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ESTIMATING DIELECTRIC PERMITTIVITY AND ELECTRIC CONDUCTIVITY
FROM SIMULATED MULTICHANNEL GPR PULSES USING ACO

AND QUASI-NEWTON INVERSION TECHNIQUES
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Marco Túllio Menna Barreto de Vilhena4 and Adelir José Strieder5

ABSTRACT. Inversion of synthetic ground-penetrating radar data to estimate both dielectric permittivity (ε) and electric conductivity (σ) properties simultaneously

is presented in this paper. The synthetic Ground-Penetrating Radar (GPR) data was generated by the propagation of a one-dimensional electromagnetic wave (1-D EM

wave) through a given geological model. The simulated EM trace was modeled by Finite Difference Time Domain method (FDTD) for three different frequencies (f):
800, 1000 and 1200 MHz. Random noise was also introduced to evaluate inversion algorithm performance. The inversion of GPR data was performed by Ant Colony

Optimization (ACO) and Quasi-Newton (QN) techniques. A modified ACO technique was applied to approximate conductivity for deepest positions, and to increase the
accuracy and convergence along lower positions. The inversion techniques were able to estimate simultaneously the dielectric permittivity and electric conductivity from

synthetic multi-frequency GPR data. The estimated electrical parameters can be used to derive a set of physical properties and to develop a better understanding of the

underground geological or geotechnical media.

Keywords: ground-penetrating radar, inversion of GPR data, Ant Colony Optimization, Quasi-Newton technique.

RESUMO. Neste artigo apresenta-se o registro das ondas eletromagnéticas refletidas (dados sintéticos) e o uso deste registro em algoritmos de inversão que procuram

estimar simultaneamente as propriedades permissividade elétrica (ε) e condutividade elétrica (σ). Os dados GPR sintéticos foram gerados pela propagação da onda

unidimensional através de um determinado modelo geológico. O traço da onda eletromagnética (OEM) simulado foi modelado pelo método das diferenças finitas
no domı́nio do tempo (FDTD) para três diferentes frequências (f): 800, 1000 e 1200 MHz. Os ruı́dos randômicos foram introduzidos para verificar a performance do

algoritmo de inversão. Os dados de inversão GPR (permissividade dielétrica e condutividade elétrica) foram obtidos pelos métodos Ant Colony Optimization (Otimização
da Colônia de Formigas) (ACO) e Quasi-Newton (QN). O método ACO modificado foi aplicado para aproximar a condutividade em posições mais profundas e aumentar

a precisão e a convergência ao longo da profundidade. Os métodos de inversão foram capazes de estimar simultaneamente duas propriedades do modelo geológico:

a permissividade elétrica e a condutividade elétrica para levantamentos georradar multicanais. Os parâmetros elétricos estimados podem ser usados para derivar um
conjunto de propriedades f́ısicas e melhorar a compreensão dos meios geológico-geotécnicos em subsolo.

Palavras-chave: radar de penetração no solo, inversão de dados GPR, Otimização da Colônia de Formigas, método Quasi-Newton.
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INTRODUCTION

Ground-Penetrating Radar (GPR) has been a widely used geo-
physical technique since the 1990’s. As a geophysical tool, GPR
is an indirect, non-invasive technique for high-resolution imag-
ing of thin civil structures and shallow subsurface of soils and
rocks (Davis & Annan, 1989). The foundation of GPR images is
the effect of electromagnetic wave (EMw) propagation through
an existing media structure (cause). GPR images, then, result
from the interaction of EMw and physical properties of different
components of the investigated structure, as well as the EMw
propagation phenomena (e.g., reflection, refraction, diffraction, or
polarization).

GPR techniques were improved, last decade, by multichannel
equipment and surveys. This technique was developed to image a
geological or geotechnical profile in a quicker and easier way, to
construct three dimensional images (3-D) (e.g. Lutz & Perroud,
2006), and to reach different investigation depth at the same sur-
veying (e.g. Manacorda et al., 2002). Some of the multichannel
GPR applications are devoted to high-way and rail-road strati-
graphic and structural investigations.

