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SENSITIVITY, RESOLUTION AND AMBIGUITY OF THE CRS STACK OPERATOR

Lourenildo W.B. Leite and Wildney W.S. Vieira

ABSTRACT. This paper describes an investigation about the sensitivity and ambiguity of the Common Reflection Surface (CRS) stack operator parameters
(v0, RNIP,RN, α0), and their resolution in terms of statistical properties of the solution of a nonlinear multi-parametric optimization problem for surface fitting be-

tween the forward model and a synthetic data, in the least-square sense. The sensitivity method is borrowed from dynamic system analysis and synthesis, and the
definitions are based on the Miller-Murray model. The results are analyzed in terms of the CRS attributes search strategies during the stack process. The investigation

principle is to combine global and local optimization methods to reach a minimum of the object function of minimization, where the problem matrix has a better linear
relation to the parameters. A first search for a minimum is performed with a controlled random search method, followed by a gradient method for the last steps fo the

optimization to calculate the data and parameter resolution and covariance matrices, and any further model statistical properties. The sensitivity functions are represented

by the columns of the optimization problem matrix, and they in general exhibit a linear behavior instead of a convex form; as a result, this linear behavior establish the
necessity of a good starting point for the optimized multi-parametric attributes search.

Keywords: CRS attributes, sensitivity analysis, resolution, ambiguity.

RESUMO. Este trabalho descreve uma investigação sobre a sensitividade e ambiguidade dos parâmetros (v0,RNIP, RN, α0) do operador de empilhamento CRS,

e suas resoluções em termos das propriedades estat́ısticas da solução de um problema não-linear multi-paramétrico do ajuste da superf́ıcie de um modelo direto à de
dados sintéticos, no sentido do quadrados-mı́nimos. O método da sensitividade é adaptado da análise e sı́ntese de sistemas dinâmicos, e as definições são baseadas

no modelo Miller-Murray. Os resultados são analisados em termos das estratégias de busca dos atributos CRS durante o processo de empilhamento. O princı́pio da
investigação é combinar métodos de otimização global e local para alcançar um mı́nimo da função objeto de minimização, onde a matriz do problema tem uma melhor

relação linear com os parâmetros. A primeira busca de um mı́nimo é realizada com um método de busca aleatória controlada, seguida por um método do gradiente para

os últimos passos da otimização para calcular as matrizes resolução e covariância dos dados e parâmetros, e quaisquer propiedades estat́ısticas do modelo. As funções
sensitividade são representadas pelas colunas da matriz otimização do problema, e em geral elas exibem um comportamento linear em vez de uma forma convexa; como

resultado, este comportamento linear estabelece a necessidade de um bom ponto inicial para a busca multi-paramétrica otimizada dos atributos.

Palavras-chave: atributos CRS, análise de sensibilidade, resolução, ambiguidade.
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644 SENSITIVITY, RESOLUTION AND AMBIGUITY OF THE CRS STACK OPERATOR

INTRODUCTION
The motivations of the present work come from two aspects of
the CRS (Common Reflection Surface) stack: (1st) the presence
of noise in the recovered attributes; and (2nd) the strategy for the
parameter search. The analysis of the CRS outputs (stack, coher-
ence, migration) show that as the observed input data improves
on the signal/noise ratio, the attribute sections show a structure
that resembles more the stack section that is used as reference.
Sensitivity analysis can be used to determine how sensitive the
model is to changes in the value of the parameters and to the ge-
ometry of the model, as part of a curve (CRS operator surface)
fitting problem.

The present description is structured in three main parts re-
lated to curve fitting between the synthetic data and the forward
model represented by the CRS stack operator, as an optimization
problem in the least-square sense. The parts are: (1st) controlled
random global search for the parameters; (2nd) second order gra-
dient method, resolution and ambiguity; and (3rd) sensitivity anal-
ysis and its relation to the CRS attributes search.

Sensitivity and ambiguity calculus can be performed in the
forward model as a first step in the analysis of the data fitting
problem, and it is independent of the object function and of the
mathematical optimization problem. This calculus is used for the
purpose of analysis and synthesis of mathematical models. To be
able to give a unique formulation of the mathematical problem, the
mathematical model is usually considered to be known exactly,
but this assumption is unrealistic since there is always a certain
discrepancy between the actual system (data) and its mathemati-
cal model (operator). This discrepancy results from the following
partial reasons, as we paraphrase Saltelli et al. (2004):

• A real system cannot be identified exactly because of the
restricted accuracy of the measuring devices;

• Mathematical models are often simplified or idealized
intentionally to simplify the mathematical problem, or to
make it solvable at all.

For these reasons, the results of mathematical synthesis need
not necessarily be practicable, or they may even be very poor, if
there is considerable deviations between the real system and the
mathematical model, and the solution be very sensitivity to the
parameters. Therefore, it should be part of the practical problem
to learn about parameter sensitivity prior to its implementation,
or to reduce the sensitivity systematically if this turns out to be
necessary.

This is important if one is involved in optimization proce-
dures, since a natural property of optimization is to extremize the

performance of a certain parameter set that controls the opera-
tion. Example of this are gradient methods, adaptative and self-
learning systems.

Among the specific aims of the present study are: (1) to an-
alyze the sensitivity of the CRS hyperbolic stack operator to its
parameters; and (2) to compare the results of the parameter sen-
sitivities with the strategy for the CRS attribute search as described
by Muller (1999) and Mann (2002).

For the sensitivity analysis here discussed, we organized it
as a nonlinear optimization problem, with the statistical proper-
ties obtained from the derivatives forming the problem matrix in
the gradient method. The norm-2 was selected due to its sim-
plicity and elegance, and we follow Tarantola (1984) for its de-
scription. Data and parameter resolution matrices, and the unit
covariance matrix are calculated and analyzed at the object func-
tion minimum, where the problem is considered linearized based
on Taylor series expansion to the first order.

