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ABSTRACT. One of the most challenging issues in oceanography is the simulation of the mixing processes, which are responsible for diffusion of momentum ,

heat, salt, sediments, etc. In the modeling of flow, the hydrodynamic model simulates the properties of the mean flow while the turbulence model, coupled to the first,

is responsible for simulating the mixing processes. In this article it is used the Princeton Ocean Model (POM), which includes the well known turbulent closure model

q2 − q2 L of Mellor & Yamada (1982), level 2.5. To add flexibility to the modeling, the k − ε and k − ω models, which belong to the same class of models, are

incorporated into the POM and two test cases, one involving the deepening of the oceanic mixed layer and the other addressing the estuarine circulation, are carried

out to allow the quality assessment of the models implementation in the computer code. The tests indicated that the model implementation was adequate. Comparing

with the original model available in the Princeton Ocean Model, the results showed that the model k − ε tends to overestimate the mixed layer, while the model

k − ω underestimates it, within an acceptable range of tolerance. In terms of estuarine circulation, the k − ε and k − ω models showed a greater capacity of mixing

at the bottom of the estuarine mixing zone and also at the surface layer.
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RESUMO. Uma das questões mais desafiadoras em oceanografia é a simulação dos processos de mistura, responsáveis pela difusão de momentum , calor, sal,

sedimentos etc. Na modelagem de escoamentos, o modelo hidrodinâmico simula as propriedades do escoamento médio, enquanto o modelo de turbulência, acoplado

ao primeiro, é o responsável por simular os processos de mistura. Nesse artigo é utilizado o Princeton Ocean Model (POM), o qual traz acoplado o conhecido esquema

de fechamento turbulento q2 − q2 L de Mellor & Yamada (1982), nı́vel 2.5. Para adicionar flexibilidade à modelagem, os modelos k − ε e k −ω, da mesma categoria

de modelos, são incorporados ao POM e dois casos-teste, um envolvendo o aprofundamento da camada de mistura oceânica e o outro a circulação estuarina, são

realizados para permitir a avaliação da qualidade da implementação dos modelos no código computacional. Os testes indicaram que a implementação dos modelos foi

adequada. Tendo como referência o modelo original do POM, os resultados mostraram que o modelo k − ε tende a superestimar a camada de mistura, enquanto o

k − ω a subestima, numa faixa aceitável de tolerância. Em termos de circulação estuarina, os modelos k − ε e k − ω apresentaram uma maior capacidade de mistura

tanto no fundo da zona de mistura estuarina como na camada superficial.

Palavras-chave: modelos de turbulência, processos de mistura, modelos a duas equações, camada de mistura, circulação estuarina.

1Escola de Engenharia – EE, Universidade Federal do Rio Grande – FURG, Campus Carreiros, Av. Itália Km 8, Bairro Carreiros, 96201-900 Rio Grande, RS, Brazil.
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Av. Itália Km 8, Bairro Carreiros, 96201-900 Rio Grande, RS, Brazil. Phone: +55(53) 3233-6851; +55(53) 3233-6854 – E-mails: joseazevedo@furg.br;

leopoldorota@yahoo.com.br
3Associação ATLANTIS para o Desenvolvimento da Ciência – FURG, Rua Barão de Cotegipe, 653, 96200-290 Rio Grande, RS, Brazil. Phone: +55(53) 3233-5858

– E-mail: isoares@atlantis.org.br
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INTRODUCTION

The simulation of the mixing processes in coastal waters is one
of the most challenging issues in oceanography (Thorpe, 2005).
The river discharge, the tidal current effect and the barrier repre-
sented by the continental border produce in the continental shelf
region temporal and spatial variations, in the velocity and den-
sity fields, which are much more intense than in the open ocean.
The correct description of the vertical mixing processes in the
hydrodynamic circulation models is the purpose of the called
turbulence submodels (or simply, turbulence models), which are
coupled to the first.

We can observe the concern of researchers to make available
new turbulence closure alternatives in the circulation models, and
thus provide the assessment of the most adequate model to the
process under study. This is what has happened with TELEMAC,
HYCOM, ROMS and other circulation models that provide many
turbulence closure options to their users. With this same purpose,
two new turbulence closure schemes will be incorporated into
the Princeton Ocean Model (POM) in this work. As a turbulence
submodel, the POM uses the Mellor & Yamada (1982) closure
scheme, level 2.5 (from now on called as MY82), which employs
a transport equation for the turbulent kinetic energy (k ≡ q2/2)
and a second equation for the turbulent length macroscale repre-
sented by the product q2L .

In literature, the two new turbulence closure models cited
above are known as k −ε and k −ω. They also use two transport
differential equations, one for the turbulent kinetic energy (TKE)
and the other for the macroscale represented by ε and ω, respec-
tively, and therefore being the same type of MY82 model.

Cushman-Roisin & Beckers (2011) recognize that, in the geo-
physical flow scope, MY82 is the best known model, although
other two equation models have been increasingly tested and used
in this context (Burchard & Petersen, 1999; Burchard & Bolding,
2001; Burchard & Deleersnijder, 2001; Umlauf et al., 2003; Um-
lauf & Burchard, 2003; Warner et al., 2005; Peters & Baumert,
2007; Burchard et al., 2008; Ilicak et al., 2008).

