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ABSTRACT. A common approach to stabilize the ill-posed inverse problem is to apply regularization, which
restricts the possible solutions to these problems. Thus, a regularization term is often incorporated into the
tomographic objective function to resolve the non-uniqueness of the inverse geophysical problem, restricting
the possible solutions to these problems. This work evaluates the effects of regularization and analyzes its
impact on the resulting seismic velocities. Grounded in a detailed case study, we investigate Tikhonov's
regularization of order 1 and its variants, including order 2, utilizing a tomography program that employs ray
tracing, a finite differences scheme with the eikonal equation for first arrivals, and the regularization algorithm.
The velocity model is synthetic and based on shallow seabed channel geology. The true model was compared
with the tomography results without regularization and with regularization schemes. The results clearly indicate
that regularization parameters play a critical role in defining the outcomes of velocity models in tomography
inversion. By applying regularization, we significantly reduce structural distortion in tomographic results—this
approach proves to be not only effective but essential. Tikhonov’s regularization of order 2 consistently
demonstrates faster convergence and notable improvements in the velocity model. Furthermore, our parameter
sensitivity tests reveal the extent to which an inappropriate choice can distort geological structures, such as by
creating artificial structural highs or lows, underscoring the necessity of careful selection in regularization
techniques.

Keywords: seismic velocity inversion; shallow subsurface imaging; tomographic inversion; regularization
schemes; lll-posed inverse problems

INTRODUCTION

Most geophysical studies deal with inverse problems since the acquisition of direct measures of
physical properties is costly. Also, forward measures are generally restricted to spatially limited
areas and difficult to extrapolate to the entire area of interest with the necessary accuracy, even
with the use of geostatistical methods.

In the geophysics of oil and gas exploration, seismic methods have been the most used
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2 Regularization Effects on Seismic Tomography

since the beginning of the 20th century (Telford et al., 1990). At the end of the 20th century and
the beginning of the 21st, there was a significant advance in the oil and gas industry with the large-
scale use of 3-D seismic survey data. The increase in computational capacities has generated
great advances, significantly impacting deep seismic processing (Woodward et al., 2008). In this
way, seismic velocity models have become fundamental for seismic imaging (Rosa et al., 2018;
Maul et al., 2018).

The two main techniques for the seismic method are reflection and refraction (Telford et al.,
1990). As per these authors, seismic reflection uses the seismic wave reflected in interfaces of
materials with distinct acoustic impedances (compressional velocity and density) to characterize
the medium, and seismic refraction uses the critically refracted wave at these interfaces. The
seismic method is the most widely used technique in the field today. A recent survey conducted
by Bulhdes and Santos (2022) in the Scopus database reveals that publications between 1889 and
2021, 80% of publications focus on reflection seismic, while only 20% concentrate on refraction
seismic (Figure 1). From the 1980s onwards, publications and studies on reflection seismic became
predominant about those on refraction seismic. These results are corroborated by the work of
Dobecki and Romig (1985), where it was observed that surveys and studies on reflection seismic
would replace those on refraction as the predominant method. This trend highlights the growing

recognition and preference for reflection seismic in research and practice.
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Figure 1 - Evolution of seismic works on reflection and refraction in relation to years. Adapted from
Bulhdes and Santos (2022).

The oil & gas industry's targets of interest are generally situated at great depths.
Consequently, this fact imposes significant difficulties in reaching these targets by adopting
refraction tomography. Furthermore, velocity models in shallow portions directly influence imaging
and can lead to misinterpretation of deeper structures. In particular, static corrections used in
onshore data processing depend heavily on the shallow velocity model, making it a primary source
of uncertainties and errors. This dependency thus generates challenges for seismic processing
(Lines and Newrick, 2004).
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Bulhdes et al. 3

Due to the scarcity of information acquisition—specifically regarding feasible property
distribution like compressional velocity — the characterization of the shallow subsurface remains
a well-recognized challenge for exploration geophysics. The limited availability of this data in well
logs, whether stemming from operational constraints or economic factors, underscores the
complexity of the task. Nevertheless, information from the shallow portions of velocity models is
crucial for seismic imaging and time-depth conversion in interpretation sectors.