The CRS parameter search strategies in the Semblance do-
main can be divided in two main parts: (1st) the first part is
a search to determine initial parameter values to start the opti-
mization iterations; (2nd) a second part is a simultaneous search
for all parameters starting from the initial values. The searches
are performed in the CMP (common-mid-point), therefore sub-
ject to properties of this family, as the reciprocity principle, and
the aperture.

The forward model is represented by the CRS stack operator
in terms of t(xm, h;m), where the independent variables are the
mid-point xm and the source-sensor offset h, and m standing
for the parameters represented by the attributesm = (RNIP,RN,
α0), with v0 considered fixed.

The optimization problem is presented in the following form:
Given an observed seismic section t(obs)(xm, h) in the data
space D, we wish to find a modelm in the parameter spaceM
such that the forward model t(pre)(xm, h;m) fits the observed
data in the least-square sense.

The problem is classified as nonlinear, multiparametric, over-
determined. The synthetic data ca be constructed with different
noise levels, and to avoid local minimum, a solution is con-
structed by the combination of the Controlled Random Search
Global Method (CRSGM), followed by the Gradient Method (GM)
to allow for the statistical analysis of the solution (Fletcher,
2001). The combination of these methods follows the principle
that CRSGM defines a region around the global minimum, the-
oretically well defined, followed by last iterations around a local
minimum with better linear properties to construct the correlation
and resolution matrices.
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Numerical experiments were realized for randomly chosen
points P0(x0, t0), therefore, neither to extend along the time
traces, (t0 = 0, ttotal), nor along the mid-points (x0 = 0,
xtotal), what would take the problem to be non-practicable. As
established, the solution by the CRSGM can be used as an auto-
matic input to the GM method, but in the present work these
experiments were performed in two separate steps without de-
grading the strategy.

The structure of the sensitivity analysis is based on the poly-
nomial function of the CRS operator represented by t(xm, h;
m), where nowm = (v0, RNIP, RN, α0), including v0, and
the quantitative properties of this system with respect to them
parameters are shown as functions of the independent variables
xm and h.

The methodology for sensitivity analysis has been borrowed
from the analysis and design of dynamic systems, as described,
e.g., by Frank (1978) for engineering applications, and by many
others for partial differential equations, e.g., Saltelli et al. (2004).
Among the several methods for uncertainty and sensitivity analy-
sis, the method adopted here is the local method which is deriva-
tive based.

The definitions to quantify the parameter sensitivity of a sys-
tem is summarized later in the text, and we start defining the for-
ward model to adjust the classical nomenclature to our subject.

FORWARD MODEL
The CRS stack operator describes the impulsive traveltime for
curved reflectors based on the paraxial ray theory, and takes into
account only primary reflection trajectories (Mann, 2002). The
paraxial ray theory is based on Taylor series that handles gen-
eral smooth functions of many variables. The quadratic model
obtained by the truncated Taylor series of t(xm, h;m) about
(xm = x0, h = h0) is denominated the parabolic traveltime
for 3D, that can be written as:

t(xm, h;m) = t0(m) + p
TΔx+

1

2
ΔxTMΔx. (1)

The transit time t(xm, h;m) is calculated with respect to a
central reference ray with traveltime t0(x0, h0;m), usually taken
as the Normal Incidence Ray. Making x1 = xm and x2 = h,
Δx1 = xm − x0, Δx2 = h − h0, the Gradient p and the
HessianM are written as:

pTΔx =

2∑

n=1

Δxn
∂

∂xn
t(xm, h;m);

1

2
ΔxTMΔx =

1

2

l=2∑

l=1

2∑

n=1

ΔxlΔxn
∂2

∂xl∂xn
t(xm, h;m).

These equations also have time derivatives with respect to the
survey space coordinates, where p andM can be calculated by
Dynamic Ray Tracing.

The CRS operator can be physically interpreted by the N
and NIP waves as shown in Figure 1. Duveneck (2004), among
others, describe the transformation of Eq. (1) in terms of wave
front parameters for 3D. But, limiting the discussion to the CRS-
2D, flat observation surface, and using the relations:

p =
sinα0
v0
, MN =

cos2α0
v0
KN and

MNIP =
cos2α0
v0
KNIP,

(2)

the CRS parabolic operator is given by

t(xm, h;m) = t0 +
2 sinα0
v0

(xm − x0)

+
2t0 cos

2 α0

v0

[
(xm − x0)2
RN

+
h2

RNIP

]
,

(3)

and the hyperbolic form by

t(xm, h;m)=

√√√√√√√√√√

[
t0 +

2 sin α0(xm − x0)
v0

]2
+
2t0 cos

2 α0

v0

×
[
(xm − x0)2

RN
+
h2

RNIP

] . (4)

RNIP =
1
KNIP

, RN =
1
KN

and α0 are the wave front attributes,
and the quantity v0 stands for the velocity of the upper layer, that
in practical work is established as a fixed value estimated around
the stack reference point P0(x0, t0).

The justification for v0 be included as an ambiguity parameter
is that the values attributed to v0 can vary, and can even be used
as a filter for analyzing multiple attenuation. Besides, this velocity
will depend on the source dominant band frequency, and veloc-
ity may considerably vary along the survey line, and even in its
aperture; the exception would be marine surveys due to the
smaller variation in water velocity.

Figure 2 simulates an observation surface (blue) calculated
by ray theory, and the CRS stack surface (green) calculated by
Eq. (4). The CRS stack has the intention to fit these two surfaces
in terms of correlation Semblance analysis, and in the CRS case
performed in an automatic way, and in steps summarized below.
Each step searches for one of the attributes (RNIP, RN, α0), and
produces a stack related to each reference point P0(x0, t0), that
are finally followed by 3-parameter optimization step.