Literature shows that the k − ε model has been widely
employed and assessed in geophysical applications (e.g., Rodi,
1987; Rodi, 1993; Davies et al., 1995) and therefore its pa-
rameters are well known and accepted. In relation to the k −
ω model, two versions for industrial applications assigned to
Wilcox (Wilcox, 1988 and Wilcox, 1998 apud Umlauf et al.,
2003), that were never applied to geophysical flows on account
of being inadequate to represent flows affected by stratification
and by the Earth rotation, were adapted and assessed by these
authors. According to Umlauf et al. (2003), only the model
adapted from the 1988 version presented a comparable perfor-

mance to the q2 − q2L (or k − kL) and k − ε model of
Rodi (1987) and in some relevant situations presented a better
performance. This was the k − ω model version suggested by
Umlauf et al. (2003) for geophysical applications. Warner et al.
(2005) implemented these models to ROMS and carried out some
test cases, including estuarine circulation, deepening of the mixed
layer (ML) and suspended sediment transport, and concluded that
all models presented a very similar performance. They highlight
that the greatest variations among the models appear in the sus-
pended sediment simulations and not in those that involve salin-
ity concentrations, because the suspended sediment transport
tends to amplify the minimal differences among the methods.

The turbulence models used in this work (q2 − q2L , k − ε

and k − ω) are based on the turbulent viscosity concept and on
the analogy with the kinetic theory, according to which the tur-
bulent viscosity is proportional to a characteristic velocity scale
of the movement fluctuations and to a characteristic length scale
of this movement (e.g., Rodi, 1993). Among these models, the
called two equation models stand out and are widely employed as
turbulence submodels and, among the algebraic models, are con-
sidered the most complete models because they use two trans-
port differential equations to determine the velocity and length
scales (e.g., Warner et al., 2005), that are needed to determine the
turbulent viscosity: one for the TKE and another for the turbulent
length macroscale (TLM).

The k − ε and k − ω model incorporation into the POM
computer code adds more flexibility to the modeler, providing a
range of alternatives for the turbulent process simulation. To un-
derstand the turbulence mechanisms in ocean and to study the
way the mixing processes affect the mean flow, with different
turbulence model alternatives for the simulation of these pro-
cesses, is the strong motivation of this study.

The work is organized in the following way: initially, the
governing equations used in the employed hydrodynamic model
(POM) are presented. Then, the two equation turbulence closure
model structure is discussed and the generic turbulence length
scale (ψ) is presented. After, the methodology employed to as-
sess the implementation of new models in the POM computer
code is treated and two test cases suggested in literature for such
assessment are presented. Next, the numeric simulation results
are presented and discussed and, finally, the conclusions.

GOVERNING EQUATIONS

In this section, the flow governing equations used in the POM,
hydrodynamic model employed for the numeric simulations
carried out in this work, will be presented.
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The POM belongs to a three-dimensional hydrodynamic
model class and, for being in the public domain, it has been widely
used by thousands of users in all continents for a large variety
of different applications, since the hydrodynamic simulation of
small scale lagoon environments up to the hydrodynamic of whole
oceanic basins (e.g., Alves, 2006). A more detailed description of
POM can be found in Mellor (2004). This model is constituted
by the continuity, momentum conservation and scalar transport
equations that, after Reynolds averaging application, result in the
system:

∂Ui

∂xi
= 0 (1)

∂Ui

∂t
+ U j

∂Ui

∂x j
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= −
1
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(
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(
0
∂S
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)
(4)

where Ui and ui are the average and fluctuating components of
velocity, f is the Coriolis parameter, εi j3 is the alternating ten-
sor, P is the pressure, ρ and ρo are the total and reference den-
sities, −ui u j is the Reynolds’ tensor, 2 and S are the average
temperature and salinity, θ and s are the temperature and salinity
fluctuations and uiθ and ui s represent the heat and salt fluxes,
respectively. The system closure is obtained through the param-
eterization of Reynolds tensions and heat and salt fluxes, that
take the forms:

− ui u j = KM

(
∂Ui

∂x j
+
∂U j

∂x j

)

− uiθ = K H
∂2

∂xi

− ui s = K H
∂S

∂xi

(5)

with
KM = q L SM , K H = q L SH (6)

In these expressions K H is the turbulent viscosity, K H is
the heat and salt diffusivity and SM and SH are the called stabil-
ity functions, which incorporate information about the shear and
stratification effects over the second moments (−ui u j , −uiθ

and −ui s), that were lost in the algebrization process of Reynolds
tensions to obtain the MY82 model (e.g., Mellor & Yamada, 1982;

Galperin et al., 1988; Kantha & Clayson, 1994; Burchard, 2002).
The stability functions SM and SH employed in the POM are the
functions proposed by Galperin et al. (1988), which depend on
the buoyancy parameter G H , and are obtained by

SM =
A1[1 − 3c1 − 6A1/B1] + SH

[
18A2

1 + 9A1 A2)G H
]

[1 − 9A1 A2G H ]
(7)

and

SH =
A2[1 − 6A1/B1]

[1 − (3A2 B2 + 18A1 A2)G H ]
(8)

where G H , buoyancy parameter, is defined by

G H = −
L2

q2
N 2 (9)

and N 2, the Brunt-Väisälä frequence, by

N 2 = −
g

ρo

∂ρ

∂z
. (10)

In the expressions (7) and (8), (A1, A2, B1, B2,C1) =
(0.92; 0.74; 16.6; 10.1; 0.08) are the model parameters ex-
perimentally determined and q is the square root of q2, twice
the turbulent kinetic energy. The q2 and L (length scale) vari-
ables represent characteristic turbulence quantities and need to
be determined in order to close the equation set. The POM in-
corporates a turbulent closure scheme that uses two partial differ-
ential equations (PDEs), one for each quantity mentioned above.
This type of model belongs to a turbulent closure model class
called two equation models, which is discussed in the next
section.