Moreover, regularization is not merely a tool but necessary for solving seismic inversion
problems (Zhdanov, 2002). The foundational works of Ivanov (1962), Phillips (1962), Twomey
(1963) and Tikhonov (1963) established the groundwork for the general formulation of
regularization in the context of ill-posed problems. Notably, the Tikhonov regularization technique
— designed to ensure horizontal smoothness of geological properties — demonstrates the
indispensable role of regularization in addressing geological challenges. The primary objective of
this study is to evaluate the effects of regularization on refraction tomography and the resulting
seismic velocities.

In addition, this research emerged from regional velocity modeling for time-depth
conversion in basin scale. This was based on the methodology developed by Bulhdes et al. (2014),
which utilizes different types of seismic data. To get a robust velocity model, all available velocity
information (tomography, migration, well profiles etc.) must be used, and weighted with geological
information, statistical treatments, and geostatistical tools (Maul et al., 2005; Bulhdes et al., 2018).
However, in many cases, the shallow sections of wells remain unlogged due to operational
instability and economic considerations (Bulhdes et al., 2018). Figure 2 illustrates the seismic

section of cross-reflection as observed in three wells alongside their respective sonic profiles.
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Figure 2 - Seismic section that passes through three wells and their respective sonic profiles.
Adapted from Bulhdes et al. (2018).
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4 Regularization Effects on Seismic Tomography

This work is split as follows: in the first part, a literature review on direct and inverse
problems, as well as tomography and regularization, is presented. In the second part, it is shown
an application of a case study in a shallow marine environment on the regularization of refraction
tomography and its effects. Finally, the effects of Tikhonov regularizations as described in Tikhonov

and Arsenin (1977) are evaluated.

METHODS

Forward and Inverse Problems

Menke (1989) defines an inverse problem as a collection of mathematical techniques that
extract physical parameters from observed data. These techniques not only involve the creation
of a physical-mathematical model that accurately represents the physical system but also justify
the extracted parameters. Importantly, a problem is deemed inverse when the objective is to infer
the physical properties of a medium based on external recorded data. Furthermore, a more
comprehensive definition of an inverse problem encompasses understanding how to derive the
physical model—a set of properties and parameters—from the observed data and corresponding
observations. This process is frequently evident in various examples of geophysical and
geological interpretation. By grasping these concepts, we can unlock a deeper understanding of

the physical world, ultimately leading to more effective analyses and applications in these fields.

The linear inversion theory is expressed by:
d=6m Eq.l

Where:

d is the data vector corresponding to an observation;
m is the model parameter;
G is the matrix that relates the parameters d and m.

Figure 3 schematically shows forward and inverse problems. The inverse problem

consists of having d and obtaining m. The forward problem is obtaining d from m and G.
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Forward

Figure 3 - Schematic representation of a forward and inverse problem. Adapted from Bianco
(2013).

Well-posed and lll-posed Problems

Hadamard (1902) established that an inverse problem is called as ill-posed when the
solution does not meet at least one of the conditions: existence, uniqueness, or stability. In a well-

posed problem, the three conditions mentioned must be satisfied.

The uniqueness of the solution to inverse problems is crucial for classifying these problems
as well-posed. Currently, inverse problems are often ill-posed, and it is imperative to transform
them into well-posed problems by utilizing a priori information, regularizations, or other resources
that restrict potential solutions effectively. According to Ivanov et al. (2005a), five main factors
contribute to non-uniqueness, particularly evident in refraction tomography: insufficient data
hampers the ability to resolve the problem effectively, especially in first-arrival tomography, where
the model's cells often lack coverage by the rays, the intrinsic characteristics of the problem also
play a significant role (in refraction tomography, blind layers, characterized by the lowest velocity
in the deepest layers, prevent the rays from crossing these regions due to the medium's properties.
- Data errors further complicate the situation; the statistical distribution of the data frequently
deviates from Gaussian characteristics. This discrepancy means that the measured values might
not accurately represent the model used for inversion; finally, numerical errors and instability can
introduce significant challenges. These factors illuminate the challenges faced in executing
refraction tomography. The non-uniqueness in first-arrival tomography clarifies why this method
may lead to unsatisfactory solutions or, in some cases, total failure to produce results (lvanov et
al., 2005b). Achieving a satisfactory solution becomes highly improbable without incorporating the
necessary a priori information. Hence, it is essential to address these issues to improve the

reliability and effectiveness of inverse problems in practice
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6 Regularization Effects on Seismic Tomography