The high-way and rail-road GPR surveys are used to esti-
mate dielectric permittivity or signal velocity of constitutive pave-
ment layers. These parameters are important to 1) calculate the
correct layer thickness, 2) determine asphalt’s air void content,
3) calculate the layer moisture content, 4) estimate the moisture
susceptibility and sensitivity related to permanent deformation of
unbound materials and other parameters as discussed by Saaren-
keto (2009). The moisture content is one of the most important
parameters, which is related to pavement deformation and degra-
dation in tropical high-ways.

The classical methods to determine the dielectric permittiv-
ity of pavements, while furnishing precise results, are time con-
suming (see Saarenketo, 2009; for a review on this subject). The
reference drill core dielectric measurements are used for back-
calculating the dielectric permittivity along ground-coupled pro-
files. The surface reflection method, on the other hand, is applied
for air-coupled survey systems. Common mid-point surveys are
also used to estimate velocity and dielectric permittivity of the un-
derground layers. These parameters can be obtained by imaging
the same survey profile with different antenna separation; conse-
quently, these GPR data can be processed using the same method
that is applied for seismic reflection (Fisher et al., 1992; Davis et
al., 1994; Bradford, 2006).

The analysis and processing of multi off-set GPR data were
improved for site investigations (e.g. Bangbing et al., 2006; Brad-
ford, 2008). The advent of multichannel GPR acquisitions enabled
refinements on the data processing of dielectric permittivity, re-

flector depth and average soil-water content parameters (Gerhards
et al., 2008; Westermann et al., 2010; Wollschläger et al., 2010).

It should be noted, however, that physical parameters such
as void, moisture, and water content, porosity and density are
all derived from dielectric permittivity determinations. For high
frequency surveys and tropical conditions, however, water con-
tent and the amount of dissolved ions present in pores and voids
contribute significantly to electric conductivity and signal attenu-
ation as imaginary component of EM field is increased. Velocity
determination then takes a more complex form, as discussed by
Cassidy (2009):

v =
c{

με/2
[√
1 + (σ/ω)2

]
+ 1
}1/2 (1)

where v is velocity, c is EM wave velocity in free space, μ is
magnetic permeability, ε is relative dielectric permittivity, σ is
electric conductivity and ω is angular frequency.

The simultaneous estimation of both electric permittivity and
conductivity can improve determinations of geotechnical and
geological parameters at a given survey place. Such estimation
can be performed by solving inverse problems (Campos Velho et
al., 2007).

Data inversions have also been increasingly applied to es-
timate the underground physical parameters from EM field and
wave. Initial attempts to invert electromagnetic profiles combin-
ing the FDTD method and non-linear optimization model were de-
veloped by Umashankar et al. (1994), and Strickel et al. (1994).
Campos Velho & Ramos (1997) estimated electric conductivity
distribution from electromagnetic ground data using numerical
inversion. Souto et al. (2006) applied Ant Colony Systems to
reconstruct absorption and scattering coefficients along vertical
profiles. Paasche et al. (2008) applied a cooperative zonal inver-
sion method for georadar and ultrasounds traveltime data in order
to locate voids.

This paper aims to present the results of inverting synthetic
multi-frequence ground-penetrating radar data. The inverse prob-
lem was designed to estimate the properties of both dielectric
permittivity (ε) and electric conductivity (σ) at the same time.
The inversion was performed throughout an optimization algo-
rithm, taking minimum entropy criteria for regularization (Cam-
pos Velho & Ramos, 1997), and using synthetic data from three
simultaneous frequency channels (f): 800, 1000 and 1200 MHz.
The objective function for inversion was obtained by the quadratic
difference between Eexp and Emod, and minimized using a
stochastic algorithm, the heuristic Ant Colony (Dorigo et al.,
1996). Further approximations of electric properties (ε, σ) were
obtained by applying Quasi-Newton method and a modified Ant
Colony Optimization (ACO) algorithm.
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DIRECT METHOD: GENERATING SYNTHETIC EM WAVE
THROUGH FDTD MODELING
The 1-D modeled GPR EM field was generated through solving
the Maxwell equations by means of a semi-analytical method
(FDTD) (Yee, 1966; Taflove, 1995; Irving & Knight, 2006). This
field avoids some of the undesired phenomena of wave prop-
agation (e.g., diffraction, modulation) that can introduce signal
disturbance in this first investigation. The EM field simulations
were performed in a stratified model composed of four media do-
mains (Fig. 1). The first stratum is the air layer between the soil
and the GPR antenna to simulate unshielded, uncoupled anten-
nas (horn antennas of road-radar systems). The following strata
are composed of sandstone, basalt and shale, whose properties
are described in Figure 1. These lithologies are used in the layered
structure because there is no determination of electrical properties
in common Brazilian pavement material. These materials approx-
imately account for expected electrical properties contrast. The
EMw traces were then obtained for three frequencies (800, 1000
and 1200 MHz) at same layered structure and position, simulating
a multi-channel data acquisition.

