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ABSTRACT. Accurate seismic first arrival picking is fundamental for geophysical interpretation and
subsurface imaging. This study evaluates the performance of wavelet-based denoising techniques
combined with the Translation-Invariant Shrinkage (TIS) algorithm to enhance first arrival detection. The
Higher Density Discrete Wavelet Transform (HDDWT) and Double Density Wavelet Transform
(DDWT) are applied to synthetic and real seismic datasets with varying noise levels. Results indicate that
HDDWT outperforms DDWT in preserving critical low-frequency components and maintaining signal
fidelity, particularly under high noise conditions. The P-phase Picker algorithm, when integrated with
HDDWT, achieves superior accuracy and reliability in first arrival detection. These findings underscore
the potential of HDDWT and TIS as robust tools for improving seismic data quality and enhancing
interpretation workflows.

Keywords: P-phase Picker algorithm; Translation-Invariant Shrinkage; Double Density Wavelet
Transform; Higher Density Discrete Wavelet Transform

INTRODUCTION

Accurate determination of the first arrival time of seismic waves, commonly referred to as first-break
(FB) picking, is essential for characterizing subsurface discontinuities and for accurate seismic imaging.
FB picking is fundamental in many geophysical applications, including seismic tomography, static
correction, and velocity model building. Manual picking, although reliable in small datasets, is time-
consuming, subjective, and infeasible for the increasingly large seismic datasets produced in modern
surveys. Consequently, numerous automated and semi-automated FB picking methods have been
developed to improve the efficiency and consistency of arrival time detection.

These FB-picking methods typically rely on detecting abrupt changes in signal characteristics such
as energy, frequency content, and polarization. For example, Baer and Kradolfer (1987) introduced an

automatic picking algorithm based on the short- and long-time average (STA/LTA) ratio. Murat and
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Rudman (1992) and McCormack et al. (1993) incorporated neural network models to identify first arrivals
in noisy traces. Fractal-based methods have also been proposed by Boschetti et al. (1996), Jiao and Moon
(2000), and Gaci (2014) to detect singularities indicative of FBs. Wavelet-based arrival picking has been
explored using multiscale analysis and criteria such as the Akaike Information Criterion (Zhang et al.,
2003), following Chen and Stewart (2005) proposed a multi-window strategy for robust arrival detection.
Other notable contributions include entropy-based and variogram fractal-dimension methods by Sabbione
and Velis (2010), and phase attribute-based techniques for reflection data (Forte et al., 2016).

Filtering remains an essential preprocessing step in many picking algorithms. For example, Lomax
et al. (2012) proposed FilterPicker, a robust broadband picker that incorporates filtering optimization for
real-time seismic monitoring.

More recently, advanced signal processing and machine learning techniques have enhanced FB
picking performance. Shang et al. (2018) applied Empirical Mode Decomposition (EMD) based denoising
to improve the effectiveness of Akaike Information Criterion (AIC based) pickers. Duan and Zhang
(2020) proposed a hybrid model combining classical picking and machine learning for post-correction of
arrival times. Deep learning approaches have also been applied: Ayub et al. (2023) utilized hybrid
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) architectures; Yin et al.
(2023) applied CNNs to large-offset data; Wang et al. (2024) introduced a graph-based approach; and
Mardan et al. (2024) developed a U-Net architecture tailored for seismic data. Kim et al. (2023) proposed
a method based on differences between multiwindow energy ratios to minimize the effects of noise and
enhance FB picking accuracy.

Despite the diversity of FB picking algorithms, their performance remains highly sensitive to noise.
Real seismic signals are often contaminated by high-amplitude noise, particularly in land environments.
In such cases, denoising is not a goal in itself, but a necessary preprocessing step to enhance the
performance of FB picking algorithms. Effective denoising improves signal-to-noise ratio (SNR),
preserves key waveform characteristics, and ensures more accurate and robust first arrival detection.