Brazilian Journal of Geophysics, Vol. 31(4), 2013
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Figure 1 – Physical illustration of the CRS model formed by one layer over
a half-space separated by a curved interface. The velocity v0 characterizes the
upper layer involving the observation aperture. The emergence angle α0 is
common to both N and NIP waves. RNIP is the NIP-wave radius and curvature
KNIP, andRN is the N-wave radius and curvatureKN (Mann, 2002).

Figure 2 – 3D perspective of the surfaces to be indirectly fit in the stack pro-
cess: the CRS operator in green [Eq. (4)], and the simulated observed data in
blue (Mann, 2002).

To satisfy the Paraxial Ray Theory, the central ray of reference
is taken the zero offset ray, or the Normal Incidence Ray in subsur-
face. This central ray satisfies Snell’s law through the interfaces,
and the wave front curvatures of the NIP and N waves change
according to the refraction and transmission laws.

Fomel & Kazinnik (2010) compares Multifocusing (MF) and
CRS methods, where he proposes non-hyperbolic Common Re-
flection Surface approximations. Also, the CRS operator can be
written in other forms for dealing with velocity analysis, like

t(xm, h;m) = t0 + A(xm − x0) +B(xm − x0)2 + Ch2, (5)

where the three coefficients, A, B and C , are related to the four
parameters v0,RNIP,RN and α0, but the interest here are directly
in the wave attributes (Duveneck, 2004).

Bernabini et al. (1987) describe functionals to be evaluated
quantitatively on a given CMP gather for the goodness of fit be-
tween data and a model function, particularly for a stacking veloc-
ity value of the hyperbolic reflection response. The most common
functional measures the likeness of the corrected gather’s trace
amplitudes (u), based on correlation and choices of normaliza-
tion. The extended normalized correlation Semblance measure,
φ(t0;m), to the (h, xm, t) coordinates, is composed by aver-
ages and given, without mathematical simplification, by:

φ(t0;m) =

1
Nt

t=t0+δt∑
t=t0−δt

1

Nxm

xm=xL∑
xm=xF

⎡
⎣ 1
Nh

h=hL∑
h=hF

u(xm, h; t(t0),m)

⎤
⎦
2

1
Nt

t=t0+δt∑
t=t0−δt

1

Nxm

xm=xL∑
xm=xF

1

Nh

h=hL∑
h=hF

u2(xm, h; t(t0),m)

,

(6)

where the set of parametersm are related to the trajectory, t =
t(t0), of the summation defined by Eq. (4), and its different
adapted forms. The h-window goes from a near first h = hF
to a last h = hL offset with Nh points. The xm-window goes
from a near first xm = xF to a last xm = xL mid-point
withNx points. The t-window is specified by some δt around t0.
φ(t0;m) takes values in the interval [0,1] regardless of the sig-
nal amplitude, and it quantifies the uniformity of the signal polarity
across the normal moveout corrected gather amplitude, u(t).

Equation (6) is written in a form that does not explicitly
carry information about the theoretical model, t(pre)(xm, h), as
Eq. (14) does; therefore, it is not used here as a direct curve fit-
ting measure, and we call the stack process an indirect optimiza-
tion process. Toldi (1985), and extensions referenced to his work
(for example, Vieira et al. (2011)), treats the indirect optimization
aiming at velocity estimation (vRMS, or vINT), with the trajectory
t = t(t0) written in an explicit form of the type

t(h; t0,n) =

√
t20 +

(2h)2

v2RMS,n
,

where

v2RMS, n =

∑n
i=1 v

2
INT,iΔti∑n

i=1Δti
,

with time Δti for vertical interval trajectories between two se-
quential reflections.

Figure 3 serves to represent the Semblance function, Eq. (6),
where the aim of the optimization is to search for the global

Revista Brasileira de Geof́ısica, Vol. 31(4), 2013
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Figure 3 – Cube perspective of the coherence Semblance values calculated by Eq. (6) as function of
the wavefield attributes α0,RN andRNIP (Mauch, 1999).

minimum represented in red. Local minimum can also be seen
as yellow spots. Muller (1999) shows plots of Eq. (6) in form
of cube perspectives and slices, as combination maps of RNIP

versus RN, RNIP versus α0, RN versus α0, where the global
minimum present a clearly elongated valley form.

The space sampling to construct the experiment were
Δxm = 50 m and Δh = 50 m, with the respective number
of points Nxm = 50 and Nh = 50. The first geophones were
placed at hF = 50 m and xF = 50 m. The nominal values for
the CRS parameters were v0 = 1500 m/s, RNIP = +5000 m,
RN = −5000m, α0 = 0, 2094 rad, and t0 = 1 s.

Figure 4 represents the forward model (no noise added), and
Figure 5 represents the synthetic data, obtained from Figure 4
where noise has been added to. Both informations were calcu-
lated by Eq. (4), and the additive random noise calculated with a
normal distribution, and visually controlled. Therefore, this work
does not have manually or automatic picked events, or real data.

Attribute search

Depending on the application, the number of the CRS attributes
will be different, what also will depend on the dimension of the
problem (if 2D or 3D), and on the observation topography. For
the flat observation surface and 2D problems, the model only con-
siders the triplet (RNIP, RN, α0). The parameter v0 is admitted
fixed, but the value adopted is considered as an a priori informa-
tion, and to be decided for. We follow the descriptions of Muller
(1999) and Mann (2002) for the stack implementation, where the

triplet search is described as a nonlinear optimization problem;
again, there is no search for v0 in the practice of CRS stack.

For the triplet optimization step, it needs a starting point
(RNIP, RN, α0)

(Ini) that is obtained in previous specific steps
performed in the CMP domain. The parameter picking should be
associated with maximum coherence values used to simulate the
correspondent ZO point, and finally the complete section.

