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ABSTRACT. Accurate seismic first arrival picking is fundamental for geophysical interpretation and 
subsurface imaging. This study evaluates the performance of wavelet-based denoising techniques 
combined with the Translation-Invariant Shrinkage (TIS) algorithm to enhance first arrival detection. The 
Higher Density Discrete Wavelet Transform (HDDWT) and Double Density Wavelet Transform 
(DDWT) are applied to synthetic and real seismic datasets with varying noise levels. Results indicate that 
HDDWT outperforms DDWT in preserving critical low-frequency components and maintaining signal 
fidelity, particularly under high noise conditions. The P-phase Picker algorithm, when integrated with 
HDDWT, achieves superior accuracy and reliability in first arrival detection. These findings underscore 
the potential of HDDWT and TIS as robust tools for improving seismic data quality and enhancing 
interpretation workflows.  

Keywords: P-phase Picker algorithm; Translation-Invariant Shrinkage; Double Density Wavelet 
Transform; Higher Density Discrete Wavelet Transform  

 

INTRODUCTION 

Accurate determination of the first arrival time of seismic waves, commonly referred to as first-break 

(FB) picking, is essential for characterizing subsurface discontinuities and for accurate seismic imaging. 

FB picking is fundamental in many geophysical applications, including seismic tomography, static 

correction, and velocity model building. Manual picking, although reliable in small datasets, is time-

consuming, subjective, and infeasible for the increasingly large seismic datasets produced in modern 

surveys. Consequently, numerous automated and semi-automated FB picking methods have been 

developed to improve the efficiency and consistency of arrival time detection. 

These FB-picking methods typically rely on detecting abrupt changes in signal characteristics such 

as energy, frequency content, and polarization. For example, Baer and Kradolfer (1987) introduced an 

automatic picking algorithm based on the short- and long-time average (STA/LTA) ratio. Murat and 
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Rudman (1992) and McCormack et al. (1993) incorporated neural network models to identify first arrivals 

in noisy traces. Fractal-based methods have also been proposed by Boschetti et al. (1996), Jiao and Moon 

(2000), and Gaci (2014) to detect singularities indicative of FBs. Wavelet-based arrival picking has been 

explored using multiscale analysis and criteria such as the Akaike Information Criterion (Zhang et al., 

2003), following Chen and Stewart (2005) proposed a multi-window strategy for robust arrival detection. 

Other notable contributions include entropy-based and variogram fractal-dimension methods by Sabbione 

and Velis (2010), and phase attribute-based techniques for reflection data (Forte et al., 2016). 

Filtering remains an essential preprocessing step in many picking algorithms. For example, Lomax 

et al. (2012) proposed FilterPicker, a robust broadband picker that incorporates filtering optimization for 

real-time seismic monitoring. 

More recently, advanced signal processing and machine learning techniques have enhanced FB 

picking performance. Shang et al. (2018) applied Empirical Mode Decomposition (EMD) based denoising 

to improve the effectiveness of Akaike Information Criterion (AIC based) pickers. Duan and Zhang 

(2020) proposed a hybrid model combining classical picking and machine learning for post-correction of 

arrival times. Deep learning approaches have also been applied: Ayub et al. (2023) utilized hybrid 

Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) architectures; Yin et al. 

(2023) applied CNNs to large-offset data; Wang et al. (2024) introduced a graph-based approach; and 

Mardan et al. (2024) developed a U-Net architecture tailored for seismic data. Kim et al. (2023) proposed 

a method based on differences between multiwindow energy ratios to minimize the effects of noise and 

enhance FB picking accuracy. 

Despite the diversity of FB picking algorithms, their performance remains highly sensitive to noise. 

Real seismic signals are often contaminated by high-amplitude noise, particularly in land environments. 

In such cases, denoising is not a goal in itself, but a necessary preprocessing step to enhance the 

performance of FB picking algorithms. Effective denoising improves signal-to-noise ratio (SNR), 

preserves key waveform characteristics, and ensures more accurate and robust first arrival detection. 