According to Zhdanov (2002), all information about the physical model (m) generates (d),
according to Equation 1, is contained in matrix G. However, the presence of errors in the measured
data, whether in the measurement, noise inherent in the system, or associated with the physical
problem, poses a significant challenge. These imprecisions not considered in the modeling can
exert difficulties to find out the correct model m, which accurately describes the registered data d.
As Aster et al. (2005) point out, the possibility that the model adopted to describe the data is not

correct (or complete) further complicates the task of obtaining a solution to the problem.

Least Squares Method

The least squares method is a vital geophysical technique to determine the best-fit model
parameters for inverse problems. This method seeks to achieve the smallest sum of squared
residuals by minimizing the difference between observed and predicted data. It is particularly
advantageous for overdetermined systems, where it allows for the identification of unique solutions
that minimize overall errors (Claerbout and Muir, 1973). This method for curve fitting, while
relatively sensitive to noise with very high amplitudes, is indispensable. The residual, the difference
between the data calculated by direct modeling and the observed data, must be minimized and
acceptable for the studied problem. Additionally, it can be applied to underdetermined systems,
helping to find solutions closest to the observed data. The method includes linear least squares,
which assume a linear relationship and offer a closed-form solution, and nonlinear least squares,
which often require iterative approaches (Bejarano and Bassrei, 2016). In the case of the nonlinear
problem, the widely used L2 norm aims to minimize the residual calculation function. The L2 norm,
a standard method for calculating the length of a vector in Euclidean space (Li and Jain, 2009),

plays a key role in this process.

The iterative process, a systematic and methodical approach, is the practice of refining and
seeking to solve the problem described in Equation 1 through successive iterations. It starts from
an initial model, and the problem is replaced by a sequence of linear least-squares problems,
solved in subsequent iterations. The final solution converges to the solution of the original
nonlinear problem (Heath, 2002; Menke, 2012). The process ends when the residual is less than
a chosen minimum value () or when a maximum number of iterations (n) is reached (Zhdanov,
2002). When there are iterative methods for solving, it is necessary to define a convergence
criterion. The criterion for convergence of the iterative process in this work is that the residual has
a variation of less than 1% between iterations (Begnaud et al., 2013). Numerical methods must
satisfy some interdependent: consistency, stability, or convergence. Consistency implies that the
discrete problem approximates the differential problem. The solution found must converge to the

solution of the equations when the distance between the mesh points tends to zero, i.e., when the
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solution of the discretized equations tends to the exact solution. A solution method is stable if the
errors of the solution decrease, that is when it does not amplify the errors during the numerical
simulation process (Ferziger and Peric, 1996). According to Lax’s equivalence theorem, the
method is convergent if only if it is stable. In this way, the methods need to have a numerical
solution of finite difference methods of partial differential equations, a consistent finite difference
method for a well-posed linear initial value problem. In other words, the relationship is true if
consistency plus stability equals convergence. In nonlinear cases, convergence is not guaranteed.
However, the method's stability substantially facilitates obtaining a converged solution (Tannehill
et al., 1997).

The smaller residual of the data does not necessarily imply that the model's RMS error (i.e.,
the difference with models in subsequent steps) is smaller, especially if the problem is misplaced.
In other words, the best fit between theoretical and observed times is the one for which the RMS
is smaller. Thus, in the context of least squares, the objective function to be minimized is the

square of the residual.

The problem is defined as nonlinear when the operator G is a function of the parameters
of the model m, (d=g(m)), the matrix G is an approximation of a nonlinear operator g. Tomography
aims to obtain a velocity model that minimizes the objective function given by the difference
between the travel times calculated in the forward modeling (d.q;c = g(m) ) and observed data

(dops ), is expressed by:

o(m) = ||dops — g(m)ll,"  Eq.2
Where:
dobs 1s the observed data; g (m) is the calculated data.