First step. It is one-parameter search for the combined vstack

for obtaining a first ZO section by setting xm = x0 in Eq. (4)
that is reduced to:

t(h)|xm=x0 =
√
t20 +

2t0 cos2 α0
v0RNIP

h2; (7)

that, compared with

t(h) =

√
t20 +

4h2

v2NMO
,

the stacking velocity can be expressed in terms of α0 and RNIP,
for vNMO = vstack , as

v2stack =
2v0RNIP

t0 cos2 α0
. (8)

This step is called Automatic NMO stack (or, CMP stack), and it
represents a non-interactive velocity analysis.

Second step. It is also one-parameter search for non-combined
α0 attribute for obtaining a second ZO section by setting h = 0

Brazilian Journal of Geophysics, Vol. 31(4), 2013
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Figure 4 – 3D perspective of the time surface to be fit representing the forward model calculated by Eq. (4)
showing the hyperbolic aspect along h and xm.

Figure 5 – 3D perspective of the time surface to be fit representing the synthetic data calculated by Eq. (4),
where random noise was added to Figure 4, and still showing some hyperbolic aspect. The additive noise
was calculated with 0.01% with respect to the maximum value of the traveltime.

and RN =∞ in Eq. (4) that reduces it to:

t(xm)|(h=0,RN=∞) = t0 +
2 sinα0(xm − x0)

v0
, (9)

This first-order approximation can be regarded as a plane wave
approximation, and this step is called Automatic Plane Wave

stack, from where the emergence angle α0 is obtained based on a
small aperture. Inserting this angle value into Eq. (8), a value for
RNIP is calculated.

Third step. It is one-parameter search for the non-combined
RN attribute for obtaining a third ZO section by setting h = 0

Revista Brasileira de Geof́ısica, Vol. 31(4), 2013
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in Eq. (4) that reduces it to:

t(xm)|(h=0) =

√√√√√√√√
[
t0 +

2 sinα0(xm − x0)
v0

]2
+
2t0 cos

2 α0
v0

(xm − x0)2
RN

. (10)

In this step, the values of α0 and RNIP would already be known
from the previous search, and this step is called Automatic Hyper-
bolic stack for RN.

Fourth step. From the previous 3 steps, the initial values
(RNIP, RN, α0)

(Ini) are known, and (with v0 fixed) an Initial stack
is performed to obtain a fourth ZO section.

Fifth step. With the set (RNIP, RN, α0)
(Ini) , and v0 fixed,

the simultaneous search provides the Optimized CRS stack pro-
ducing another attribute set, (RNIP, RN, α0)

(Opt) , and another
ZO section.

Forward modeling can now be performed by calculat-
ing traveltime surfaces with Eq. (4) and the set of attributes
(RNIP, RN, α0)

(Opt). We can now take one randon subset for the
sensitivity analysis.

SENSITIVITY MODEL

Sensitivity analysis can only be done on theoretical models, where
closed derivatives can be taken, and by definition it is a model
compromise. Therefore, sensitivity analysis on real data only
makes partial sense here. Frank (1978) describes applications
of model parameter sensitivity for physical prediction and appli-
cations. The system function is denoted by ti = ti(m), de-
pendent on the parameter vector m = [m1, m2, . . .mM ]T ,
and in this case we have m specifically given by m =

[v0, RNIP, RN, α0]
T . The nominal parameters and system func-

tion are denoted with the lower script 0 inm0 and t0.
Considering continuity conditions, the following definitions

for the sensitivity function, matrix S, are applied, and some are
presented for comparison, and Appendix A is devoted to some
details on this technique.

The adopted measure here was the Relative Logarithmic sen-
sitivity function, S, defined by:

Sij �
∂ ln ti(m)

∂ ln mj

∣∣∣∣∣
m0

= Sij(m0) = Sij
m0j
t0i
, (11)

where Sij is the ijth element of absolute sensitivity function S
of Eq. (20). The ith element of the Relative Error of the system

function is defined by:

ER(xm, h) =
Δti
t0i
�
j=M∑
j=1

Sij
Δmj
m0j

, (12)

and the Maximum Relative Error of the system function by

EA(xm, h) =

∣∣∣∣∣Δtit0i
∣∣∣∣∣ �

j=M∑
j=1

∣∣Sij∣∣
∣∣∣∣∣Δmjm0j

∣∣∣∣∣. (13)

Examples of the S function are presented in Figures 10, 11, 12
and 13.

OPTIMIZATION METHODS
This short description is to present a relation between the opti-
mization technique and the sensitivity analysis for completeness.
Vieira & Leite (2009) presented strategies with two optimization
methods combined to investigate the convergence and resolution
of the CRS operator aiming at practical applications. The con-
cepts involved are the Random Controlled Search, and the Gradi-
ent methods. The misfit measure used, χ(m), is given by:

χ(m) =

√√√√√√
N∑
i=1

[t(obs)
i − t(pre)

i (m)]
2

N
. (14)

This measure is not to be confused with the Semblance func-
tion, and Figure 6 shows the layout of the inversion process. The
function χ(m) has the properties to be positive, convex, mul-
timodal, and not necessarily smooth, what will depend on the
Δt(m) = tobs − tpre(m) relation. The parameter,m, search
is to minimize the function χ(m).

Figure 6 – Canonic representation of the optimization principle.