Among the various denoising methods, wavelet domain techniques offer significant advantages due 

to their time-frequency localization capabilities. This study evaluates the effectiveness of wavelet-based 

denoising, specifically using the Higher Density Discrete Wavelet Transform (HDDWT) and Double 

Density Wavelet Transform (DDWT) in combination with Translation-Invariant Shrinkage (TIS) to 

enhance the accuracy of FB picking. Although this work does not propose a new picking algorithm, it 

demonstrates how advanced denoising methods can significantly improve existing pickers such as the P-

phase Picker (Kalkan, 2016), particularly under challenging noise conditions. 

 

THEORY AND METHODS 

Wavelet  Transform 

The Fourier Transform is extensively employed in seismic processing, yet seismic data typically lacks 
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sparsity in the Fourier domain, as the global Fourier transform struggles to effectively distinguish local 

seismic data features. Consequently, various local transforms have been developed, including the short-

time Fourier transform (STFT), discrete cosine transform, and wavelet transform. The wavelet transform, 

particularly, facilitates spatial transformation. Transferring data from time-distance to time-frequency can 

simplify calculations or reveal hidden information, and the transformed function may require less storage 

space. 

In signal and image processing, wavelet theory is primarily utilized for compression and denoising 

purposes. By applying the Haar Discrete Wavelet Transform (HDWT) and Double Density Wavelet 

Transform (DDWT) to the time-frequency plane, data can be transferred for denoising purposes. 

Subsequently, comparing the denoising results enables the selection of the most effective transformation 

for data denoising (Polikar, 1996). 

Higher Density Discrete Wavelet Transform 

The Higher Density Discrete Wavelet Transform (HDDWT) is characterized by a set of dyadic 

wavelet frames with two generators. These wavelets span the time-frequency plane in a manner that offers 

higher sampling in both time and frequency domains. Specifically, the spectrum of the first wavelet is 

concentrated halfway between the spectrum of the second wavelet and the spectrum of its dilated version, 

denoted as 𝜓𝜓1(𝑤𝑤) being concentrated between 𝜓𝜓2 (𝑤𝑤) and 𝜓𝜓2(2𝑤𝑤). Additionally, in the frame 

construction, the second wavelet is translated by half-integers rather than whole-integers. The synthesis 

filter bank is depicted in Fig. 1 (Selesnick, 2006). 

Figure 1: Schematic of the synthesis filter bank structure for the HDDWT. The first two channels are downsampled 

by two, while the third channel is undecimated (Selesnick, 2006). 

This arrangement results in an expansive wavelet transform that exhibits approximate shift-invariance 

and intermediate scales. The wavelet frames are characterized by compact support and possess vanishing 

moments. Notably, the type of wavelet frame employed utilizes an associated filter that is bandpass rather 

than high-pass. Consequently, the associated sampling of the time-frequency plane differs somewhat from 

other transforms, as illustrated in Fig. 1. The scaling function and two wavelets are defined through the 

dilation and wavelet equations (Selesnick, 2006): 
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𝜙𝜙(𝑡𝑡) = √2 �ℎ0(𝑛𝑛)𝜙𝜙(2𝑡𝑡 − 𝑛𝑛)
𝑛𝑛

 (1) 

𝜓𝜓𝑖𝑖(𝑡𝑡) = √2�ℎ𝑖𝑖(𝑛𝑛)𝜙𝜙(2𝑡𝑡 − 𝑛𝑛).   𝑖𝑖 = 1.2 
𝑛𝑛

(2) 

When hi(n), n ∈ ℤ are the filters of a digital filter bank. We consider only real-valued hi(n) of compact 

support. The dyadic dilations and translations of  ψi(t) form a tight frame (Selesnick, 2006): 

If the input and output signals in Fig. 1 are x(n) and y(n), then using standard multirate identities, the Z-

transform of y(n) is given by (Selesnick, 2006): 