According to Carbonesi (2018), the general workflow of tomographic inversion needs to
contain as steps: the recorded data, the definition of an initial model for direct modeling, the
definition of the number of iterations, n, and the misfit tolerance, &; the calculation of the residual;
if the residual is smaller than the tolerance the flow ends, otherwise the input model is updated by
the parameter Am until either the residual is smaller than the tolerance or the number of predefined
iterations is performed. Figure 4 shows the general workflow of tomographic inversion used in this

study.
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Figure 4 — General workflow of seismic tomographic inversion. Adapted from Carbonesi (2018).

Minimizing Equation 2 means looking for the solution with the smallest possible residue to
the observed data and obtaining the parameters that best fit the observations. It must find the points
at which your derivative is zero to minimize the objective function. Thus, by deriving Equation 2

and equaling to zero, one obtains
m= [GTG]7'G"d Eq.3

Substituting m for Am and d for Ad, gives:
Am = [G"G]"'G"Ad  Eq.4

Am is the velocity model update term and Ad =||d,ps — dcalcllz2 . The term depends on the inverse
of the G'G matrix. In Equation 5, the updated model mj+s

m;, 1 = m; + Am Eq 5
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The tomographic process will run a number of predefined iterations is reached or when the

residue is less than the stipulated value is expressed by:
ld —G6Gmgll, < § Eq.6
Where:

my is a solution to the inverse problem modeled by G that satisfies the condition;

Gmy is the predicted data, with the result of the inversion;
|ld — Gmg]|, it is the norm of the error between the observed data and the predicted data;
and § is the value chosen as a tolerance for the error norm between the observed data and

the predicted data.

Another point is related to the methods of minimizing a problem. The starting point, in the
case of tomography in some cases, is the initial velocity model, which must be close enough to the
solution for the problem to converge. If this aspect not ensured, there is the possibility of moving

away from the “real” solution to the problem, finding a local minimum of the function; the updated

-1
model mj+s = m; + [GTG] G'Ad process will end, but it is still far from the actual model that is

found in the subsurface (Figure 5). In other cases, it can even be forcibly stopped by not converging

to any minimum, nor local, much less global (Figure 6).
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Figure 5 - Graphical representation of the objective function in relation to property models.
Adapted from Soares Filho (2018).
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Figure 6 — Examples of graphs illustrating the objective function versus iteration for no

convergence and convergence cases. Adapted from Santos (2018).

Most geophysical studies resolve inverse problems since acquiring direct measurements of
physical properties is costly. In addition, direct measurements are restricted to spatially limited
areas and difficult to extrapolate to the entire area of interest with the necessary accuracy, even
with the use of geostatistical methods.

According to Zhdanov (2002), Tikhonov's work demonstrates that ill-posed problems can
be solved mathematically. A solution is to be stable if slight variations in the values of d lead to
minor changes. If that does not happen, you have an unstable solution. Defining it more rigorously,
operator G™ (inverse of G) is to be continuous when it presents stability for the entire space of
solutions (Muniz, 1999). With the continuous G operator in this set, it is necessary to know a priori
that a solution is contained in a subset of all possible solutions. When this subset is selected, the
ill-posed problem becomes conditionally well-posed.

In the case of some indeterminate linear systems (with several unknowns below the number
of equations), a studied solution was to approach the minimum norm's least squares. That is, an
additional term is associated with the quadratic discrepancy term. This can be generalized to solve
ill-posed problems, and it is necessary to provide additional information. The regularization method
determines the smoothest approximate solution and checks its compatibility with the observed data
for a given noise level.

The purpose of regularization techniques is to make the operator who inverts the data
continuously equivalent to making the solutions stable and the problem well-posed. When
regularizing the inversion, the problem to be solved is no longer precisely the original problem and
becomes a problem that approaches the original (Figure 7). The smoothing factor (or parameter) A
determines the weight given to smoothing in the inversion process, and according to A tends to O,
the smoothed solution (m4) must tend asymptotically to the correct solution m¢ (Zhdanov, 2002),

as well as the smoothed operator must tend to the G operator.
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Figure 7 - Schematic representation to transform an ill-posed problem into a well-posed problem.

Adapted from Velho (2008).