The CRSGM formalism applied was originally described by
Price (1983) to solve the global optimization problem, and Ap-
pendix B is devoted to some details on this method to show the
necessity of control, what makes the curve fitting process a little
more nonlinear. A common characteristic of the global methods,
as described by Brachetti et al. (1997), is that they attack two dis-
tinct problems at the same time:

Brazilian Journal of Geophysics, Vol. 31(4), 2013



�

�

“main” — 2014/4/14 — 16:25 — page 650 — #8
�

�

�

�

�

�

650 SENSITIVITY, RESOLUTION AND AMBIGUITY OF THE CRS STACK OPERATOR

1. The global search problem that is the examination of all
region of interest aiming at to localize “more promising”
sub-regions that contains the global minimum (m∗∗);

2. The local search problem that is the determination of the
global minimum (m∗∗) using a local strategy, once a
rather small neighborhood has been detected around the
minimum.

The Gradient Method (GM) is a local search formalism de-
scribed to some details in Appendix C. The main point is that the
GM is based on the multivariate Taylor series expansion of a func-
tion used to represent the observed data in a nonlinear problem,
that is summarized asG(m)Δm = Δt, whereG(m) is the
problem matrix function of the parametersm to be resolved for
iteratively. The series linearizes the problem to allow for an it-
erative solution, which is based on the linear counterpart form,
Gm = t, whereG is not a function of them parameters.

In the least-square sense, the optimization here is defined
as an over-determined (pure) problem, the number of data be-
ing greater then the number of parameters to be resolved for,
(N > M), and all parameters considered to have the same
illumination. The minimization method uses the principle that
∂χ(m)/∂mj = 0, what establishes a local minimum, with the
solution represented by the normal equationG(m)Δm = Δt.
The iterative solution of the nonlinear problem is represented by
the equation:

Δm|k = [GTG]−1GTΔt|k, (15)

under the parameter update given by

m(k+1) =m(k) + γ(k)Δm(k), (16)

where γ is an attenuation/amplification factor for the solution
Δm, and k is the iteration number in the optimization process
cycle.

A statistical analysis for the method is done by the Data and
Parameter Resolution Matrices, and by the Unitary Covariance
Matrix (Menke, 2002). These matrices are attributes of the
method involving the matrix G, and its generalized inverse
G−g , that in the present case has the form

G−g = [GTG]−1GT .

The Parameter Resolution matrix,Rp, is given by:

Rp = G
−gG, (17)

the Data Resolution matrix,Rd, by

Rd = GG
−g, (18)

and the Unitary Covariance matrix, covu, by

covu(m) = σ
−2G−g [cov (t)]G−gT =G−gG−gT . (19)

The CRSGM is a classified as a Direct Search Method, and
therefore does not have statistical operators as for the GM de-
scribed above.

Examples of the two optimization processes are presented be-
low in the Results section, where control values for the inversion
processes are also given immediately after the calculation flow
description.

RESULTS
The calculation flow description of the computer program Vieira
& Leite (2009) developed by is resumed as follows:

01 – Start;

02 – Input: (1) Control parameters; (2) Model parameters;
(3) Initial model parameters; (4) Inversion parameters;

03 – Start iterations: Controlled Random Search Method;

04 – End iterations: Controlled Random Search Method;

05 – Start iterations: Gradient Method;

06 – Calculation: Forward model;

07 – Calculation: Curve fit measure, and test for ending the
iterations;

08 – Calculation: Derivatives of the CRS stack operator;

09 – Calculation: MatricesG,Δd,Δm;

10 – Calculation: Parameter update;

11 – Calculation: Convergence test;

12 – Returns to 05;

13 – Calculation: Parameter Resolution matrix;

14 – Calculation: Data Resolution matrix;

15 – Calculation: Unit Covariance Unitary matrix.

The Price initial interval control parameters were set in
the computer program to the following values. For v0: 1400–
1600 m/s, with the center value of 1500 m/s; RNIP: 4500 to
5500 m, with the center value of 5000 m;RN: –5500 to –4000 m,
with center value of –5000 m; and α0: π/18 to π/12 rd, with
center value of π/15 rd. The parameter space has dimension
4, and the number of points in the parameter space were set to
200, with a tolerance of 0.01%. Figure 7 serves to exemplify the
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Figure 7 – Price initial random misfit function.

randomness of the misfit function χ(m) as a result of the auto-
matic random selection ofm for t0 = 1.0 s.

The GM inversion process were set to 20 iterations. The
GM control parameters had the following initial values: v0 =
1800 m/s; RNIP = 5700 m; RN = –4200 m; α0 = π/10 rd;
the regularization factor γ = 1.0e-7; and t0 = 1.0 s.

Table 1 presents the values obtained by the application of
the CRSGM and GM methods, with the above control parame-
ters, which shows agreement between the results, and to be a
strong allied in the strategy for the 4 parameters search of the
CRS forward model. We should make clear that the accuracy ob-
tained depends on the inversion control parameters, and on the
number of iterations. Since we are dealing with two independent
methods, we intentionally chose for the independent solutions
and, therefore, the values for CRSGM and GM were left close to
the nominal values.

Table 1 – Inversion values obtained by the CRSGM and
GM optimization methods.

Parameter Real CRSGM GM
v0 (m/s) 1500 1459 1446
RNIP (m) 5000 5013 5112
RN (m) –5000 –4910 –4800
α0 (radians) 0.2094 0.2019 0.2186

Table 2 presents the Normalized Parameter Resolution (4×4)
matrix of Eq. (17) that, should ideally have a unitary diagonal form,
and shows a weak scatter in the off diagonal elements. The cor-
relation values in the α0 columns are very small, (smaller than

0.0001), with respect to the other parameters, and they serve as
a measure of relative parameter independence.

Table 2 – Normalized Parameter Resolution matrix limited
to 3 decimal places. Eq. (17).