(6) 
𝑌𝑌(𝑧𝑧) = 0.5 [𝐻𝐻0(𝑧𝑧)𝑋𝑋(𝑧𝑧) + 𝐻𝐻0(−𝑧𝑧)𝑋𝑋(−𝑧𝑧)] 𝐻𝐻0(1/𝑧𝑧) + 0.5[𝐻𝐻1(𝑧𝑧)𝑋𝑋(𝑧𝑧)

+ 𝐻𝐻1(−𝑧𝑧)𝑋𝑋(−𝑧𝑧)] 𝐻𝐻1(1/𝑧𝑧) + 𝐻𝐻2(𝑧𝑧)𝐻𝐻2(1/𝑧𝑧) 𝑋𝑋(𝑧𝑧)

With calculating H0(z), H1(z) and H2(z) with perfect reconstruction (PR) condition and rearranging, 

filters chosen (Selesnick, 2006). 

Double Density Wavelet Transform 

To develop the 'Ideal' double density DWT, the process begins with selecting an appropriate filter 

bank structure. The filter bank structure is typically illustrated in a diagram, such as Fig. 2. This diagram 

depicts the arrangement of filters and downsampling operations used in the double density DWT 

(Selesnick, 2001). 

The structure described resembles the conventional two-channel filter bank utilized in implementing 

the critically sampled Discrete Wavelet Transform (DWT). However, in this case, the down-sampler and 

up-sampler in the high-pass channel have been omitted. This configuration is termed an oversampled filter 

bank because the combined rate of the subband signals c(n) and d(n) exceeds the input rate by a factor of 

3/2 (Selesnick, 2001). 

The double density DWT is subsequently implemented by iteratively applying this filter bank to the 

low-pass subband signal c(n). This recursive application allows for the generation of double density DWT 

coefficients, which capture additional detail and enable more precise analysis of the input signal. The 

prominent issue is the design of the filters h0(n) and h1(n) so that y(n) = x(n) (Selesnick, 2001). 

𝜙𝜙𝑘𝑘(𝑡𝑡) = 𝜙𝜙(𝑡𝑡 − 𝑘𝑘) (3) 

𝜓𝜓1.𝑗𝑗.𝑘𝑘(𝑡𝑡) = 𝜓𝜓1(2𝑗𝑗𝑡𝑡 − 𝑘𝑘) (4) 

𝜓𝜓2.𝑗𝑗.𝑘𝑘(𝑡𝑡) = 𝜓𝜓2(2𝑗𝑗𝑡𝑡 −
𝑘𝑘
2

) (5)Draft 
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Figure 2: Diagram of analysis and synthesis filter banks used for implementing the Double Density Wavelet 

Transform (Selesnick, 2001). 

The perfect reconstruction condition for the filter bank of Fig. 2 is derived as follows. Using basic 

multirate identities, we find Y (z), the Z-transform of y(n), in terms of x(z) (Selesnick, 2001): 

 

(7) 
𝑌𝑌(𝑧𝑧) = �

1
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The ideal low-pass filter is: 

𝐻𝐻0(𝑒𝑒𝑗𝑗𝑗𝑗) = �
1    |𝜔𝜔| < 𝜋𝜋/2

0   
𝜋𝜋
2

< |𝜔𝜔| < 𝜋𝜋 (8) 

For perfect reconstruction, Y (z) = X(z), it is necessary that: 

𝐻𝐻0(𝑧𝑧)𝐻𝐻0 �
1
𝑧𝑧
�+  𝐻𝐻1(𝑧𝑧)𝐻𝐻1 �

1
𝑧𝑧
� + 𝐻𝐻2(𝑧𝑧)𝐻𝐻2 �

1
𝑧𝑧
� = 2 (9) 

𝐻𝐻0(𝑧𝑧)𝐻𝐻0 �−
1
𝑧𝑧
� + 𝐻𝐻1(𝑧𝑧)𝐻𝐻1 �−

1
𝑧𝑧
� + 𝐻𝐻2(𝑧𝑧)𝐻𝐻2 �−

1
𝑧𝑧
� = 0 (10) 

By finding answers for the perfect reconstruction condition of the filter bank of Fig. 2, we can design 

the filters h0(n) and h1(n) and h2(n) (Selesnick, 2001). 