The solution of the inverse problem without regularization is the minimization of | d —
Gmy| -, called objective function is given by:

min ||d — Gmg||, Eq.7

To obtain a general expression that is minimized, simply apply Lagrange multipliers to the given
condition, the result of which is:

min ||d — 6Gmgl|*; + 2%[lm||*;  Eq.8

The higher-order Tikhonov regularizations follow the same logic as zero-order regularization,
just replacing the minimization of the ms norm by minimizing an ms function given by:

min ||d — Gm]||%, + A?||Lm,||*, Eq.9

Where:

L is the matrix of the operator considered (derived first or second from ms).

The Tikhonov regularization of order 1 uses the first derivative of ms and the regularization
of order 2, the second derivative are given by equations:

L(l)ms(x' 7) = (ams(x,z) + Bms(x,z))

™ py Eq. 10

9%mg(x,z)  9%mg(x,2)
LPm,(x,z) = (588 4 T0ED)  gq 11

If the matrix L is considered as the identity matrix, it is the zero-order regularization.
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12 Regularization Effects on Seismic Tomography

This study examines the impact of regularization on refraction tomography. The study area
represents a coastal environment near South Boston, Massachusetts (Zhang and Toks6z,1998),
a shallow-structure 2-D velocity model. The acquisition geometry for parameterization of the
forward modeling is defined as the interval between shooting points in 40 m, the total number of
shots in 176, the depth of sources and receivers in 20 m, the interval between receivers in 10 m,
and the total number of receivers in 150 and the real velocity model and the acquisition geometry,
which are represents in Figure 8. The model contains three layers and a seabed channel structure,
with velocities of 1,500 m/s (water), 2,000 m/s, and 2,500 m/s. In addition, the velocity model
consists of 250 cells in the horizontal direction and 25 cells in the vertical direction (depth) with a
uniform spacing of 10 m. Besides, it was added a white noise (gaussian distribution) for forward
modeling data. The white noise has a value obtained by the pseudorandom drawing of a number
according to a gaussian distribution with a standard deviation equal to the value expected for the
error in obtaining the first arrival time (Almeida, 2013).

In the study, the process ends when the residual is less than §=1.0x 1078 ms or when it
reaches a maximum number of iterations, n=40. The actual model was compared with travel time
tomography results without regularization using Tikhonov's regularization schemes. Travel times
for tomography were obtained by forward modeling this model using the same tomography

algorithm to calculate travel time.

176 shots (38 oh each side) 7
150 receivers

A

Figure 8 - Representation of the real velocity model and the acquisition geometry. Adapted from
Bulhdes (2020).

Figure 9 shows the initial velocity model used for tomographic inversion, consisting of two flat,
parallel, and horizontal layers with velocities of 1,500 m/s and 2,500 m/s. The true velocity model
(Figure 9a) is represented by the model resulting from the refraction tomography without applying

the regularization (Figure 9b).
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Figure 9 - True velocity model, initial model input for refraction tomography and tomography result
without regularization.

Figure 10 shows the residual of the tomographic process as a function of the iteration. The
axis referring to the residue is in the logarithmic scale at base 10. This graph observes that the

convergence of the tomographic inversion occurs from iteration 28.
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Figure 10 - Variation of the residual of the tomographic inversion without regularization according
to the iteration.

The effects of regularization are analyzed through a sensitivity study based on the
regularization parameters, which impact the algorithm's convergence and stability and the resulting
model. The stability and convergence are also analyzed using graphs of the behavior of the residue
as a function of iteration. Stability does not guarantee convergence in a tomographic inversion, a

nonlinear process. However, the stability presence of the method favors obtaining a converged
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14 Regularization Effects on Seismic Tomography

solution. On the other hand, the higher regularization parameter A gives more weight to the
regularization term, leading to a smoother but potentially less accurate solution that is less sensitive
to noise. The smoothing effect of the regularization term minimizes the impact of noisy data on the

final solution, leading to a more stable and reliable inversion.