TWO-EQUATION TURBULENCE MODELS

These models are based on the turbulent viscosity concept and
on the Prandtl-Kolmogorov hypothesis according to which, and
in analogy with the kinetic theory, the turbulent viscosity shall be
proportional to a turbulence characteristic velocity (ϑ) and length
(L) scale, according to the expression

KM ∝ ϑ ∙ L . (11)

In this work the models that are addressed are the models
that use two PDEs for the transport of two characteristic quantity
of turbulence: an equation for the turbulent kinetic energy (q2/2
in Mellor & Yamada notation (1982) or k in conventional nota-
tion) and a second equation for another characteristic quantity of
turbulence that, in some way, is related to the length scale. The
first equation, for the TKE, can be obtained by contraction of the
Reynolds tension equation (see Deschamps, 2002 and Burchard,
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2002) and, after some unknown correlation modeling, takes the
form

∂k

∂t
+ U j

∂k

∂x j
− D = PS + PB − ε . (12)

In this equation, D represents the TKE diffusive transport,
PS and PB represent the TKE production by the mean flow shear
and by the buoyancy, respectively, while ε is the TKE dissipation
rate, provided by

D =
∂

∂z

(
KM

σk

∂k

∂z

)
(13)

PS = KM

[(
∂U

∂z

)2

+
(
∂V

∂z

)2]
(14)

PB = K H
g

ρo

∂ρ

∂z
(15)

ε =
q3

B1L
=

(
c0
μ

)k3/2

L
. (16)

In expression (13), σk is the Schmidt number while in ex-
pression (15) ρo represents a reference density. The equation for
the turbulence length scale does not necessarily need to have
its own length scale “L” as prognostic variable, because any
Z = km Ln type combination will be sufficient, as the turbulent
kinetic energy “k” is already known in the Equation (12) solution
(e.g., Rodi, 1993). Most of the equations proposed until today
do not use “L” as dependent variable. The most important
km Ln combinations that have appeared over time are (e.g., Rodi,
1993; Deschamps, 2002): the dissipation rate, ε(∝ k3/2/L),
the TKE product by the length scale (= kL) and the characteris-
tic turbulence frequency, ω(∝ k1/2/L).

The generic scale

The two-equation models use Equation (12) for the TKE and a
second equation for another representative quantity of the turbu-
lent length scale, which can be any equation cited in the previous
paragraph. This second equation is obtained in an heuristic ap-
proach and, in all models, it presents therefore a similar structure
to Equation (12) structure. This structural similarity led Umlauf
& Burchard (2003) to propose a transport equation for a generic
turbulent quantity (ψ), from which it would be possible to re-
produce any two-equation models that is used today and, even-
tually, clear the way for researchers to propose new models
using other not explored turbulent quantities. This method is
known as Generic Length Scale (GLS). Then generic model con-
sists of Equation (12) for the TKE and the transport equation for
the generic scale that, for having the same structure, can have

the following form:

∂ψ

∂t
+ U j

∂ψ

∂x j
= Fψ +

∂

∂z

(
KM

σψ

∂ψ

∂z

)

+
ψ

k

(
cψ1 PS + cψ3 PB − cψ2εFWall

)
.

(17)

In expression (17), ψ represents the parameter that is used
to determine the turbulent macroscale, Fψ represents the hori-
zontal diffusion term while the second term on the right side rep-
resents the ψ vertical diffusion. The constants cψ1, cψ2 and
cψ3 are empiric parameters experimentally determined for each
model and their values can be observed in Table 1. Fwall is the
wall proximity function. The generic parameter is expressed by
(Umlauf & Burchard, 2003):

ψ =
(
c0
μ

)pkm Ln (18)

where (c0
μ) is a constant and p, m and n are coefficients that

define the parameter that will represent the characteristic turbu-
lence length scale. Theoretically, these coefficients may assume
any real value. However, a specific value set leads to already
known and explored characteristic turbulence quantities like the
TKE dissipation rate, ε, or the turbulence frequency, ω. A rear-
rangement in Equation (18) allows expressing the dissipation rate
in the generic form like

ε =
(
c0
μ

)3+p/nk3/2+m/nψ−1/n (19)

and the length scale in the form

L =
(
c0
μ

)−p/nk−m/nψ1/n . (20)

The adequate choice of the p, m and n coefficients repro-
duces any model cited before and their values can be seen in
Table 1.

It is worth pointing out that in Mellor & Yamada (1982) no-
tation, the TKE is represented by q2/2, where q2 corresponds
to twice the turbulent kinetic energy, instead of k, which is
the conventional notation. As a consequence, this methodology
does not directly reproduce the original model macroscale q2L ,
but kL , in the conventional notation. The SM and SH stability
functions, in Mellor & Yamada notation, are represented in the
conventional notation by the cμ and c′μ symbols, respectively.
The co

μ parameter represents the cμ stability function value in
experimental conditions with neutral stratification, where the
value proposed by Kantha & Clayson (1994) is 0.5544.

Wall proximity function

In the q2 − q2L model it is necessary to use a wall proximity
function, as it uses a prognostic equation exactly for the charac-
teristic length scale of the turbulence large scales, or of the most
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Table 1 – Parameters used in the models.

Parameter
q2 − q2L k − ε k − ω

ψ = q2L ψ =
(
c0
μ

)
k3/2L−1 ψ =

(
c0
μ

)−1k1/2L−1

p 0.0 3.0 –1.0

m 1.0 1.5 0.5

n 1.0 –1.0 –1.0

σq 2.44 1.0 2.0

σ
ψ
q 2.44 1.3 2.0

c1 0.9 1.44 0.555

c2 0.5 1.92 0.833

c3 0.9 1.0 1.0

energetic vortices, which are related to the mean flow that, in turn,
is the energy source that feeds the turbulence. In the proximi-
ties of a flow boundary surface, however, the vortex length scale
is drastically reduced, by physical limitations, and tends to zero.
Therefore, it is necessary to inform the model the boundary exis-
tence in the proximities of the analyzed point. This is carried out
using the called wall proximity function, FWall, in Equation (17).
The purpose of these functions is to guarantee the decrease of the
length scale near a boundary.