The spatial domain for FDTD EM field simulation is described
in 16 positions. The first three spatial positions are referred to the
air layer, whose electrical properties are well known. The sand-
stone layer uses the following seven positions, the basalt layer
uses three positions, and finally the deepest three positions are
used by shale layer (Table 1). Therefore, only 13 layered pave-
ment positions are estimated for ε and σ parameters during data
inversion investigation, giving rise to 26 (ε σ) unknown values.

Table 1 – FDTD parameters for the direct numerical modeling of GPR EM field.

Parameter Input value

Space increment (dx) 4×10–2 m

Time increment (dt) 1.33×10–10 s

GPR antenna frequencies (f) 800, 1000, 1200 (MHz)

Spatial discretization (nx) 16

Time iterations (ny) 200

Size of spatial domain (D) 64×10–2 m (16×dx)

Air layer 12×10–2 m (3×dx)

Layer 1 thickness 28×10–2 m (7×dx)

Layer 2 thickness 12×10–2 m (3×dx)

Layer 3 thickness 12×10–2 m (3×dx)

INVERSION TECHNIQUES: PRESENTATION OF THE
APPLIED METHODS
In this paper, two different inversion techniques were applied: a)
Ant Colony Optimization (ACO) (see Campos Velho et al., 2007;

for a revision), and b) Quasi-Newton technique. The first one is
stochastic method, based on input data and on objective-function
convergence, while the second one is a deterministic method
based on linear equation system solution. Stochastic methods
are time consuming and computationally hard, but converge to
global solution. Deterministic methods, on the other hand, can
rapidly converge to a local solution.

These inversion techniques were applied sequentially. The
ACO method showed to be efficient to estimate the best ap-
proximation for inverted ε and σ parameters. The Quasi-Newton
technique, on the other hand, showed to be efficient to find an
approximate solution even when initial ε and σ parameters are
set well far from real values. Then, ACO method is applied in a
first stage, while Quasi-Newton technique is applied to determine
the final solution.

The inverse GPR reflection problem arose when electric
properties had to be estimated from measurements of electromag-
netic field (E). The set of parameters to be simultaneously es-
timated is Nz discrete values of both dielectric permittivity (ε),
and electric conductivity (σ). The search solution is denoted by
x = [ε σ]�.

The inversion is formulated according to an implicit ap-
proach (Lamm, 1993). The algorithm is expressed as a con-
strained nonlinear optimization problem, in which the FDTD
modeled GPR trace is iteratively solved by successive approxi-
mations for unknown parameters. The iteration proceeds until an
objective-function converges to a specified small value; it repre-
sents the least-squares fit of model results and experimental data
added by a regularization term (Souto et al., 2007).

The inversion process showed that input data volume (a sin-
gle frequency) is not sufficient to solve the amount of needed
information. Hence, the input data are the electromagnetic fields
(E) for three different frequencies (f): 800, 1000 and 1200 MHz.
The iteration process takes into account all 3 frequencies at the
same time.

The experimental data are discrete electromagnetic fields

Eexp(zi, tj, freqk),

where i = 1, 2, . . . , Nz , j = 1, 2, . . ., Nt, and k =
1, 2, . . . , Nfreq, zi are depths, tl are times, freqk are fre-
quencies, Nfreq are discrete values of frequency. The Nz dis-
crete values of ε and σ are estimated from 1 × Nt × Nfreq
spectral electromagnetic field values right at the receiving an-
tenna. The objective function J(x) is given by the square dif-

Brazilian Journal of Geophysics, Vol. 32(4), 2014
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Figure 1 – Layered structure used to determine EMw traces through 1-D FDTD numerical modeling.
(1) GPR pulse source. (2) Interface between air and sandstone layers. (3) Interface between sandstone
and basalt layers. (4) Interface between basalt and shale layers. (5) GPR reflected pulse at the end of the
domain. (6) GPR signal received after transmission, reflections and refraction.