Translation-Invariant Shrinkage/Thresholding of Group Sparse Signals  

In recent years, many algorithms grounded in sparsity principles have emerged to address tasks such 

as signal denoising, deconvolution, restoration, and reconstruction, among others. These algorithms 

frequently leverage nonlinear scalar shrinkage or thresholding functions of various forms, which have 

been specifically designed to achieve sparse representations of signals. Examples of such functions 

include the hard and soft thresholding functions, which selectively attenuate coefficients based on their 
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magnitudes. These functions play a pivotal role in effectively reducing noise and enhancing signal features 

by promoting sparsity in the signal representation (Donoho, 1995; Chen & Selesnick, 2014). 

Examples of such functions are the hard and soft thresholding functions and the nonnegative garrote. 

Estimating x(i), i ∈ ℐ, from noisy observations y(i) (Chen & Selesnick, 2014): 

𝒚𝒚(𝒊𝒊) = 𝒙𝒙(𝒊𝒊) + 𝒘𝒘(𝒊𝒊) , 𝒊𝒊 ∈ 𝓘𝓘  (11) 

Where the signal x(i) is known to have a group sparse property, and w(i) is white Gaussian noise. 

Here, the domain of x, typically  ℐ = {0, … . , N − 1} for one-dimensional finite-length signals. A generally 

effective approach for deriving shrinkage/thresholding functions is to formulate the optimization problem 

(Chen & Selesnick, 2014). 

𝑥𝑥∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 � 𝐹𝐹(𝑥𝑥) =
1
2
‖𝑦𝑦 − 𝑥𝑥‖22 + 𝜆𝜆𝜆𝜆(𝑥𝑥)� (12) 

Where xi , i ∈ ℐ is the signal to be determined from the observation y = (yi , i ∈ ℐ ). The penalty 

function R(x) (regularizer) should be chosen to promote the known behavior of x. Many of the 

shrinkage/thresholding functions devised in the literature can be derived as solutions to (12), where R(x) 

is specifically of the separable form (Chen & Selesnick, 2014). Here, λ is the regularization parameter 

controlling the trade-off between data fidelity and sparsity. 

𝑅𝑅(𝑥𝑥) = �𝑟𝑟(𝑥𝑥(𝑖𝑖))
𝑖𝑖∈ℐ

 (13) 

For many natural (physically arising) signals, the variables (signal/coefficients) x are only sparse but 

do not exhibit a clustering or grouping property. The TIS algorithm acts on x as a whole without 

performing block-by-block processing, and minimizes the cost function (12) with the (non-separable) 

penalty function (Chen & Selesnick, 2014): 

𝑅𝑅(𝑥𝑥) = ���|𝑥𝑥(𝑖𝑖 + 𝑗𝑗)|2
𝑗𝑗𝑗𝑗𝑗𝑗

�

1/2

𝑖𝑖𝑖𝑖ℐ

  (14) 

The Majorization-Minimization (MM) method produces the sequence x(k) , k ≥ 1 given by: 

𝑥𝑥(𝑘𝑘+1) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥

𝐺𝐺(𝑥𝑥, 𝑥𝑥(𝑘𝑘))  

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥
‖𝑦𝑦 − 𝑥𝑥‖22 + 𝜆𝜆�𝑟𝑟(𝑖𝑖; 𝑥𝑥(𝑘𝑘))|𝑥𝑥(𝑖𝑖)|2

𝑖𝑖∈ℐ 

 (15) 

Where x(0)  is the initialization. Note that (15) is separable in x(i) , therefore, equation (15) becomes 
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as follows: 