According to Umlauf & Burchard (2003), Umlauf & Burchard
(2005) and Warner et al. (2005), the equations for ε or ω do not
need to inform the proximity of the boundaries. Mellor & Yamada
(1974, 1982) have already recognized the need of this function to
guarantee the viscosity coefficient positivity. Warner et al. (2005)
proved that any model with positive n exponent in expression
(18) (see Table 1) requires the use of the wall proximity function
to guarantee the positivity of these coefficients. This is the case of
the model q2 − q2L . There are in literature different proposals
to calculate this function. In the POM it takes a parabolic form
provided by:

Fwall =
{

1 + e2

[
L

κ

(
1

dS
+

1

dB

)]2}
(21)

where κ = 0.41 is the von Karman constant, e2 = 1.33,
dS and dB represent the distances to the free surface and to the
bottom, respectively.

Boundary conditions

Inside the turbulent boundary layer, more specifically in the vis-
cous and transition sublayers, where Reynolds number is smaller
than 100 (see Souza et al., 2011), the molecular dissipation and
diffusion assume values that are comparable to the turbulent
analogues. Therefore, the models are in general incapable to
model adequately and it is necessary to prescribe boundary con-

ditions to allow the solution of the two equations in these regions
(e.g., Deschamps, 2002; Fontoura Rodrigues, 2003). For the
TKE, the boundary conditions (BC) for the surface and bottom,
already implemented in the POM, are classic and correspond to

kS =
(uS

∗)
2

(c0
μ)

2
(22)

kB =
(u B

∗ )
2

(c0
μ)

2
(23)

which are the application result of the logarithmic law of the wall
in this constant tension layer (e.g., Warner et al., 2005). In (22)
and (23), u∗ is the friction velocity and the “S” and “B” indices
indicate that the variable is expressed in the surface and in the
bottom, respectively. As B1 = 23/2

/
(c0
μ)

3, we can express
this BC in Mellor & Yamada (1982) notation in the form (see
Mellor, 2004; Mellor & Blumberg, 2004; Warner et al., 2005),

q2 = B2/3
1 μ2

∗ . (24)

The turbulent kinetic energy equation (12), that exists in the
computer code, will not have any alteration and, therefore, it
is not necessary to define any additional BC for it besides the
relation (24).

For the ψ generic parameter of equation (17) it is necessary
to define boundary conditions to the bottom and surface, once
the computer code modifications basically operate in the equa-
tion for this quantity.

a) Boundary conditions for the length scale

When p = 0, m = 1.0 and n = 1.0 in expression (18),
the quantity represented by the ψ parameter is kL or q2L in
Mellor & Yamada (1982) notation and, in this case, the boundary
conditions have already been implemented in the POM. For the
surface, q2L(sur) = 0, and for the bottom, q2L(bottom) = 0.

Brazilian Journal of Geophysics, Vol. 31(1), 2013
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Both segments suggest that the variable tends to zero when the z
distance to the boundary tends to zero (see Mellor, 2004).

For other quantities, like ε and ω, it will be necessary to
define new boundary conditions due their different physical na-
ture. It is worth highlighting that the boundary conditions for the
q2L equation, already implemented in the POM, are like Dirichlet
conditions, that is, they define the variable value in the bound-
ary. Then, the conditions to be implemented to theψ variable will
also be like Dirichlet conditions. Theψ value in the boundary can
be determined using the expression (18). Replacing the TKE, de-
rived from (22) and (23), in this expression (18) and specifying
L = κz (length scale proportional to the distance to the wall in
the viscous sublayer), generic expressions very useful for the BC
application are obtained (e.g., Warner et al., 2005). The boundary
conditions obtained by this way take the forms:

ψ(sur) =
(
c0
μ

)p−2m
(us

∗)
2mκnzn

sur (25)

ψ(Bottom) =
(
c0
μ

)p−2m(
u B

∗

)2m
κnzn

B . (26)

b) Boundary conditions for the ε parameter

For the k − ε model, the application of the (25) and (26) bound-
ary conditions together with Table 2, which provides p = 3.0,
m = 3/2 and n = −1.0, leads to,

ψ(sur) = ε(sur) =
(
uS

∗

)3
(κzS)

−1 =

∣
∣uS

∗

∣
∣3

κzS
(27)

ψ(Bottom) = ε(Bottom)

=
(
u B

∗

)3
(κzB)

−1 =

∣
∣u B

∗

∣
∣3

κzB
.

(28)

c) Boundary conditions for the ω parameter

For the k − ω model, the application of the (25) and (26)
boundary conditions together with Table 2, which provides
p = −1.0, m = 1/2 and n = −1.0, leads to,

ψ(sur) = ω(sur) =

(
uS

∗

)

(
c0
μ

)2
(κzS)

(29)

ψ(Bottom) = ω(Bottom) =

(
u B

∗

)

(
c0
μ

)2
(κzB)

(30)

Therefore, the boundary conditions are defined for all turbu-
lence models used in this work.

METHODOLOGY

The methodology employed in this work consists of two steps:
(i) the implementation of the new turbulent model equations in

the POM and (ii) this implementation assessment, that will allow
the use of the new models in real situations.