Among the various denoising methods, wavelet domain techniques offer significant advantages due
to their time-frequency localization capabilities. This study evaluates the effectiveness of wavelet-based
denoising, specifically using the Higher Density Discrete Wavelet Transform (HDDWT) and Double
Density Wavelet Transform (DDWT) in combination with Translation-Invariant Shrinkage (TIS) to
enhance the accuracy of FB picking. Although this work does not propose a new picking algorithm, it
demonstrates how advanced denoising methods can significantly improve existing pickers such as the P-

phase Picker (Kalkan, 2016), particularly under challenging noise conditions.

THEORY AND METHODS

Wavelet Transform

The Fourier Transform is extensively employed in seismic processing, yet seismic data typically lacks
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sparsity in the Fourier domain, as the global Fourier transform struggles to effectively distinguish local
seismic data features. Consequently, various local transforms have been developed, including the short-
time Fourier transform (STFT), discrete cosine transform, and wavelet transform. The wavelet transform,
particularly, facilitates spatial transformation. Transferring data from time-distance to time-frequency can
simplify calculations or reveal hidden information, and the transformed function may require less storage
space.

In signal and image processing, wavelet theory is primarily utilized for compression and denoising
purposes. By applying the Haar Discrete Wavelet Transform (HDWT) and Double Density Wavelet
Transform (DDWT) to the time-frequency plane, data can be transferred for denoising purposes.
Subsequently, comparing the denoising results enables the selection of the most effective transformation

for data denoising (Polikar, 1996).

Higher Density Discrete Wavelet Transform

The Higher Density Discrete Wavelet Transform (HDDWT) is characterized by a set of dyadic
wavelet frames with two generators. These wavelets span the time-frequency plane in a manner that offers
higher sampling in both time and frequency domains. Specifically, the spectrum of the first wavelet is
concentrated halfway between the spectrum of the second wavelet and the spectrum of its dilated version,
denoted as 1;(w) being concentrated between Y, (w) and Y,(2w). Additionally, in the frame
construction, the second wavelet is translated by half-integers rather than whole-integers. The synthesis

filter bank is depicted in Fig. 1 (Selesnick, 2006).
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Y

Figure 1: Schematic of the synthesis filter bank structure for the HDDWT. The first two channels are downsampled

by two, while the third channel is undecimated (Selesnick, 2006).

This arrangement results in an expansive wavelet transform that exhibits approximate shift-invariance
and intermediate scales. The wavelet frames are characterized by compact support and possess vanishing
moments. Notably, the type of wavelet frame employed utilizes an associated filter that is bandpass rather
than high-pass. Consequently, the associated sampling of the time-frequency plane differs somewhat from
other transforms, as illustrated in Fig. 1. The scaling function and two wavelets are defined through the

dilation and wavelet equations (Selesnick, 2006):

Braz. J. Geophys., 43, 1, 2025



4 DWT Denoising for Seismic First Arrival Picking

B =VZ ) ho(m)p(2t — ) (M)

Pi® =V2 ) Qe —n). i=12 2

When h;(n),n € Z are the filters of a digital filter bank. We consider only real-valued h;(n) of compact
support. The dyadic dilations and translations of s;(t) form a tight frame (Selesnick, 2006):

¢k(t) = d’(t - k) (3)

Y1k(6) =P (27t —k) 4)
— 2] k

Yo k() =27t — E) (5)

If the input and output signals in Fig. 1 are x(n) and y(n), then using standard multirate identities, the Z-

transform of y(n) is given by (Selesnick, 2006):

Y(z) = 0.5[Hy(2)X(z) + Hy(—2)X(—2z)] Hy(1/z) + 0.5[H,(2)X(2)

t Hy (—DX(=2)] Hi(1/2) + Hy (D) Ha(1/2) X(2) (©)

With calculating Hy(z), H,(z) and H,(z) with perfect reconstruction (PR) condition and rearranging,

filters chosen (Selesnick, 2006).