𝑥𝑥(𝑘𝑘+1)(𝑖𝑖) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥∈ℂ

 (𝑦𝑦(𝑖𝑖) − 𝑥𝑥)2 + 𝜆𝜆 𝑟𝑟(𝑖𝑖; 𝑥𝑥(𝑘𝑘))|𝑥𝑥|2 (16) 

The term xi,K
(k) = 0 is undefined if r(i; x(k)) i.e., if the i-th group is all zero. Hence, care must be taken 

to define an algorithm that avoids operations involving undefined quantities. Consider the following 

algorithm. Define ℐ́ as the subset of ℐ where (Chen & Selesnick, 2014): 

ℐˊ ≔ �𝑖𝑖 ∈ 𝐼𝐼 ∶  𝑥𝑥(0)(𝑖𝑖) ≠ 0� (17) 

Define the update equation: 

𝑥𝑥(𝑘𝑘+1)(𝑖𝑖) = �
𝑦𝑦(𝑖𝑖)

1 + 𝜆𝜆𝜆𝜆(𝑖𝑖; 𝑥𝑥(𝑘𝑘))
,    𝑖𝑖 ∈ 𝐼𝐼′

0                              𝑖𝑖 ∉ 𝐼𝐼′
 (18) 

with initialization x(0) = y. The first case of (18) is the solution to (16). The iteration (18) is the 

'overlapping group shrinkage' (OGS) algorithm. The OGS algorithm produces sparse solutions by 

gradually reducing non-zero values of y toward zero, rather than by thresholding them directly to zero on 

any iteration (Chen & Selesnick, 2014). 

P-phase Picker Method 

Kalkan introduced an algorithm for picking P-phase arrival time in single-component ground motion 

acceleration or broadband velocity records, without the need for predefined detection intervals or 

threshold settings. The algorithm operates effectively by idealizing Single Degree Of Freedom (SDOF) 

oscillators with viscous (velocity-dependent) damping as moving and fixed bases. TD is the natural period 

of damped vibration related to the natural period of vibration without damping (Tn) by (Kalkan, 2016): 

𝑇𝑇𝐷𝐷 = 𝑇𝑇𝑛𝑛
√1 − 𝛼𝛼 2�  (19) 

The P-phase Picker operates on a digital time-series signal with a sample interval Δt. This signal can 

be either an acceleration record or a broadband velocity record directly output from the recorder without 

undergoing filtering or baseline correction. The primary objective of the P-phase Picker is to identify the 

onset of the P-phase by tracking the power of the damping energy. The algorithm for  P-phase Picker is 

outlined step by step as follows (Kalkan, 2016): 

1. Determine the maximum and minimum amplitudes, y maxand yminof the power of damping energy, 

which will correspond to the lower and upper state levels. 

2. Calculate the amplitude range yR of the power of the damping energy using  yR = ymax − ymin. 

3. For the specified number of histogram bins (M), determine the bin width Δy as the ratio of the 
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amplitude range to the number of bins; Δy is found by dividing yR by M. 

4. Sort the data values into the histogram bins. 

5. Identify the lowest-indexed histogram bin (ilow) and the highest-indexed histogram bin (ihigh) with 

non-zero counts. 

6. Divide the histogram into two sub-histograms. The indexes of the lower histogram bins are  ilow ≤

i ≤ 1
2

× (ihigh − ilow) and the upper histogram bins are  ilow + 1
2

× (ihigh − ilow) ≤ i ≤ ihigh 

7. The low-state level, which is the mode of the largest bin within the lower histogram, corresponds to 

the P-wave phase, and its onset is determined as the last zero crossing on the filtered seismogram before 

the P-wave phase arrival. 

RESULTS 

Check The Matching of  Wavelet Transform in the PR Condition 

In the first step, we examine the wavelet transforms in the perfect reconstruction (PR) condition. To 

achieve this, we apply wavelet transform to the signal, which yields a large number of coefficients. 