Rp v0 RNIP RN α0

v0 1 0.287 –0.173 0.000

RNIP 0.287 1 0.893 0.000

RN –0.173 0.893 1 0.000

α0 0.000 0.000 0.000 1

Figure 8 shows the Normalized Decimated Data Resolution
(50 × 50) matrix of Eq. (18). This matrix had originally dimen-
sions (2500× 2500), but was decimated for better plotting pur-
pose, but conserved its original form and scale. This representa-
tion with contours is more convenient than as a table. This matrix
should ideally have a unitary diagonal form, but shows a strong
scatter of the off diagonal elements.

Table 3 – Normalized Unitary Parameter Covariance matrix
limited to 3 decimal places. Eq. (19).

covu(m) v0 RNIP RN α0

v0 1 –0.832 –0.855 –0.362
RNIP –0.832 1 0.999 0.772
RN –0.855 0.999 1 0.750
α0 –0.362 0.772 0.750 1.0

Table 3 presents the Normalized Unitary Parameter Covari-
ance (4 × 4) matrix of Eq. (19), that should ideally have a uni-
tary diagonal form, but shows a strong scatter of the off diagonal

Brazilian Journal of Geophysics, Vol. 31(4), 2013
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Figure 8 – Data resolution matrix decimated by 50 points.

Figure 9 – Evolution of the objective minimization function calculated in 20 iterations showing the
stabilization of the process before the tenth iteration.

elements. This representation in form of table is more convenient
than as a figure with contours. The values shown correspond to
a non-desirable strong correlation between the parameters, and
means that by changing one parameter the others are also altered
according to the sign as, for example, between RN and RNIP with
covu = 0.999.

The maximum number of iterations in the GM method was
limited to 20, and the evolution of the minimization object func-

tion is shown in Figure 9. It was established that the solution
by the CRSGM was to be used as input to the GM method. But,
for the above tables, they were obtained in independent experi-
ments, to check for the convergence of the methods. Also, the
Global method is only used to give the initial point in the parame-
ter space for calculating the statistics based on the local method.
The experiment results show that a precise local point is not a
decisive matter due to the linearity at the local minimum.

Revista Brasileira de Geof́ısica, Vol. 31(4), 2013
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Figure 10 – Contour maps of the normalized derivative (α0/t0) ∗ ∂t(xm, h;m)/∂α0. Figure positions: left, t0 = 0.25 s; right, t0 = 5.00 s.

Figure 11 – Contour maps of the normalized derivative (RNIP/t0) ∗ ∂t(xm, h;m)/∂RNIP. Figure positions: left, t0 = 0.25 s; right, t0 = 5.00 s.

The possible number of experiments with the sensitivity func-
tion S, Eq. (23), is theoretically equal to the number of points
in a ZO section (time versus distance); therefore, it can be very
large, and criteria must be used to select points for analysis.
Examples are presented in Figures 10, 11, 12 and 13, where the
nominal values were

v0 = 1500m/s, RNIP = 5000m, RN = −5000m,
and α0 = +(π/15) rad.

The general chosen time points were t0i = (0.25, 0.50, 1.00,
2.00, 2.50, 3.00, 4.00, 5.00) s, with selected values for each case.

Figures 10, 11 and 12 were calculated for only two values of
t0i = (0.25, 5.00) s, necessary to show because the function
variation is very smooth.

Figure 10 is the simplest case, and involves the function
(α0/t0) ∗ ∂t(xm, h;m)/∂α0, Eq. (42), and its relation to
Eq. (9). The maps show a strong linear dependence with respect
to the coordinates h, and a weak linear dependence with respect
to the xm coordinate; as a result, this parameter would be bet-
ter determined along the xm coordinate constrained to a h value.
In the attribute search strategies, the second step solves for α0,
as expressed by Eq. (9) for t = t(xm, h = 0).

Figure 11 shows maps of the derivative (RNIP/t0)∗∂t(xm,
h; m)/∂RNIP, Eq. (43), and its relation to Eq. (7). The maps
show a linear dependence with respect to xm, and almost con-
stant with respect to h, what makes this parameter less sensitive
and stable along the h axis; as a result, this parameter would be
better determined along the h coordinate constrained to a xm

Brazilian Journal of Geophysics, Vol. 31(4), 2013
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Figure 12 – Contour maps of the normalized derivative (RN/t0) ∗ ∂t(xm, h;m)/∂RN. Figure positions: left, t0 = 0.25 s; right, t0 = 5.00 s.

value. In the attribute search strategies, a combination of the first
and second steps solves for RNIP, as expressed by Eq. (7) for
t = t(h, xm = 0).

Figure 12 shows maps of the derivative (RN/t0) ∗ ∂t(xm,
h; m)/∂RN, Eq. (44), and its relation to Eq. (10). The maps
show a strong linear dependence with respect to the h coordi-
nate, and almost constant with respect to the xm coordinate; as
a result, this parameter would be better determined along the
xm coordinate constrained to a h value. In the attribute search
strategies, the third step solves for RN, as expressed by Eq. (10)
for t = t(xm, h = 0). This situation is opposite to the
(RNIP/t0) ∗ ∂t(xm, h;m)/∂RNIP case.

Figure 13 displays the derivative (v0/t0)∗∂t(xm, h;m)/
∂v0, Eq. (45), and its relation to the constant value of v0. The
variation is still smooth, but faster than for the other three param-
eters (RNIP, RN and α0). The maps indicate a nonlinear vari-
ation with respect to the space coordinates (xm and h), with-
out an ideal direction for v0 initial evaluation with respect to
the nominal value of v0 = 1500 m/s positioned at the center
of the figures. The maps indicate a very slow change with re-
spect to higher t0i values, and to be more complex for smaller
t0i values. Therefore, fixing the value of v0 in the CRS prac-
tice is a consistent constraint for the implementation and simpli-
fication of the data stack processing algorithm, with respect to
the S analysis.