Double Density Wavelet Transform

To develop the 'Ideal' double density DWT, the process begins with selecting an appropriate filter
bank structure. The filter bank structure is typically illustrated in a diagram, such as Fig. 2. This diagram
depicts the arrangement of filters and downsampling operations used in the double density DWT
(Selesnick, 2001).

The structure described resembles the conventional two-channel filter bank utilized in implementing
the critically sampled Discrete Wavelet Transform (DWT). However, in this case, the down-sampler and
up-sampler in the high-pass channel have been omitted. This configuration is termed an oversampled filter
bank because the combined rate of the subband signals c(n) and d(n) exceeds the input rate by a factor of
3/2 (Selesnick, 2001).

The double density DWT is subsequently implemented by iteratively applying this filter bank to the
low-pass subband signal c(n). This recursive application allows for the generation of double density DWT
coefficients, which capture additional detail and enable more precise analysis of the input signal. The

prominent issue is the design of the filters hy(n) and h; (n) so that y(n) = x(n) (Selesnick, 2001).
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Figure 2: Diagram of analysis and synthesis filter banks used for implementing the Double Density Wavelet
Transform (Selesnick, 2001).

The perfect reconstruction condition for the filter bank of Fig. 2 is derived as follows. Using basic

multirate identities, we find Y (z), the Z-transform of y(n), in terms of x(z) (Selesnick, 2001):

Y(z) = [ZlHo(Z)Ho (1) + Hy(2)H, (1) + Hy(2)H, (1>] X(z)

P P Z -

+ % [HO(Z)HO (_ %) Hy(2)Hy (_%) + Hy(2)H, (— l)] X(=2z)

V4

The ideal low-pass filter is:

' 1 |w|<m/2
Ho(e’) = 0 " <lw|<m (®)
2

For perfect reconstruction, Y (z) = X(z), it is necessary that:

Hoy(2)Ho G) + Hi(2)H, (%) + H(2)H; G) =2 9)
HoHo (=2) + Hy @y (=) + o)ty () =0 (10)

By finding answers for the perfect reconstruction condition of the filter bank of Fig. 2, we can design

the filters hy(n) and hy (n) and h, (n) (Selesnick, 2001).

Translation-Invariant Shrinkage/Thresholding of Group Sparse Signals

In recent years, many algorithms grounded in sparsity principles have emerged to address tasks such
as signal denoising, deconvolution, restoration, and reconstruction, among others. These algorithms
frequently leverage nonlinear scalar shrinkage or thresholding functions of various forms, which have
been specifically designed to achieve sparse representations of signals. Examples of such functions

include the hard and soft thresholding functions, which selectively attenuate coefficients based on their
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magnitudes. These functions play a pivotal role in effectively reducing noise and enhancing signal features
by promoting sparsity in the signal representation (Donoho, 1995; Chen & Selesnick, 2014).
Examples of such functions are the hard and soft thresholding functions and the nonnegative garrote.

Estimating x(i), i € 7, from noisy observations y(i) (Chen & Selesnick, 2014):

y(@) = x() +w(i), i€ed 1D

Where the signal x(i) is known to have a group sparse property, and w(i) is white Gaussian noise.
Here, the domain of x, typically 7 = {0, ...., N — 1} for one-dimensional finite-length signals. A generally
effective approach for deriving shrinkage/thresholding functions is to formulate the optimization problem

(Chen & Selesnick, 2014).
) 1 2
x* = argmmx{F(x) =§||y—x||2 +/1R(x)} (12)

Where x;,i € Jis the signal to be determined from the observation y = (y;,i € 7). The penalty
function R(x) (regularizer) should be chosen to promote the known behavior of x. Many of the
shrinkage/thresholding functions devised in the literature can be derived as solutions to (12), where R(x)
is specifically of the separable form (Chen & Selesnick, 2014). Here, A is the regularization parameter

controlling the trade-off between data fidelity and sparsity.