The GLS method proposed by Umlauf & Burchard (2003),
described in the previous sections, was used to implement the
k −ε and k −ω models in the POM, which has already incorpo-
rated the q2 − q2L model. With this implementation, the equa-
tion for the TKE remains exactly the same of the original model
(MY82). However, the original transport equation for the turbu-
lent length scale was adapted to represent the ψ generic scale
defined by the equation (17).

It is necessary to assess the implementations carried out
to correct eventual problems to use the new models incorpo-
rated into the POM computer code in oceanographic applications
(Burchard & Deleersnijder, 2001). These problems may comprise
common codification errors, poor boundary condition implemen-
tation and realisability constraints of each model, among others.
For this purpose, some test cases are recommended in litera-
ture to check the performance of a turbulence subroutine or to
compare the different turbulence model results (e.g., Burchard &
Petersen, 1999; Burchard & Deleersnijder, 2001; Umlauf et al.,
2003; Umlauf & Burchard, 2003; Umlauf et al., 2005; Warner et
al., 2005).

Thus, two test cases were selected for this purpose. The first
assess the deepening of the oceanic mixed layer in a channel,
based on the classic Kato & Phillips (1969) experiment, with the
Burchard & Deleersnijder (2001) and Burchard & Bolding (2001)
adaptations for the oceanic scale. The second test case tries to
simulate the estuarine circulation in a long channel induced by
river discharge in one end (head) and sinusoidal tide in the other
(mouth), in the form proposed by Warner et al. (2005). Next, these
test cases will be better described.

a) Deepening of the oceanic mixed layer

The correct prediction of the deepening of the mixed layer (DML),
due the wind tension acting on the surface, is one of the most
critical requirement to be fulfilled by an oceanic turbulence model
(e.g., Umlauf & Burchard, 2003). As the DML measurements in
the real ocean are in general contaminated by the effect of the
horizontal divergence of movement and by the internal wave
action, the turbulence model checking, in general, is carried
out comparing them to laboratory experiments (e.g., Kantha &
Clayson, 1994; Umlauf et al., 2003).

The classic Kato & Phillips (1969) experiment is a stan-
dard reference in the modeling community (e.g., Burchard & Pe-
tersen, 1999; Burchard & Deleersnijder, 2001; Umlauf et al., 2003;
Umlauf & Burchard, 2003; Warner et al., 2005). In this experi-
ment, water in a channel reproduced in laboratory scale, linearly
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stratified in the beginning, undergoes a constant superficial ten-
sion. This tension produces shear on the superficial layers. Shear
generates turbulence, promotes mixing and homogenization on
the upper part of the water column, destroying then the initial strat-
ification. As time goes by, the mixed layer induced by this tension
penetrates in the fluid just below, stably stratified, and the ther-
mocline depth (or pycnocline) increases. Price, in 1979 (cited by
Burchard & Petersen, 1999), suggested an empiric solution for
the mixed layer depth evolution with time, D(t), from the Kato &
Phillips (1969) laboratory experiment results, in the form

D(t) = 1.05
u∗√
N0

t1/2 , (31)

where No is the initial Brunt-Väisälä frequency value and
u∗ =

√
τs/ρo is the superficial friction velocity. Burchard &

Deleersnijder (2001) and Burchard & Bolding (2001) used the
Similarity Theory to adapt this experiment results to the oceanic
dimensions, and obtained then the u∗ = 0.01 ms−1 and
No = 0.01 s−1 values.

In a similar way to the experiment presented in literature, the
numeric experiment carried out in this work will have 30 hour
duration, and the corresponding empiric solution, using Equa-
tion (31), results in D (30h) = 34.5 m. The experiment will be
carried out in a channel with 6,650 m for length, 440 m for width
and 50 m for constant depth. Other geometric and numeric char-
acteristics are presented in Table 2. Initially the basin will have
water at rest and, over its surface, a wind with 8.6 ms−1 veloc-
ity will blow, producing τS tension with 0.10 Nm−2 for intensity,
which will be uniformly applied to all domain superficial points.
The main experiment parameters are presented in Table 2.

Table 2 – Geometric and numeric parameters of test case n. 1.

Experiment parameters Values

Length, width, depth 6650 m, 440 m, 50 m

Grid element number (Im, Jm, Kb) 19, 11, 100

Bottom rugosity 0.005 m

Internal mode time step 12 s

External mode time step 0.4 s

Temperature (surface / bottom) 10◦C / 8◦C

The channel extends in the east-west direction. In the open
boundaries (east and west) cyclic numeric boundary conditions
(Periodic Open Boundaries) will be employed. In the closed
boundaries (north and south), the boundary conditions will be
automatically applied using “masks” that allow a velocity tan-
gential to the boundary and nullify the normal velocities (e.g.,
Mellor, 2004. The salinity will be constant and uniform during

the simulation, with 30 psu (practical salinity unit) in all grid
points. No heat nor mass flux will be allowed through the bot-
tom or the free surface. The constant salinity turns the density a
function of temperature only and, therefore, the initial stratification
with No = 0.01 s−1 will be provided through an initial temper-
ature profile that linearly varies from 10◦C on the surface to 8◦C
on the bottom.

Literature cites some criteria that may be used to determine
the ML depth. One of these criteria uses the TKE gradient for this
purpose. A peak in this gradient value identifies the lower limit
of this layer. Burchard & Petersen (1999), for example, used the
density gradient peak as an indicator of the mixed layer base.