ference between experimental and FDTD modeled fields plus a
regularization term:

J(x)

Nt∑
l=1

Nfreq∑
k=1

[
Eexp(0, tlfreqk)

−Emod(0, tl, freqk)2 + γ[S(ε)S(σ)]
(2)

where Eexp are experimental modeled fields and Emod are
FDTD modeled fields, S(ε) and S(σ) are regularization func-
tions, which are weighted by a regularization parameter (γ). In
this work, the first-order Minimum Entropic regularization was
chosen (Tikhonov & Arsenin, 1977), which may be defined by:

S(x) = −
Nz∑
i=1

qi log10 qi (3)

qi =
pi∑Nz
i=1 pi

(4)

pi = |xi+1 − xi|+ ζ i = 1, . . . , n− 1 (5)

where qi and pi are probability and first-order discrete difference
operator, respectively; ζ is a constant (0 < ζ << 1) introduced
mainly to calculate the pi value different from 0.

Ant Colony Optimization

Ant Colony Optimization (ACO) is based on the collective behav-
ior of ants to choose a path between the nest and the food source
(Dorigo et al., 1996). Each ant marks its path with an amount of
pheromone, and the marked path is further employed by other ants
as a reference. In the ACO method, several generations with fixed
amounts of ants (na) are produced and evaluated. Each ant is
associated to a feasible path that represents a candidate solution.
The solution is composed by a particular set of edges on a graph
that contain all other possible solutions. The ants are generated
by choosing these edges on a probabilistic basis. This approach
has been successfully used for the Traveling Salesman Problem
(TSP) and other graph-like problems (Dorigo et al., 1996).

In this work, a candidate solution is not associated to the
path, but is composed by a set of discrete values that denote

Revista Brasileira de Geof́ısica, Vol. 32(4), 2014
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particular ε and σ depth profiles. These values are randomly cho-
sen for layers below air-road interface. Two discretizations are
adopted, since there are ns discrete depths of estimated x and,
for each depth i, np discrete j values for the deposited phero-
mone concentration (T0). Therefore, the candidate solution is
composed of ns values and there are ns× np possible choices
to define it. In this way, the solution is expressed by a ns-tuple
[i j], and a Tij pheromone matrix is defined with dimension
ns × np. In each generation, all candidate solutions are eval-
uated by the objective function and the best solution defines the
path followed by an ant.

Taking into account the pheromone decay rate (ρ), the total
amount of pheromone (Tij) in a given generation (t) is given
by:

Tij(t) = (1− ρ)Tij(t − 1) t = 1, 2, . . . ,mit (6)

where mit is the maximum number of ants iterations (genera-
tions). The initial amount of pheromone was calculated according
to Dorigo et al. (1996):

Tij(0) = T0 =
1

ns ·Q (7)

where Q is the objective function value when x = [1 1]�. It
is to be noted that these ε and σ initial values were set very far
from those defined for each lithological layer. They were selected
to make the convergence difficult during inversion processing.

The probability of a given path [i j] to be chosen in each ant
generation is then

Pij(t) =
[Tij(t)]

α [ηij(t)]
β∑

l

{
[Til(t)]α [ηil(t)]β

} (8)

where l ∈ [1, np] and ηij is the visibility of the path [i j]. The
visibility concept (Souto et al., 2007) arose from the TSP, and it is
the inverse of the distance for a particular path. The parameters α
and β are weights that establish the influence of the pheromone
and the visibility on the [i j] path probability. In this study, α
and β were set 1.0 and 0.0 respectively, because a distance-
dependent visibility approach is not applicable to the solution for
this type of inverse problem.

Algorithms 1, 2 and 3 describe the complete ACO implemen-
tation (Table 2). Table 2a shows the algorithm that evaluated the
cost of nap profiles for ε and σ (x = [ε σ]�) in each iteration,
were nap are pre-selected ants in each generation.

There is also a further procedure for choosing the path of a
new ant (solution). A random number (r0) in the range [0, 1] is

generated for this new ant and compared with a decision parame-
ter (q0) chosen for the problem. The choice of the most probable
discrete value in this work, among all np values, is disabled in
the ACO (q0 = 0) method. Thus, the rule of decision to choose
each x solution component is established through comparison
on cumulative probability and a random generated number (r0),
according to Table 2c. If the random number is greater than this
parameter, the path is taken according to Pij ; if it is lower, the
most marked path is assigned.