RGO = ) r(x(®) a3

i€eJ

For many natural (physically arising) signals, the variables (signal/coefficients) x are only sparse but
do not exhibit a clustering or grouping property. The TIS algorithm acts on x as a whole without
performing block-by-block processing, and minimizes the cost function (12) with the (non-separable)

penalty function (Chen & Selesnick, 2014):
1/2
RGO = ) Y I + P2 (14)
i€l | jed
The Majorization-Minimization (MM) method produces the sequence x® , k > 1 given by:

x®*D = argmin 6 (x,x®)
X

= argminlly = xl3 + 2 ) 1(5x®)x () as
X

i€7
Where x(® is the initialization. Note that (15) is separable in x(i) , therefore, equation (15) becomes
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as follows:
D) = argmin (/0 = 0% + Arx)l? (16
The term Xl(ll(() = 0 is undefined if r(i; x®) i.e., if the i-th group is all zero. Hence, care must be taken

to define an algorithm that avoids operations involving undefined quantities. Consider the following

algorithm. Define J as the subset of 7 where (Chen & Selesnick, 2014):

7={iel: xO®) # 0} (17)
Define the update equation:
y(© el
V@) =1+ 2r(; x0) (18)
0 gl

with initialization x(®) =y. The first case of (18) is the solution to (16). The iteration (18) is the
'overlapping group shrinkage' (OGS) algorithm. The OGS algorithm produces sparse solutions by
gradually reducing non-zero values of y toward zero, rather than by thresholding them directly to zero on

any iteration (Chen & Selesnick, 2014).

P-phase Picker Method

Kalkan introduced an algorithm for picking P-phase arrival time in single-component ground motion
acceleration or broadband velocity records, without the need for predefined detection intervals or
threshold settings. The algorithm operates effectively by idealizing Single Degree Of Freedom (SDOF)
oscillators with viscous (velocity-dependent) damping as moving and fixed bases. Tp is the natural period

of damped vibration related to the natural period of vibration without damping (T, ) by (Kalkan, 2016):

Tp = (19)

Voers

The P-phase Picker operates on a digital time-series signal with a sample interval At. This signal can
be either an acceleration record or a broadband velocity record directly output from the recorder without
undergoing filtering or baseline correction. The primary objective of the P-phase Picker is to identify the
onset of the P-phase by tracking the power of the damping energy. The algorithm for P-phase Picker is
outlined step by step as follows (Kalkan, 2016):

1. Determine the maximum and minimum amplitudes, ¥ ,.xand ym,inof the power of damping energy,
which will correspond to the lower and upper state levels.
2. Calculate the amplitude range yR of the power of the damping energy using Vg = Vmax — Ymin-

3. For the specified number of histogram bins (M), determine the bin width Ay as the ratio of the
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amplitude range to the number of bins; Ay is found by dividing yr by M.
4. Sort the data values into the histogram bins.

5. Identify the lowest-indexed histogram bin (ijow) and the highest-indexed histogram bin (ip;gn) with

non-zero counts.

6. Divide the histogram into two sub-histograms. The indexes of the lower histogram bins are i}, <
S B . . . . 1 .. . o
i=s-X (ihigh — llow) and the upper histogram bins are ijoy, + 5 X (ihigh — llow) <1 =< ihigh

7. The low-state level, which is the mode of the largest bin within the lower histogram, corresponds to

the P-wave phase, and its onset is determined as the last zero crossing on the filtered seismogram before

the P-wave phase arrival.
RESULTS

Check The Matching of Wavelet Transform in the PR Condition

In the first step, we examine the wavelet transforms in the perfect reconstruction (PR) condition. To
achieve this, we apply wavelet transform to the signal, which yields a large number of coefficients.
Subsequently, we apply wavelet transform inverse to restore the signal to its original form. To assess the
PR condition, we compare the original signal with the signal obtained after applying wavelet transform
and its inverse. By calculating the difference, we find that in the HDDWT domain, the difference is equal
to 8.3267e”(-16), and for DDWT, it is equal to 1.1202e”(-16). This indicates that after applying both
wavelet transforms to the seismic trace, the PR condition is satisfied.