The surface mixed layer is distinguished by the TKE highest
level in relation to the fluid below the pycnocline, still stratified
and at rest. Due to its simplicity, this was the criterium employed
in this work to identify this layer depth. According to this crite-
rion, the purpose is to identify in the water column (in this case,
the one that corresponds to the numeric grid central point) the
greatest depth point with TKE still greater than 1.0e-5 m2s−2.
Therefore, all water column points with k > 1.0e-5 m2s−2

belong to the surface ML, while points with k < 1.0e-5 m2s−2

will belong to the stratified and quiescent lower layer. It is worth
pointing out that the TKE in the mixed layer assumes values
about 10−2 m2s−2 (this can be confirmed in Figure 5 just below)
while in the bottom quiescent layer it assumes background values
about 5.0e-6 m2s−2. Thus, the choice of k values much lower
than 10−2 m2s−2 and above the background value will not surely
affect the LM depth.

b) Estuarine circulation

The second test case, suggested in Warner et al. (2005), provides
a way to assess the model ability to represent the typical mix-
ing processes of estuarine channels. It encompasses the solution
time-dependent of the circulation and mixing time in an initially
horizontally stratified estuary. The model domain is constituted by
a long (100 km) and narrow (550 m) channel with depth linearly
varying from 5 m in the head (river) to 10 m in the mouth (ocean).
Other geometric and numeric characteristics can be observed in
Table 3. This idealized estuary will be employed in this work to
simulate the movement components of a channel that receives an
upstream (head) fluvial input that is subject to a semidiurnal tidal
wave, that penetrates downstream (mouth). Some characteristics
and parameters that will be employed in this numeric experiment
are presented in Table 3.

The sole forcings used in this experiment are the barotropic
velocities applied as the boundary condition form through the
fluvial discharge and the semidiurnal tide current, with literature
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Table 3 – Geometric and numeric parameters of test case n. 2.

Experiment parameters Values

Length, width, depth 100,000 m, 550 m, 5 to 10 m (variable)

Grid element number (Im, Jm, Kb) 100, 11, 20

Grid elements (1x ,1y,1z) 1000 m, 50 m, 0.25 to 0.50 m

Bottom rugosity 0.005 m

Internal mode time step 60 s

External mode time step 2 s

suggested values. The fluvial discharge will be applied imposing
a Ūriver = 0.08 ms−1 velocity in the head section, according to

qriver = Ūriver H̄hea = 0.08H̄hea

ūhea =
0.08H̄hea

(H̄hea + ηhea)
.

In these expressions the subindex “hea” indicates that the
variable is determined in the head section. H̄ and η are the chan-
nel depth and the free surface displacement, respectively, qriver

is the river flow by channel width unit (fluvial input) and ū is the
promediated velocity in the vertical.

The tidal current will be applied at the channel maritime end
(i.e., downstream), through the Ūtide = 0.40 ms−1 velocity, in
the form of a sinusoidal function, with the following adaptation:

qtide = Ūtide H̄mou sin(ωt) = 0.40H̄mou sin(ωt)

ūhea =
(qriver − qtide)

(ūhea + ηmou)
.

In these expressions the subindex “mou” indicates that the
variable is determined in the mouth section, qtide is the flow im-
posed by the tide by channel width unit, t is the modeling time,
ω = 2π/T is the angular frequency and T is the tidal period.

The relative importance between the tide and fluvial discharge
forcings is determined by the dimensionless called flux ratio
(RF), which is estimated by the ratio between the fluvial wa-
ter volume (R) that enters in the estuary during one tidal period,
where R = qriverT , and the tidal prism (P), defined by the sea-
water volume that enters in the estuary during the flood tide, that
is, P = ho AS , where ho is the tide height and AS is the estu-
ary surface area. We can deduce from the flux ratio definition that
when RF ≥ 1, the estuary is dominated by the fluvial discharge
and, thus, it is highly stratified. On the contrary, when RF < 0.1,
the estuary is dominated by the tide and, thus, it is very mixed.
For intermediate values, the estuary is considered partially mixed
or partially stratified (e.g., Miranda et al., 2002). The adopted ve-
locities lead to the RF ≈ 0.40 value of the flux ratio indicating

a estuary partially stratified (e.g., Souza, 2011). Table 4 presents
a summary of these boundary conditions.

Temperature is constant and equal to 10◦C in all domain
while the initial salinity field is uniform in each channel end and
it is applied in the following way: Up to a 20 km distance from the
head, the salinity is null, while in the 30 km at the final segment
of the estuary the salinity is 30 psu. Between these two regions
the salinity linearly varies, as it is indicated in Figure 1.

RESULTS AND DISCUSSION

In the first experiment the simulation is carried out for 30 hours,
corresponding to Kato & Phillips (1969) experiment adapted to
the oceanic scale by Burchard & Deleersnijder (2001) and Bur-
chard & Bolding (2001). The constant wind tension drag the su-
perficial layers generating a velocity gradient that transfers en-
ergy to the movement turbulent component. The turbulent agita-
tion generated this way homogenizes the upper part of the water
column and creates a superficial mixed layer with a uniform and
greater (smaller) temperature (density) than that of the lower lay-
ers. On the base of this mixed layer a strong temperature (density)
gradient appears and this gradient characterizes the thermocline
(pycnocline), which separates the surface layer from the bottom
layer, still stratified.

Figure 2 presents the result obtained for the deepening of
the surface mixed layer for the q2 − q2L , k − ε and k − ω

models. The solid line represents the empiric solution, as it was
described in the last section.

We can observe that the three models simulated the mixed
layer deepening with good concordance with the empiric solu-
tion. Still in Figure 2 we can observe that the q2 − q2L model
presented a light oscillation regarding the empiric solution, and
this may be related to the use of the wall proximity function that
only this model uses. The k − ε and k − ω models pre-
sented smoother solutions. In relation to the k−εmodel, positive
discrepancies were observed all time, indicating that this model
can produce a more intense mixing than the other models, over-
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Table 4 – Summary of the boundary conditions for test case n. 2.