Subsequently, we apply wavelet transform inverse to restore the signal to its original form. To assess the 

PR condition, we compare the original signal with the signal obtained after applying wavelet transform 

and its inverse. By calculating the difference, we find that in the HDDWT domain, the difference is equal 

to 8.3267e^(-16), and for DDWT, it is equal to 1.1202e^(-16). This indicates that after applying both 

wavelet transforms to the seismic trace, the PR condition is satisfied.  

The synthetic seismic data were generated using a zero-phase Ricker wavelet with the dominant 

frequency of 40 Hz and sampling interval of 0.002 seconds. This wavelet is ideal for its symmetric nature, 

ensuring that the phase does not introduce distortions in the signal. 

In analyzing a synthetic, seismic noise-free trace, the performance of the Higher Density Discrete 

Wavelet Transform (HDDWT) combined with the Translation-Invariant Shrinkage (TIS) algorithm is 

superior to the Double Density Wavelet Transform (Fig. 3). DDWT-TIS suppressed the initial wavelet in 

Fig. 3(a), likely due to its high-pass filtering effect. HDDWT-TIS slightly altered the phase of the 

waveform, which must be considered when applied to signals where phase information is critical. The P-

phase Picker algorithm successfully detected arrival times with minimal errors in both time domain and 

HDDWT cases. Power spectrum analysis (Fig. 4) revealed that HDDWT preserves all components more 

effectively than DDWT. In contrast, DDWT introduced signal distortions. These discrepancies, though 

minor, could impact the accuracy of arrival time estimation in more complex scenarios. 
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Figure 3: Synthetic seismic trace under noise-free conditions: (a) original raw trace; (b) denoised trace using 

HDDWT with TIS; (c) denoised trace using DDWT with TIS. 

 

Figure 4: Power spectrum comparison of noise-free synthetic seismic data: (a) original signal, (b) HDDWT denoised 

signal, (c) DDWT denoised signal. 

In analyzing synthetic seismic data with low noise levels (SNR ≈ 3 dB), the performance of the Higher 

Density Discrete Wavelet Transform (HDDWT) and Double Density Wavelet Transform (DDWT) 

domains combined with the Translation-Invariant Shrinkage (TIS) algorithm was compared (Fig. 5). The 

a) 
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P-phase Picker algorithm successfully detected arrival times with minimal errors in HDDWT, and DDWT 

failed. Power spectrum analysis (Fig. 6) showed that HDDWT better preserved frequency components 

compared to DDWT, which introduced some signal distortions. These differences might still impact the 

accuracy of arrival time estimation in more complex scenarios. 

 

 
Figure 5: Synthetic seismic trace under low noise conditions (SNR = 14 dB): (a) noise-free trace, (b) noisy signal, 

(c) HDDWT-denoised signal using TIS, (d) DDWT-denoised signal using TIS. 

 

Figure 6: Synthetic seismic trace under high noise conditions (SNR = -5 dB): (a) raw noise-free trace; (b) noisy 

signal; (c) HDDWT-denoised signal using TIS; (d) DDWT-denoised signal using TIS. 

a) 
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a)                                                                          b)      

 

 

c)                                                                 d) 
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At higher noise levels (SNR ≈ -5 dB), the HDDWT outperformed the DDWT in denoising capabilities 

(Fig. 7). The denoised traces from HDDWT exhibited significantly clearer waveforms. Consequently, the 

P-phase Picker algorithm produced smoother and more reliable first arrival picks with HDDWT. In 

contrast, DDWT displayed minor inconsistencies, such as jumps and drops in arrival time detection. 

Quantitatively, HDDWT achieved approximately 15% lower average error in first arrival picking under 

these challenging noise conditions, underscoring its robustness against high noise contamination. The 

power spectrum analysis (Fig. 8) highlighted that HDDWT preserved frequency components more 

effectively than DDWT. 