Intrinsic regularization

In the present work, the ACO-based inverse solver with an intrinsic
regularization (Souto et al., 2005; Souto et al., 2006) is employed
without the regularization term (γ = 0) shown in Eq. (2).

As a supposed initial flat profile is required, this represents
a kind of a priori information about the inverse solution. Such
knowledge is included in the generation of candidate solutions
by means of pre-selecting the most suitable ants according to the
first-order Minimum Entropy regularization (Tikhonov & Arsenin,
1977). As a stochastic scheme, the ACO dealt as a set of can-
didate inverse solutions (the population of ants or paths: na).
The suitableness of each candidate solution is quantified by the
Minimum Entropy norm. Only one subset of the candidate inverse
solutions, the most suitable one, is selected to be evaluated for
the objective function: nap, where nap < na. The user can de-
fine how many inverse solutions will be included in such subset.
The pre-selection algorithm is described in Table 2b, where, for
each na/nap generated solution (see Algorithm 3, Table 2c),
the most suitable one is chosen. Actually, then, a kind of pre-
regularization is performed. Therefore, the usual regularization
term in Eq. (2) is not required.

Modified cost evaluation in ACO

An enhanced procedure to evaluate the candidate solutions in
ACO algorithm (Table 2d) is also implemented in this work
(Gomes, 2010). Typically, if there was a change in the under-
ground electrical properties, the GPR pulse would have been split
into reflected and transmitted ones. As a consequence, the val-
ues of dielectric permittivity (ε) and electric conductivity (σ) in
deeper points had eventually a lower influence of the electromag-
netic field (E) measured right above the surface when compared
to previous media. Therefore, ε and σ in deeper media may be
more difficult to estimate due to the reduction in surface electro-
magnetic field energy and due to mistakes generated by the ex-
plicit FDTD method that spread it throughout time.

Brazilian Journal of Geophysics, Vol. 32(4), 2014
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The cost of each candidate solution, nevertheless, is still
calculated according to the traditional method (Algorithm 1 in
Table 2a). Actually, all combinations of the candidate solutions
are evaluated, one by one. For instance, the second (x2 =
[ε2 σ2]

�) and fifth (x5 = [ε5 σ5]�) solutions are combined
to produce (J([ε2 σ5]�) and (J([ε5 σ2]�) values. The pro-
cedure is performed for all nap solutions, as described in Algo-
rithm 4 (Table 2d).

In order to better estimate ε and σ in deeper media, an alter-
native method was then performed (Gomes, 2010). It defines the
candidate solutions (x = [ε σ]�) according to the values of the
objective function Eq. 2), but with more rigorous criteria. In the
first step, both (ε σ) parameters are estimated through modified
ACO method. In the second step, the (ε σ) parameters are then
refined by the Quasi-Newton method. The ACO algorithm is able
to make a good estimation for (ε σ) parameters mainly for shal-
low deeps, even when the initial [ε σ]� parameters are set [1 1]�

well distant from the values given in the direct FDTD method.
It was realized that ACO algorithm (Table 2a) could not ap-

proximate both (ε σ) parameters at the same time for deeper po-
sitions due to loss of the EM field energy and propagation er-
rors introduced by the explicit FDTD direct method. The Quasi-
Newton method was then applied to estimate (ε σ) parameter
and to define how many positions could keep the same value for
those parameters.

The ε parameter and positions defined through Quasi-
Newton method are then fixed in the modified ACO algorithm
(Table 2d) in order to estimate only the ε parameter. After that,
the values of the candidate solution (x) are fixed up to z = zi.
The procedure is then repeated and the ACO algorithm searches
for new σ values only for depths greater than zi.

Quasi-Newton Inversion Technique

The Quasi-Newton is a deterministic method designed to solve a
system of linear equations, and, then, has low computational cost
for implementation. The methodological basis and algorithms for
this inversion technique are well known in literature (Dennis &
Schnabel, 1983; Fletcher, 1987). In this work, the FCN BCONF
subroutine from MSIMSL library was implemented in Fortran 90
software (IMSL, 1991).