Tikhonov Regularization Procedure

The analysis of the regularization effect on refraction tomography utilizes programs
developed by the Seismic Imaging Group of Universidade Federal Fluminense (GISIS-UFF). These
programs are grounded in the work of Almeida (2013) and further complemented by Bulhdes
(2020). The tomography program effectively derives the transit time matrix by employing the ray
tracing technique established by Podvin and Lecomte (1991). It achieves this through finite
differences applied to the eikonal equation, allowing for the calculation of first arrivals and
constructing a tomographic matrix with regularization. To enhance the results, Tikhonov
regularizations of both first and second order are implemented. Specifically, three strategies are
utilized for first-order regularization: (i) conventional methods derived in both horizontal and vertical
directions, (ii) derivatives focused solely on the horizontal component, and (iii) derivatives
enhanced with an advanced scheme. This comprehensive approach enables the application of
tomographic inversion for regularization parameter values that range from 1.0 x 10® to 1.0 x 10°.

In the context of first-order Tikhonov regularization, the stabilization of the inverse problem
is achieved by incorporating the first derivative in the x and z directions (and y in the three-
dimensional case), as articulated in Equation 10. Furthermore, the second regularization approach
modifies this first-order approach by utilizing only the horizontal component of the operator derived,
thereby streamlining the process. Lastly, the study adopts Tikhonov regularization of the second
order, which involves applying the second derivative of the model across the spatial dimensions,
as indicated by Equation 11. These methodologies collectively contribute to a more robust
understanding of the impact of regularization on refraction tomography, paving the way for

enhanced seismic imaging and analysis.

RESULTS AND DISCUSSION

The graphs in Figure 11 show the residuals of transit times as a function of the iteration for the
different regularization parameters. The strategy for choosing Tikhonov's regularization parameters
was based on the work of Santos and Bassrei (2007). This approach involved choosing different
orders of magnitude to observe the tomography's response in relation to the regularizing

parameter.
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Figure 11 - Evolution of travel time residual as a function of tomography iteration using Tikhonov

regularization for each scenario: first-order (conventional, horizontal component and forward) and
second-order.

Significant instability arises in the case of Tikhonov regularization of order 1 when values
exceed 1.0 x 10°5. Specifically, the errors amplify during the iterative process of the tomographic
algorithm. When applying order 1 horizontal component regularization, we observe numerical
instability at the parameter A = 1.0 x 10-'. Moreover, using A values greater than 1.0 x 102 results in
residual convergence for values higher than those previously tested. This convergence suggests
that the objective function has reached a local minimum. When A is set to 1.0 x 10" or 1.0 x 1073,
convergence occurs in fewer iterations, as the residual values are closer during the tomographic
inversion steps.

Furthermore, during iterations 9 to 24 of the first-order regularization using an advanced
scheme, we experience numerical instability at A = 1.0 x 102, where convergence hovers around
1.0 x 107%. However, for values lower than 1.0 x 102, the process advances smoothly without
sudden fluctuations, with residuals converging to approximately 6.0 x 1077. Notably, for A = 1.0 x
103, the residual converges to 1.0 x 107° starting from the 10th iteration, indicating that the model
has achieved a local minimum. In the scenario of second-order regularization, we encounter
numerical instability at A = 1.0 x 102 during the tomographic process. Nonetheless, for values below
1.0 x 103, the procedure progresses smoothly without abrupt changes, resulting in residuals

converging to around 6.0 x 107,

Obtaining optimal values for regularization is not straightforward; however, strategies such
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16 Regularization Effects on Seismic Tomography

as the L-curve are instrumental in guiding our choices. The L-curve represents a plot of the
regularized solution's size against and corresponding residual's size for all valid regularization
parameters (Hansen, 1992; Hansen and O'Leary, 1993).

Although the L-curve may lack predictive power, it is a valuable tool for identifying the best-
fit parameters from the results of tomographic inversions, different from those reported by Santos
and Bassrei (2007). It is essential to recognize that each physical problem presents its optimal
regularization parameter based on the magnitude of the modeled property. Among the various
tested regularization cases, the optimal A parameters for each scenario are located at the peak of
the residue curve. This curve, a function of the parameter A, aids in determining the ideal value for
each scenario. For a more precise understanding, Figure 12 illustrates the RMS residue of the
transit times as a function of the parameters, highlighting this important relationship. The knee of
the L-curve illustrates a trade-off between smoother solutions, which may have higher errors, and
rougher solutions, which typically feature more minor errors. Consequently, detecting the knee
provides a heuristic criterion for selecting the most appropriate solution. Solutions near the curve's
knee are also considered acceptable and potentially more physically meaningful. This approach
enables us to achieve a solution that satisfies error minimization criteria, smoothness, and physical
interpretability. As a result, visual inspection of the L-curve and manual detection of its knee