 

 

Figure 7: Power spectrum comparison of synthetic seismic trace under high noise conditions (SNR = -5 dB): original 

signal, HDDWT-denoised signal, and DDWT-denoised signal. 

a) 

 

 

b) 

 

 

c) 

 

 

d) 
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Figure 8: Power spectrum comparison for a real seismic trace: original signal, HDDWT-denoised signal, and 

DDWT-denoised signal. 

The results presented in Table 1 summarize the performance of HDDWT and DDWT across various 

input SNR levels in terms of output SNR and runtime. At an input SNR level of -5 dB, HDDWT 

significantly outperforms DDWT, achieving an output SNR of 1.038 dB compared to 0.767 dB for 

DDWT. This trend of superior performance by HDDWT is consistent across all noise levels, with 

HDDWT consistently producing higher output SNR values. For example, at an input SNR of -3 dB, 

HDDWT achieves an output SNR of 3.407 dB, compared to 1.250 dB for DDWT. 

Runtime comparisons indicate that HDDWT is slightly faster than DDWT for all tested noise levels. 

For instance, at an input SNR of -5 dB, the runtime for HDDWT is 0.000761 seconds, while DDWT 

requires 0.000781 seconds. Similarly, at -3 dB, HDDWT completes the operation in 0.001029 seconds, 

compared to 0.001141 seconds for DDWT. This demonstrates HDDWT's computational efficiency 

alongside its better denoising performance. 

The results indicate that HDDWT achieves higher output SNR and faster runtime than DDWT across 

all noise levels. 

Table 1. Performance comparison of HDDWT and DDWT in terms of output SNR (in dB) and runtime (in s) across various 

input SNR levels. 

SNR(dB) Output_SNR_HDDWT_dB Output_SNR_DDWT_dB Runtime_HDDWT_s Runtime_DDWT_s 

-5 1.03828 0.767349 0.000761 0.000781 

-4 0.784829 0.253156 0.000616 0.000677 

-3 3.40684 1.25028 0.00103 0.001141 

-2 2.27892 0.62884 0.0006 0.00066 

-1 0.854280 0.35056 0.00057 0.00065 

Não é possível exibir esta imagem.

a)                                                                         b)      
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A closer examination of the real seismic traces (Figures 9 and 10) highlight the challenges posed by 

real data high noise levels. This trace typically experiences significant noise contamination in both low- 

and high-frequency bands. By applying HDDWT with TIS, the traces retained critical reflection and 

refraction signals, ensuring that key geological features remained interpretable. In contrast, DDWT 

reduced noise effectively but introduced artifacts that could potentially mask weak seismic events or 

misrepresent the true subsurface structure. Both HDDWT and DDWT introduced distortion in the high 

noise case, although HDDWT retained more waveform shape than DDWT. 

Figure 9: First arrival picks on a real seismic trace, showing results obtained from HDDWT and DDWT denoising. 

 

 
Figure 10: Power spectrum comparison for a real seismic trace: original signal, HDDWT-denoised signal, and DDWT-

denoised signal. 
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Additionally, real seismic data presented an opportunity to test the robustness of the P-phase Picker 

algorithm. When applied to HDDWT-denoised traces, the algorithm consistently identified the first arrival 

picks with higher precision, even under severe noise conditions. DDWT-denoised traces, while sufficient 

in many scenarios, exhibited a higher rate of discrepancies in pick locations, particularly for traces near 

the edges of the seismic section. The findings suggest that HDDWT, due to its superior preservation of 

signal integrity, offers a more reliable foundation for automated picking algorithms in real seismic data 

processing workflows. 

A final evaluation was conducted by applying both methods to a full seismic section with 112 traces 

under high noise conditions (Fig. 11). The HDDWT approach demonstrated its ability to consistently 

suppress noise across all traces while maintaining coherent reflection patterns. This facilitated the 

identification of continuous horizons and improved the reliability of first arrival picking across the section. 

DDWT, while still functional, introduced minor inconsistencies in the continuity of reflections, which 

could complicate interpretation in more detailed analyses. 