Figure 14 are error functions calculated using Eqs. (12) and
(13) of the adopted sensitivity measure, S. The maps show clearly
and consistently a behavior of decreasing/increasing error with
coordinates h and xm, but mainly along the h axis, as a prop-
erty of the hyperbolic operator (4). The elongated valleys of low

values, along h = 1500m, coincide with the nominal values in
Eqs. (12) and (13), that give minimum values for Δti.

CONCLUSIONS
We investigated the relationship between sensitivity functions for
the CRS operator with respect to the parameters (v0, RNIP, RN

and α0), and adopted the logarithm measure S. Then, we com-
pared the S results with the attributes search strategies for (RNIP,
RN and α0) that are based on physical-mathematical models for
the construction of the CRS stack operator.

In the CRS stack, v0 is admitted as fixed, but it has a physical
meaning as shown in Figure 2. In practical terms, v0 is repre-
sented by an average value taken along the geophone spread, and
a sampling over the upper layers under the dominant wavelength
window of the effective source pulse. The strategy for fixed v0 is
consistent with the S analysis, due to the stronger variation of the
v0 sensitivity function with respect to the space coordinates, as
presented in Figure 13, where the main attention was called for.

TheS derivatives show some nonlinear behavior with respect
to the spatial coordinates, (xm, h), but complementary strate-
gies for the parameter search were not here provided to establish
the initial set of values (RNIP, RN, α0)

(Ini) to be used in the si-
multaneous optimization step for obtaining (RNIP, RN, α0)

(Opt).
For the parameter resolution, we have systematically con-

cluded in the text that it is necessary a good start point for the
optimization that searches simultaneously for the three parame-
ters (RNIP, RN, α0)

(opt) with v0 fixed. From the interpretation of
the sensitivity functions, it is necessary to employ constraints as
a priori conditions for the simultaneous parameter search.

The tests presented were performed for a fixed point
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Figure 13 – Contour maps of the normalized derivative (v0/t0) ∗ ∂t(xm, h;m)/∂v0 for the nominal values v0 = 1500 m/s. Figure positions: top left,
t0 = 0.50 s; top right, t0 = 2.00 s; bottom left, t0 = 4.00 s; bottom right, t0 = 5.00 s. From the experiments, the form varies very little after t0 = 2 s.

P0(x0, t0). Another strategy would test for randomly chosen
points along a trace, (t0 = 0, ttotal), and for any CMP.

Once established a form to represent the ambiguity and sen-
sitivity of the t(xm, h;m) function to its parameters, a next step
would also be to repeat the experiment based on a form of modi-
fied fitting norm function.

Appendix A: The Sensitivity Functions

This description follows mostly Frank (1978) and Saltelli et al.
(2004), where applications for different scientific fields are pre-
sented.

The Absolute sensitivity function is defined (�) by:

Sij �
∂ti(m)

∂mj

∣∣∣∣
m0

= Sij(m0), (i = 1, 2, . . . , N),

(j = 1, 2, . . . ,M),
(20)

the parameter-induced error by

Δti �
M∑
j=1

SijΔmj , (21)

and the maximum error by

|Δti| �
M∑
j=1

|Sij||Δmj|, (22)

where the vertical bars stand for the absolute values of the ele-
ments of the corresponding vectorm or Sij .

The Relative Logarithmic sensitivity function, S, is defined
by:

Sij �
∂ ln ti(m)

∂ ln mj

∣∣∣∣
m0

= Sij(m0). (23)
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Figure 14 – Contour maps of the relative error calculated by Eq. (12) (left), and of the absolute error calculated by Eq. (13) (right), showing valleys of minimum around
the nominal value at the center of figures.

The lnm means the vector of the logarithms of the elements of
m, therefore

∂ lnm = [∂ m1/m1 m2/m2 . . .mM/mM ]
T .

The ith element of Sij is defined by:

Sij �
∂ ti(m)/ti
∂ mj/mj

∣∣∣∣
m0

= Sij
m0j

t0i
, (24)

where Sij is the ijth element of absolute sensitivity function S
of Eq. (20). The ith element of the relative error of the system
function is defined by:

Δti
t0i
�
j=M∑
j=1

Sij
Δmj
m0j

, (25)

and the maximum Relative Error of the system function by∣∣∣∣∣Δtit0i
∣∣∣∣∣ �

j=M∑
j=1

∣∣Sij ∣∣
∣∣∣∣∣Δmjm0j

∣∣∣∣∣. (26)

There are also two ways to define a semirelative sensitivity
function as follows.

The Upper-semirelative Logarithmic sensitivity function de-
fined by:

Šij �
∂ ln ti(m)

∂mj

∣∣∣∣
m0

, (27)

with the components Šij by

Šij �
∂ ti(m)/ti
∂mj

∣∣∣∣
m0

=
1

t0i
Sij . (28)

The Lower-semirelative Logarithmic sensitivity function de-
fined by:

Ŝij �
∂ ti(m)

∂ ln mj

∣∣∣∣
m0

, (29)

and the components Ŝij , in terms of Sij , by

Ŝij �
∂ ti(m)

∂mj/mj

∣∣∣∣
m0

= m0jSij. (30)

For this measure, the ith element of the relative error of the system
function is defined in terms of Sij by:

Δti �
j=M∑
j=1

Sij
Δmj
m0j

, (31)

and the absolute error by

∣∣Δti∣∣ � j=M∑
j=1

∣∣Sij ∣∣
∣∣∣∣∣Δmjm0j

∣∣∣∣∣. (32)

Due to the mathematical representation used for the sensitivity
functions, Si,j , and for the derivatives,Gi,j , we have the equality
Si,j = Gi,j , where the necessary functions Gi,j are given in
Appendix C. Properties of the function Gi,j is given by Eq. (41).