River end (upstream) Oceanic end (downstream)

H̄ river = 5 m H̄ tide = 10 m

Ū river = 0.08 ms−1 Ū tide = 0.4 ms−1

qriver = Ū river H̄hea m2s−1 Qtide = Ū tide H̄hea sin(2π t/T )m2s−1

ūhea = qriver/(H̄hea + ηhea) ms−1 ūhea = (qriver − qtide)
/
(H̄hea + ηhea) ms−1

Figure 1 – Initial salinity (psu) distribution for test case n. 2.

estimating then the deepening of the mixed layer in relation to the
empiric solution. On the contrary, the k − ω model underesti-
mated the ML deepening, indicating a smaller mixing capacity.

Figure 2 – Mixed layer evolution in function of time with the q2 −
q2 L(MY 82), k − ε(GL S) and k − ω(GL S) models.

At the end of the experiment, after 30 hours of constant
wind, we can note that the k − ω model presented the greatest
discrepancy (−1.61 m or −4.7%) in relation to the empiric solu-
tion, the q2 − q2L model produced the smallest one (0.41 m or
+1.2%) and the k − ε model was situated between these limits
(−0.92 m or +2.7%).

Burchard & Deleersnijder (2001) performed the same exper-
iment and also observed with the q2 − q2L model the oscil-
lations cited above on the base of the mixed layer. They com-

mented that the increase of the c3 coefficient, corresponding to
the production term of the TKE by the buoyancy, from 0.9 to
5.0 [see Equation (17) and Table 1] eliminated these oscilla-
tions. The same procedure was carried out in this work but, be-
sides not eliminating the oscillations, it substantially reduced the
deepening of the mixed layer and, thus, the referred coefficient
was maintained in 0.9. This result was already expected consid-
ering that, in stratified flows, the production term by the buoyancy
acts as an energy sink, damping therefore the turbulence.

Figure 3 – Percentage discrepancy between the numeric solution obtained with
each model and the empiric solution. The dashed lines delimit a range where this
discrepancy is about ± 10%.

In Figure 3 the percentage discrepancy between the numeric
solution obtained with each model and the empiric solution for
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Figure 4 – Temporal evolution of the (a) density and (b) temperature profiles from the initial linear profiles.

each instant is presented. In this figure, the dashed lines delimit
a range where this discrepancy is about ±10%. We can clearly
note that, after 10 hours, all models presented a reasonably uni-
form behaviour, including the q2 − q2L model that, despite the
oscillations, was within these limits.

The temperature and density profile temporal evolution (re-
member density is a function of temperature only as salinity was
constant and uniform during the experiment) was also followed in
the same grid central point. In Figure 4 the temporal evolution of
these two profiles obtained with model k − ε is presented. For
the other models the profile evolution is similar and, therefore, it
is not presented. On the left (right) side of the figure each line rep-
resents the density (temperature) profile that was taken each hour
from the beginning of the experiment.

An analysis of Figure 4 shows that the mixed layer is formed
with increasing time, from the initial linear profile, with the tem-
perature decrease on the surface and increase on the base of this
layer, as it is theoretically forecasted, tending to the verticalization
of the lines within the ML, as a result of the density (or temper-
ature) homogenization. This highlights that the buoyancy forces,
damping the turbulence in this scenario, although being present in
this layer, are not significant when they are compared to the shear
effect caused by the superficial wind tension. Therefore we can
conclude that the shear process is more relevant than the buoy-
ancy process. In both Figure 4 profiles we can observe that the
superficial ML deepens up to nearly 35 m, in concordance with
Figure 2 and with the empiric result (34.5 m).

Some turbulent parameters that are more relevant for the per-
formance comparison of the models are presented in Figure 5 for
the final instant of the experiment (30 hours). We can note that the
three profiles, corresponding to the three analyzed models, have

curves with similar formats for each parameter, demonstrating that
the new model implementation was adequate.

We can observe that the viscosity coefficient, for all mod-
els, presented values about 10−2 m2s−1 in the surface mixed
layer. Therefore, much greater values than the background value
(5.0e-6 m2s−1) as it was expected, indicating the presence of
a relatively intense mixing in this layer. We can also observe
that these coefficients assume the greatest values near the shear
source (surface) and they quickly decrease up to nearly 5 m.
From this depth, they decrease more slowly up to the base of
the mixed layer where the agitation ceases. In the quiescent and
stratified layer, below the pycnocline, these coefficients assume
the background value.

In Figure 5 we can note that the TKE profiles present some
variation from model to model but the energetic levels are com-
parable in all, also indicating that the implementations were suc-
cessful. Most of the energy produced by the three models is re-
stricted to the medium depth of the ML and it smoothly decreases
towards the base of this layer. In depths below 35 m, approxi-
mately, the TKE production ceases for all models in conformity
with Figure 2.

The viscosity coefficients shown in Figure 5 indicate that
the models produce different mixing intensity along the ML. We
can also observe that near the surface the mixing production is
greater, specially by the k − ε model, but it gradually decreases
towards the bottom and it completely ceases below 35.4 m. The
figure also shows that, in each depth, the different models pro-
duce different TKE quantities. Up to the 25 m depth, for example,
the q2 − q2L model produces more TKE than the k − ε model,
while in depths greater than 25 m this situation is inverted and the
k − ε model then transfers more energy from the medium flow
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Figure 5 – Turbulent parameters after 30 hours. From left to right: turbulent viscosity (KM ), turbulent kinetic energy (TKE) and TKE dissipation rate.

to the turbulent one. Apparently, the best correlation among the
depths where the TKE reaches its maximum value for each model
occurs with the length scale of the most energetic vortices, as the
two right panels in Figure 5 show. In this figure we note that the
depths where the TKE and the TLM reach their maximum values
are approximately coincident.