 

 
Figure 11: First arrival picking results on a full seismic section under high noise conditions, comparing HDDWT and 

DDWT denoising performance 

Discussion 

The findings of this study highlight the effectiveness of wavelet-based denoising methods, 

particularly when using TIS in the HDDWT and DDWT domains, for enhancing the accuracy of 

automatic first arrival picking algorithms such as the P-phase Picker. For synthetic data, HDDWT 
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demonstrated a consistently robust performance across different noise levels, resulting in lower error rates 

for first arrival picking. DDWT, while effective under low noise conditions, exhibited notable signal 

distortions under high noise scenarios. 

For real seismic data, HDDWT outperformed DDWT in both denoising effectiveness and P-phase 

arrival picking accuracy. This superiority can be attributed to HDDWT’s ability to preserve low-

frequency components critical for seismic interpretation. Both methods demonstrated their efficacy in 

reducing high-frequency noise; however, HDDWT retained more energy in the low-frequency bands, 

ensuring higher fidelity in the reconstructed signals. The visual clarity of HDDWT-denoised traces further 

facilitated manual verification of first arrivals, adding a layer of practical reliability. 

The computational efficiency of HDDWT further strengthens its case for use in large-scale seismic 

processing. Its simpler filter structure not only reduced processing time but also minimized memory 

usage, making it highly suitable for real-time applications. Conversely, DDWT, while computationally 

more demanding, remains a viable option for low noise datasets or scenarios where signal distortion is 

less critical. 

The Translation-Invariant Shrinkage (TIS) algorithm is a powerful denoising technique used in 

conjunction with wavelet transforms to suppress noise while preserving critical signal components. TIS 

addresses the limitations of traditional thresholding methods by eliminating artifacts caused by shifts in 

the input signal. This is achieved by averaging the results of multiple wavelet transforms, each applied to 

a shifted version of the signal. The shift-invariant property ensures that denoising performance is robust 

across varying noise levels and signal complexities. TIS is particularly effective in handling high-

frequency noise contamination, making it an ideal choice for seismic data where maintaining the fidelity 

of first arrivals and other critical features is essential. By leveraging TIS in both HDDWT and DDWT 

domains, this study demonstrates significant improvements in denoising performance and P-phase picking 

accuracy under diverse noise conditions. 

The robustness of the P-phase Picker algorithm arises from its methodological design, which 

prioritizes energy-based signal detection and preprocessing techniques rather than relying strictly on the 

phase characteristics of the wavelet. This approach enhances its performance across a wide range of 

signal-to-noise ratios and waveform complexities. This adaptability allows it to function effectively with 

minimum-phase real seismic data, provided the signal quality is adequate and preprocessing is properly 

tuned. 

Future research could explore the integration of machine learning techniques with wavelet-based 

denoising methods to further enhance their performance. Comparative studies involving other advanced 

denoising algorithms, such as deep learning models, could provide a comprehensive understanding of the 

strengths and limitations of wavelet-based approaches. Additionally, investigating the impact of varying 

wavelet parameters, such as filter length and decomposition levels, could yield valuable insights for 

optimizing wavelet domain selection. 
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CONCLUSION 

This study demonstrates the effectiveness of wavelet-based denoising methods, particularly the 

HDDWT combined with the TIS algorithm, in enhancing the accuracy of seismic first arrival picking. 

The HDDWT consistently achieved better noise suppression and signal preservation than DDWT across 

synthetic and real seismic datasets. It preserved low-frequency components critical for subsurface 

imaging, facilitating accurate P-phase arrival picking even under challenging noise conditions. 

Additionally, HDDWT exhibited faster runtime, highlighting its suitability for real-time seismic 

applications. These advantages make HDDWT a preferred choice for improving first arrival picking 

accuracy in automated workflows. Future research should explore the integration of machine learning 

wavelet-based approaches to further enhance performance and adaptability to complex seismic scenarios. 
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