Appendix B: The CRSGM
As a simple description for completion of the text for the opti-
mization fundamentals, it is desired with the Price method a so-
lution of the global non-constrained nonlinear optimization prob-
lem, structured in the following form: min χ(m),m ∈ RM ,
where χ : RM → R is a continuous function; that is, a min-
imum χ(m) of the continuous function is searched, where the
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parameter vector m (dimension M) to be determined is defined
in the RM space. In this form,m represents point-coordinates
mi, (i = 1,M) in the continuous parameter space. The func-
tion object of minimizations is considered multimodal.

To initiate the process, a V search domain is defined through
the specification of explicit constraints to each parameter. Next, at
each iteration k, it is defined a predetermined quantity, N , of test
points randomly chosen in V and consistent with the constraints
(in case they are imposed) forming the set:

Bk1 =
{
m1

(k),m2
(k),m3

(k), . . . ,mN
(k)
}
. (33)

The functional χ(m) is evaluated at all N points, and the po-
sition and value of the function χ(m) are saved in a matrix A
[N × (M + 1)].

At each iteration k, a new test point P , m̂(k), is calculated
using a random sub-set B(k)2 of B(k) described in the form:

m̂(k) = c(k) − (m(k)20 − c(k)), (34)

being c the centroid defined by:

c
(k)
j =

1

M

M∑
i=1

m
(k)
2i (j = 1,M). (35)

Next, a test is done if the point P satisfies the constraints, and if

χ
(
m̂(k)

)
< χ
(
m̂
(k)
max
)
. (36)

In case these conditions are not satisfied, the process returns for
new definitions. The probability that the points converge to the
global minimum depends on the distribution, on the value ofN ,
on the complexity of the functional, in the nature of constraints
and in the choice of the test points.

Appendix C: The GM

The Taylor series expansion of the function t(xm, h;m2), in the
neighborhood of t(xm, h;m1), to the first order is written as an
approximation (�) as:

ti(xm, h;m2) � ti(xm, h;m1)

+

M∑
j=1

∂ti

∂mj
(xm, h;m1)Δmj , (i = 1, N).

(37)

The observed data is represented by t(obs)
i (xm, h;m2 = true),

and the predicted data by t(pre)
i (xm, h;m1 = model). From

these definitions, withm1 =m, we can write Eq. (37) as:

t(obs)
i (xm, h)− t(pre)

i (xm, h;m)

=

M∑
j=1

∂t(pre)
i

∂mj
(xm, h;m)Δmj,

(38)

and in the matrix compact form

Δt(xm, h;m) = G(xm, h;m)Δm. (39)

This equation represents a linearized form to obtain a solution to
the nonlinear problem, whereΔt(xm, h;m) is a column vector,
(N × 1), that represents the data deviations; Δm is a column
vector, (M × 1), that represents the parameter deviations; and
G(xm, h;m) is the problem matrix, (N ×M), that has the
data information along the columns, the parameter information
along the lines, and the elements Gi,j are given by the partial
derivatives of t(xm, h;m) in the form:

Gi,j =
∂t(pre)
i (xm, h;m)

∂mj
, (i = 1, N ; j = 1,M). (40)

These partial derivatives are rather long, and they are used to rep-
resent the sensitivity functions with respect to the parameters.

The derivatives G = G(xm, h;m), described below, have
a general form of the type:

G(xm, h;m) =

a(m)(xm − x0) + b(m)(xm − x0)2 + d(m)h2
t(xm, x0;m)

,
(41)

that would rapidly decay with respect to t(xm, h;m), and
increase with respect to the numerator function controlled
by the coefficients, [a(m), b(m), d(m)], and sign of the
(xm − x0)1 factor.

The continuous partial derivative with respect to α0, and shown in Figure 10, is given by:

∂t(xm, h)

∂α0
=

2 cosα0(xm − x0)
v0

(
t0 +

2 sinα0(xm − x0)
v0

)
− 2t0 cosα0 sinα0

v0

(
(xm − x0)2
RN

+
h2

RNIP

)
√(
t0 +

2 sinα0(xm − x0)
v0

)2
+
2t0 cos2 α0
v0

(
(xm − x0)2
RN

+
h2

RNIP

) . (42)

Brazilian Journal of Geophysics, Vol. 31(4), 2013



�

�

“main” — 2014/4/14 — 16:25 — page 658 — #16
�

�

�

�

�

�

658 SENSITIVITY, RESOLUTION AND AMBIGUITY OF THE CRS STACK OPERATOR

The continuous partial derivative with respect to RNIP, and shown in Figure 11, is given by:

∂t(xm, h)

∂RNIP
= −

t0h
2 cos2 α0
v0R

2
NIP√(

t0 +
2 sinα0(xm − x0)

v0

)2
+
2t0 cos2 α0
v0

(
(xm − x0)2
RN

+
h2

RNIP

) . (43)

The continuous partial derivative with respect to RN, and shown in Figure 12, is given by:

∂t(xm, h)

RN
= −

t0(xm − x0)2 cos2 α0
v0R

2
N√(

t0 +
2 sinα0(xm − x0)

v0

)2
+
2t0 cos2 α0
v0

(
(xm − x0)2
RN

+
h2

RNIP

) . (44)

The continuous partial derivative with respect to v0, and shown in Figure 13, is given by:

∂t(xm, h)

∂v0
= −

2 sinα0(xm − x0)
v20

(
t0 +

2 sinα0(xm − x0)
v0

)
+
t0 cos

2 α0

v20

(
(xm − x0)2
RN

+
h2

RNIP

)
√(
t0 +

2 sinα0(xm − x0)
v0

)2
+
2t0 cos2 α0
v0

(
(xm − x0)2
RN

+
h2

RNIP

) . (45)

From these partial derivatives, the quantities Sij(m0) =
∂ ln ti(m0)

∂ ln m0j
=
m0j
t0i
Sij(m0) are calculated.
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