The synthetic seismic data were generated using a zero-phase Ricker wavelet with the dominant
frequency of 40 Hz and sampling interval of 0.002 seconds. This wavelet is ideal for its symmetric nature,
ensuring that the phase does not introduce distortions in the signal.

In analyzing a synthetic, seismic noise-free trace, the performance of the Higher Density Discrete
Wavelet Transform (HDDWT) combined with the Translation-Invariant Shrinkage (TIS) algorithm is
superior to the Double Density Wavelet Transform (Fig. 3). DDWT-TIS suppressed the initial wavelet in
Fig. 3(a), likely due to its high-pass filtering effect. HDDWT-TIS slightly altered the phase of the
waveform, which must be considered when applied to signals where phase information is critical. The P-
phase Picker algorithm successfully detected arrival times with minimal errors in both time domain and
HDDWT cases. Power spectrum analysis (Fig. 4) revealed that HDDWT preserves all components more
effectively than DDWT. In contrast, DDWT introduced signal distortions. These discrepancies, though

minor, could impact the accuracy of arrival time estimation in more complex scenarios.
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dt = 0.002, type = na, Tn = 0.6, xi = 0.60, nbins = 10, o = full, SNR = Inf dB
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Figure 3: Synthetic seismic trace under noise-free conditions: (a) original raw trace; (b) denoised trace using

HDDWT with TIS; (c) denoised trace using DDWT with TIS.
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Figure 4: Power spectrum comparison of noise-free synthetic seismic data: (a) original signal, (b) HDDWT denoised
signal, (c) DDWT denoised signal.

In analyzing synthetic seismic data with low noise levels (SNR =~ 3 dB), the performance of the Higher
Density Discrete Wavelet Transform (HDDWT) and Double Density Wavelet Transform (DDWT)

domains combined with the Translation-Invariant Shrinkage (TIS) algorithm was compared (Fig. 5). The
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10 DWT Denoising for Seismic First Arrival Picking

P-phase Picker algorithm successfully detected arrival times with minimal errors in HDDWT, and DDWT
failed. Power spectrum analysis (Fig. 6) showed that HDDWT better preserved frequency components
compared to DDWT, which introduced some signal distortions. These differences might still impact the

accuracy of arrival time estimation in more complex scenarios.

dt = 0.002, type = na, Tn = 0.6, xi = 0.60, nbins = 10, o = full, SNR = 2.84 dB
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Figure 5: Synthetic seismic trace under low noise conditions (SNR = 14 dB): (a) noise-free trace, (b) noisy signal,

Error (Noisy) = 0.0400, Error (HDDWT) = 0.0040, Error (DDWT) = 0.1140

(c) HDDWT-denoised signal using TIS, (d) DDWT-denoised signal using TIS.
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Figure 6: Synthetic seismic trace under high noise conditions (SNR = -5 dB): (a) raw noise-free trace; (b) noisy

signal; (c) HDDWT-denoised signal using TIS; (d) DDWT-denoised signal using TIS.
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At higher noise levels (SNR = -5 dB), the HDDWT outperformed the DDWT in denoising capabilities

(Fig. 7). The denoised traces from HDDWT exhibited significantly clearer waveforms. Consequently, the

P-phase Picker algorithm produced smoother and more reliable first arrival picks with HDDWT. In

contrast, DDWT displayed minor inconsistencies, such as jumps and drops in arrival time detection.

Quantitatively, HDDWT achieved approximately 15% lower average error in first arrival picking under

these challenging noise conditions, underscoring its robustness against high noise contamination. The

power spectrum analysis (Fig. 8) highlighted that HDDWT preserved frequency components more

effectively than DDWT.

dt = 0.002, type = na, Tn = 0.6, xi = 0.60, nbins = 10, o = full, SNR = -5.32 dB
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Figure 7: Power spectrum comparison of synthetic seismic trace under high noise conditions (SNR = -5 dB): original

signal, HDDWT-denoised signal, and DDWT-denoised signal.
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c) d)

Figure 8: Power spectrum comparison for a real seismic trace: original signal, HDDWT-denoised signal, and
DDWT-denoised signal.

