Jeffreys, 1950). Therefore, future works should assess pre-processing

techniques in order to achieve better classifications regarding passive and microseism data.

In addition to the possible improvements in the data pre-processing step, investigations can be carried out

specially in terms of alternative architectures. Both decision tree and neural network algorithm allow several

hyperparameters and architectures by means of number of trees, number of layers, number of neurons, optimizer,

epochs used in the training process, activation functions and so on. Therefore, an optimization related to the
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hyperparameters of the trace classifier based on neural networks will be considered in a near future. 
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