become necessary to select the best regularization parameter.
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mm Tikhonov order 1
1.0 x 103
mmmm Tikhonov order 1 horizontal
— mmss Tikhonov order 1 forward
(4] -4
51'0 x 10 Tikhonov order 2
©
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.51.0x10 1.0 x 101
Q
x l
1.0 x 106
1.0 x 107 I I I
1.0x10% 10x10® 1.0x104 1.0x102 1.0x10° 1.0 x 10*
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Figure 12 - RMS residue of travel time as a function of regularization parameters A for each
scenario.

Figure 13 illustrates the variation of the RMS residue in transit time as a function of the
iteration for the respective optimal values while also providing a comparison with tomography that

lacks regularization. Notably, tomography without regularization converges after 31 iterations. In
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contrast, when employing regularization, we observe a significant improvement in convergence: it
occurs at iteration 22 for order 1; 25 for order 1 horizontal component; 28 for order 1 forward; and
impressively at just 17 iterations for order 2. This evidence strongly suggests that regularization
enhances the efficiency of the tomographic process, leading to faster convergence and, ultimately,
better results.

1.0 x 102 === s
WSS Without regularization
= Tikhonov order 1
1.0 x 1073
== Tikhonov order 1 horizontal
~1.0x10* ms Tikhonov order 1 forward
£
g mmmm Tikhonov order 2
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S 1.0 x 10-
)
Q
(a4
1.0 x 10°
1.0 x 107
0 5 10 15 20 25 30 35 40
Iteration number

Figure 13 - RMS residue of travel time as a function of iteration for cases with regularization (first

and second order) and without regularization.

Figure 14 shows the actual models alongside the tomographic results without
regularization, utilizing the optimal parameterization values. It is important to note that the lack of
regularization leads to distorted structures, as illustrated in Figure 14b. Similarly, we see the same
distortion in cases involving order 1 regularization, depicted in Figure 14c. In contrast, the results
for the order 1 horizontal component (Figure 14d), the forward order 1 (Figure 14e), and the order
2 method (Figure 14f) demonstrate a significant improvement; these cases do not exhibit any
distortion in the structures. Notably, the second-order Tikhonov regularization achieves the best
results, according to the findings presented by Denisov et al. (2006) and Teimoornega and
Poroohan (2010). The second-order Tikhonov method offers superior feature delineation in both
studies compared to order 1, thereby highlighting the advantages of utilizing higher-order

regularization in tomographic applications.
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Figure 14 - (a) True velocity model, (b) Tomography without regularization, Tikhonov regularization

(c) order 1, (d) order 1 horizontal component, (e) order 1 forward scheme and (f) order 2.

Table 1 shows the summary of the tested regularizations and the individual results after the
40 iterations of the tomographic process. Table 1 describes the optimal value of the parameter A
for Tikhonov regularization; the step in which the inversion begins to converge to the respective

parameter A and the RMS residue of the travel time compared to the actual data, 6t means the

RMS difference with travel time observed and travel time calculated (||dyps — dcaiclls )-

Tikhonov regularizations of order 2 converge the tomographic process faster from step 17.
In the case of conventional Tikhonov regularization of order 1, it is verified that its use, in addition
to making the tomographic process slower to converge than without regularization, goes from 28
to 31 steps.
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Table 1: Summary of the regularizations applied with the respective waste statistics in the 40" iteration.

Without regularization - 28 5.47 x 107
Tikhonov 1st order 1.0x 10" 31 4.88 x 107
Tikhonov 1st order horizontal 1.0 x 10° 22 5.76 x 107
Tikhonov 1st order forward 1.0 x 10° 25 5.54 x 107
Tikhonov 2nd order 1.0 x 102 17 6.06 x 107

Tikhonov regularization limitations

Tikhonov regularization methods are widely used but also have certain limitations. One
significant limitation observed in this work is determining the regularization parameter, A, which
controls the regularization level. When A is too small, the solution is insufficiently regularized,
resulting in instability and oscillations. The graphs in Figure 11 illustrate these instabilities for these
regularizations. On the other hand, if A is too large, the solution becomes overly smooth, potentially

losing critical details.