The results presented in Table 1 summarize the performance of HDDWT and DDWT across various
input SNR levels in terms of output SNR and runtime. At an input SNR level of -5 dB, HDDWT
significantly outperforms DDWT, achieving an output SNR of 1.038 dB compared to 0.767 dB for
DDWT. This trend of superior performance by HDDWT is consistent across all noise levels, with
HDDWT consistently producing higher output SNR values. For example, at an input SNR of -3 dB,
HDDWT achieves an output SNR of 3.407 dB, compared to 1.250 dB for DDWT.

Runtime comparisons indicate that HDDWT is slightly faster than DDWT for all tested noise levels.
For instance, at an input SNR of -5 dB, the runtime for HDDWT is 0.000761 seconds, while DDWT
requires 0.000781 seconds. Similarly, at -3 dB, HDDWT completes the operation in 0.001029 seconds,
compared to 0.001141 seconds for DDWT. This demonstrates HDDWT's computational efficiency
alongside its better denoising performance.

The results indicate that HDDWT achieves higher output SNR and faster runtime than DDWT across

all noise levels.

Table 1. Performance comparison of HDDWT and DDWT in terms of output SNR (in dB) and runtime (in s) across various
input SNR levels.
SNR(dB) Output SNR_ HDDWT dB Output SNR DDWT dB Runtime HDDWT s Runtime DDWT s

-5 1.03828 0.767349 0.000761 0.000781
-4 0.784829 0.253156 0.000616 0.000677
-3 3.40684 1.25028 0.00103 0.001141
-2 2.27892 0.62884 0.0006 0.00066
-1 0.854280 0.35056 0.00057 0.00065
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A closer examination of the real seismic traces (Figures 9 and 10) highlight the challenges posed by
real data high noise levels. This trace typically experiences significant noise contamination in both low-
and high-frequency bands. By applying HDDWT with TIS, the traces retained critical reflection and
refraction signals, ensuring that key geological features remained interpretable. In contrast, DDWT
reduced noise effectively but introduced artifacts that could potentially mask weak seismic events or
misrepresent the true subsurface structure. Both HDDWT and DDWT introduced distortion in the high
noise case, although HDDWT retained more waveform shape than DDWT.

dt = 0.002, Tn = 1.0, xi = 0.60, nbins = 10
Noisy Real Signal
T

1 T T T T T T T T
05

0
0.5

o 1 I 1 1 I 1 I 1 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Denoised with HDDWT

0.5 T T T T T

Denoised with DDWT
T T T T T T T

0.6 0.8 1 122 1.4 1.6 1.8

Figure 9: First arrival picks on a real seismic trace, showing results obtained from HDDWT and DDWT denoising.

Figure 10: Power spectrum comparison for a real seismic trace: original signal, HDDWT-denoised signal, and DDWT-

denoised signal.
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Additionally, real seismic data presented an opportunity to test the robustness of the P-phase Picker
algorithm. When applied to HDDWT-denoised traces, the algorithm consistently identified the first arrival
picks with higher precision, even under severe noise conditions. DDWT-denoised traces, while sufficient
in many scenarios, exhibited a higher rate of discrepancies in pick locations, particularly for traces near
the edges of the seismic section. The findings suggest that HDDWT, due to its superior preservation of
signal integrity, offers a more reliable foundation for automated picking algorithms in real seismic data
processing workflows.

A final evaluation was conducted by applying both methods to a full seismic section with 112 traces
under high noise conditions (Fig. 11). The HDDWT approach demonstrated its ability to consistently
suppress noise across all traces while maintaining coherent reflection patterns. This facilitated the
identification of continuous horizons and improved the reliability of first arrival picking across the section.
DDWT, while still functional, introduced minor inconsistencies in the continuity of reflections, which

could complicate interpretation in more detailed analyses.