The supremacy of the shear destabilizing effect over the strat-
ification stabilizing effect occurs up to the pycnocline (thermo-
cline) base situated at the 32.9 m, 34.9 m and 35.4 m for the
k −ω, q2 − q2L and k − ε models, respectively, in conformity
with Figures 2 and 3.

In the second experiment, the evolution and final distribution
of the salinity field in the estuary are controlled by the mixing
process. According to Warner et al. (2005), the results are very

sensitive to the Ūriver and Ūtide value choice but, once these
values are fixed, consistent differences among the turbulence
models can be observed. Radioactive boundary conditions were
used for all variables. In this work we are going to define the
saline wedge extent as the distance, above estuary, reached by
the 1 psu isohaline. The mixing processes of interest occur in this
region, which will be referred from now on as mixing zone (MZ),
according to Miranda et al. (2002).

The q2 − q2L , k − ε and k − ω turbulence models
were applied and the salinity field at the end of the high tide on
the twentieth day (after 40 tidal cycles) is shown in Figure 6.
As we can observe, the result led to a partially mixed estuary
with a MZ that, for the three models, extended by nearly 40 km in
the final channel segment.

Figure 6 – Salinity field. Result of the model application at the end of the high tide after 40 tidal cycles.
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Figure 7 – Turbulent parameters in a central point situated at 70 km from the head, after 40 tidal cycles.

In this experiment, shear and buoyancy play an equally im-
portant role. The bottom saline layer flux and reflux against the
fresh water surface generate strong shear in the interface pro-
ducing the saline water penetration into the lighter surface layer.
Therefore, the salinity structure that results from the numeric
simulations with the three models led, in the mixing zone, to a
vertically well stratified water column in the upper part, near the
surface, and to a vertically well mixed bottom layer, as it was
expected.

Although the three models present very similar results,
some difference among them can be observed. The q2 − q2L
model presents isohalines with some deflection in relation to the
bottom and a greater vertical stratification in the upper part of the
water column. The k − ε and k − ω models, in turn, presented
a well mixed water column in the bottom and less stratified in
the surface, indicating that these models present a greater mixing
capacity in relation to the q2 − q2L model in the entire water
column.

Figure 7 presents some characteristic turbulence parameters,
that were determined in a transversal section at km 70, for the
three models. From left to right the turbulent viscosity (KM ), the
dissipation ratio (ε) and the turbulent kinetic energy (TKE) are
presented.

We can observe in the left panel that the q2 − q2L model
presents viscosity coefficient values of the same order of mag-
nitude of the other models, but clearly lower, explaining the
smaller mixing capacity in the bottom region in relation to the
k − ε and k − ω models. In the upper part of the water col-
umn all parameter values are very low due to the strong vertical
stratification in this region.

CONCLUSIONS

In this work two new turbulence closure schemes, known in lit-
erature as k − ε and k − ω, were implemented in the POM,
which has already incorporated the Mellor & Yamada (1982)
q2 −q2L turbulence model type. To assess this implementation
quality, i.e., to remove eventual codification problems, to assess
the necessary restrictions to each incorporated model and even-
tual boundary condition problems, two test cases suggested in
literature for this purpose were carried out: (i) deepening of the
mixed layer and (ii) estuarine circulation. With the accomplish-
ment of this work, we can conclude that:

1. All obtained results showed that the turbulence closure
k − ε and k − ω models implementation in the POM
was adequate.

2. The different results among the models, for the same
scenarios, are a consequence of the fact that each model
gives a different relative importance to the different phys-
ical processes involved in the turbulent closure scheme,
i.e., shear, buoyancy and dissipation. This importance re-
sults from the different coefficients assigned to each model
for these processes, as Table 1 shows, and it directly af-
fects Equation (17), from which the turbulence length scale
is determined. For example, according to these coeffi-
cients, the k − ε model tends to favor more the shear
process than the others, and in this scenario this is proba-
bly making this model overestimate the mixed layer deep-
ening in relation to the others. This fact, however, was
not observed in Warner et al. (2005), whose simulations
were carried out using the ROMS model, although in the
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present work the same coefficients employed by those au-
thors have been used. This motivated the next conclusion.

3. A comparison among the results obtained in this work
using the k − ε and k − ω models with the results ob-
tained by Warner et al. (2005), for the same scenarios and
coefficients in Table 1, suggests that the results are also
affected by the numeric structure (discretization criteria,
numerical diffusion minimization schemes, and others) of
the used circulation hydrodynamic model.

4. The modification proposed by Burchard & Deleersnijder
(2001), to increase the c3 coefficient related to the fluctu-
ability term, did not eliminated the oscillations, observed
using the q2 − q2L model, in the ML deepening and
did not reduced either the mixed layer depth. This impact
was expected, as the increase in this term intensifies the
turbulence damping.

5. In the scenario defined by the first experiment, the k −
ε model presented a greater mixing capacity than the
q2 − q2L model, and this last model presented a greater
capacity than the k − ω model. In the second experiment
scenario, the k − ε and k − ω models showed a greater
mixing capacity than the q2 − q2L model, in the bottom
layer as well as in the surface layer of the MZ. Although
the observed differences are small, they indicate that the
performance of each model depends basically on the
scenario where it is employed.

6. To use one or another turbulence closure model, in a real
flow situation, it is necessary to assess which one of them
most truthfully reproduces the behaviour of this flow.
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