Additionally, the choice of the regularization operator can be arbitrary and highly dependent
on the specific problem, which can lead to suboptimal solutions. The parameter A determines the

significance of the regularization constraint relative to the problem residual.

Thus, we observe which the choice an inappropriate A can jeopardize the accuracy of the
solution. To address this, methods such as cross-validation assist in finding a value of A that
effectively balances solution accuracy with stability. Moreover, the regularization operator, such as

the Tikhonov L-matrix, significantly influences the nature of the solution.

Choosing an unsuitable operator can result in either over- or under-regularization. While
Tikhonov regularization is often applied to linear problems, its extension to nonlinear problems
introduces additional complexity, necessitating adaptations and further analysis. Importantly, in
some cases, Tikhonov methods require prior knowledge about the problem, such as the operator's
structure or the properties of the solution. Consequently, Tikhonov regularization may not be the
most suitable approach for all types of problems, particularly when total variation (TV) regularization

could be more effective, as seen in applications like image inpainting.
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CONCLUSIONS

This study evaluates the effects of regularization on shallow-surface seismic refraction
tomography and its influence on the resulting seismic velocities. Notably, the analysis highlights
that regularization alone cannot solve ill-posed problems. Using inadequate regularization or
parameter values fails to enhance the tomography results. Consequently, our sensitivity study
employing Tikhonov regularizations reveals distortions in geological structures due to inappropriate
choices of regularization parameters. Moreover, the velocity model generated through classical
first-order regularization, derived specifically in the x and z directions, does not resolve issues seen

without regularization and demonstrates significant numerical instability.

In contrast, applying first-order regularization with horizontal derivatives leads to velocity models
that closely align with the true model, showing less structural distortion than classical first-order
regularization. Notably, the Tikhonov parameter that optimally stabilizes the tomographic inversion and
minimizes structural distortions is A=1.0 x 10". Additionally, the first-order Tikhonov regularization with
a progressive scheme vyield results akin to the first order of the horizontal component, affirming that
A=1.0 x 10" optimizes numerical stability and structural accuracy. Moreover, refraction tomography
utilizing second-order Tikhonov regularization converges faster than its counterparts, achieving results
within 17 iterations. With a A value of 1.0 x 102, this approach produces a velocity model with minimal
structural distortions. While the first-order scenario with a horizontal derivative delivers the best overall
results, its convergence is notably slower, completing in 28 iterations. Convergence plays a critical role
in tomographic processes, where results may be similar yet can vary in the degree of smoothing. This
aspect aligns with the objective of seismic tomography: enhancing seismic processing about the initial
model, which ultimately feeds into seismic imaging and Full-Waveform Inversion (FWI) algorithms.
Among the four application scenarios of Tikhonov regularization, the best outcomes are consistently
observed in the second order, first-order horizontal component, and first-order with progressive
schemes. This convergence speed is particularly significant in the oil and gas industry, where seismic
data volume continues to increase, making processing time a vital variable. As a result, the second-
order approach demonstrates superior convergence with fewer iterations, yielding one of the lowest
RMS errors at a speed of 126.87 m/s. Our findings reinforce those of Denisov et al. (2006) and
Teimoornega and Poroohan (2010), indicating that second order Tikhonov regularizers provide better
feature delineation than first-order methods. This position is second order regularization as a powerful

tool in pursuing accurate seismic imaging.

Looking ahead, several perspectives for future work emerge: first, testing other
regularization methods for refraction tomography to evaluate their efficiency, particularly Total
Variation and Modified Total Variation; second, assessing how effectively the models obtained from
refraction tomography can serve as initial models for Full-Waveform Inversion (FWI). Additionally,
we intend to apply the tomographic inversion program to real data from onshore and shallow marine

environments. This approach will undoubtedly enhance our understanding and advance the field.
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