Figure 11: First arrival picking results on a full seismic section under high noise conditions, comparing HDDWT and

DDWT denoising performance

Discussion

The findings of this study highlight the effectiveness of wavelet-based denoising methods,
particularly when using TIS in the HDDWT and DDWT domains, for enhancing the accuracy of
automatic first arrival picking algorithms such as the P-phase Picker. For synthetic data, HDDWT
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demonstrated a consistently robust performance across different noise levels, resulting in lower error rates
for first arrival picking. DDWT, while effective under low noise conditions, exhibited notable signal
distortions under high noise scenarios.

For real seismic data, HDDWT outperformed DDWT in both denoising effectiveness and P-phase
arrival picking accuracy. This superiority can be attributed to HDDWT’s ability to preserve low-
frequency components critical for seismic interpretation. Both methods demonstrated their efficacy in
reducing high-frequency noise; however, HDDWT retained more energy in the low-frequency bands,
ensuring higher fidelity in the reconstructed signals. The visual clarity of HDDWT-denoised traces further
facilitated manual verification of first arrivals, adding a layer of practical reliability.

The computational efficiency of HDDWT further strengthens its case for use in large-scale seismic
processing. Its simpler filter structure not only reduced processing time but also minimized memory
usage, making it highly suitable for real-time applications. Conversely, DDWT, while computationally
more demanding, remains a viable option for low noise datasets or scenarios where signal distortion is
less critical.

The Translation-Invariant Shrinkage (TIS) algorithm is a powerful denoising technique used in
conjunction with wavelet transforms to suppress noise while preserving critical signal components. TIS
addresses the limitations of traditional thresholding methods by eliminating artifacts caused by shifts in
the input signal. This is achieved by averaging the results of multiple wavelet transforms, each applied to
a shifted version of the signal. The shift-invariant property ensures that denoising performance is robust
across varying noise levels and signal complexities. TIS is particularly effective in handling high-
frequency noise contamination, making it an ideal choice for seismic data where maintaining the fidelity
of first arrivals and other critical features is essential. By leveraging TIS in both HDDWT and DDWT
domains, this study demonstrates significant improvements in denoising performance and P-phase picking
accuracy under diverse noise conditions.

The robustness of the P-phase Picker algorithm arises from its methodological design, which
prioritizes energy-based signal detection and preprocessing techniques rather than relying strictly on the
phase characteristics of the wavelet. This approach enhances its performance across a wide range of
signal-to-noise ratios and waveform complexities. This adaptability allows it to function effectively with
minimum-phase real seismic data, provided the signal quality is adequate and preprocessing is properly
tuned.

Future research could explore the integration of machine learning techniques with wavelet-based
denoising methods to further enhance their performance. Comparative studies involving other advanced
denoising algorithms, such as deep learning models, could provide a comprehensive understanding of the
strengths and limitations of wavelet-based approaches. Additionally, investigating the impact of varying
wavelet parameters, such as filter length and decomposition levels, could yield valuable insights for

optimizing wavelet domain selection.
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CONCLUSION

This study demonstrates the effectiveness of wavelet-based denoising methods, particularly the
HDDWT combined with the TIS algorithm, in enhancing the accuracy of seismic first arrival picking.
The HDDWT consistently achieved better noise suppression and signal preservation than DDWT across
synthetic and real seismic datasets. It preserved low-frequency components critical for subsurface
imaging, facilitating accurate P-phase arrival picking even under challenging noise conditions.
Additionally, HDDWT exhibited faster runtime, highlighting its suitability for real-time seismic
applications. These advantages make HDDWT a preferred choice for improving first arrival picking
accuracy in automated workflows. Future research should explore the integration of machine learning

wavelet-based approaches to further enhance performance and adaptability to complex seismic scenarios.
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