RESULTS AND DISCUSSIONS ON APPLYING ACO AND
QUASI-NEWTON TECHNIQUES UPON SYNTHETIC DATA

The ACO inversion technique is a stochastic method and, con-
sequently demands excessive computation time. As described

above, the inversion technique took approximately nine minutes
for each seed in intrinsic regularization and modified cost evalua-
tion in ACO on a sequence computer, Intel Core 2 Duo, 1.86 GHz,
4 GB of RAM. In this way, different parameters for ACO inversion
were quoted. It was realized that fewer ants (na) save process
time; however, lower quality results are obtained. Moreover, once
the decision parameter value (q0) is increased, a higher algorithm
convergence rate is obtained, in spite of resulting in a worse solu-
tion. Yet, when the smallest decay rate is chosen, more iteration is
necessary to converge a solution. On the other hand, this solution
was of better quality most of time.

The number of positions (ns) and distance (dx) for ε and
σ parameters estimation were chosen taking into account i) the
pulse range of each antenna frequency, ii) vertical resolution and
iii) stability conditions of the FDTD method. The first one is di-
rectly associated to pulse attenuation while it moves to deeper
subsoil (Parasnis, 1997). Each frequency has a different loss of
energy and penetration depth, so that the profile under estimation
needs to accomplish all frequencies. The second factor is related
to size of identifiable object to each pulse return. According to
Parasnis (1997), the size of distinguishable objects is about 1/4
of wavelength. In the source code, these ideas were implemented
using different n, na and nap values. The final parameter con-
figurations for ACO inversion (Table 3) were: i) a pilot sample
(n = 16)was taken, assuming significance level of 0.03 and es-
timative error of 0.13; ii)mit = 500, na = 20 and nap = 4.
In all simulations, the maximum iterations number were not more
than 500 to stabilize the cost of objective function.

The aim of this section is to build up a geophysical model
from synthetic GPR data (Gomes, 2010). The estimated results
for ε and σ parameters compare modeled GPR data with and with-
out noise in order to evaluate the performance of the inversions
algorithms. The noise was introduced in order to evaluate the In-
version Technique capability in recovering the values for both ε
and σ parameters. To better evaluate the statistical significance of
the estimated ε and σ parameters, the number of positions for in-
version were set equal to that for producing FDTD synthetic GPR
data (n = 16).

GPR data without noise

The inversion of synthetic GPR data includes only previous regu-
larization (Intrinsic regularization) and modified ACO algorithms
(Modified cost evaluation in ACO) to obtain estimated permittiv-
ity and conductivity profile results (Gomes, 2010). The obtained
results for the first set of simulations throughout algorithms 1, 2,

Revista Brasileira de Geof́ısica, Vol. 32(4), 2014
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Table 2 – Algorithms for estimating dielectric permittivity and electric conductivity in modeled GPR data. (a) Algorithm for Ant Colony Optimization process (1).
(b) Intrinsic regularization algorithm (2) to evaluate candidate solutions according to first-order Minimum Entropy norm. (c) ACO solution (x) algorithm (3) based
on cumulative path probabilities. (d) Modified ACO-based algorithm (4) to evaluate the cost of na × nap combinations of ε and σ in each iteration solution
(x = [ε σ]�) (Gomes, 2010).

(a) Algorithm 1 (b) Algorithm 2
1 begin 1 begin
2 read ACO parameters (mit , na, nap, ns, np, ρ, q0) 2 for ii = 1 to nap do
3 initial guess of solution−Q = J(x0), with x0 = [111 . . . 1]� 3 for jj = 1 to na/nap do
4 calculate pheromone concentration to be deposited – T0 = 1/(ns ·Q) 4 create ant xjj – Algorithm 3
5 Initialize pheromone matrix −�ij (0) = �0 5 evaluate xjj , regarding 1st order Minimum Entropy
6 for t = 1 tomit do 6 end
7 create nap ants – Algorithm 2 7 select most suitable ant xjj
8 for k = 1 to nap do 8 end
9 evaluate cost J(x) = J([εkσk])�) 9 return set {xjj}
10 end 10 end
11 select best ant xbest , with cost Jmin = J(xbest)

12 calculate�ij(t + 1) = (1 − ρ)�ij (t)
13 calculate�ijmin(t + 1) = �ijmin(t+ 1) +�0
14 calculate Pij(t + 1)
15 end
16 return xopt = xbest
17 end

(c) Algorithm 3 (d) Algorithm 4
1 begin 1 begin
2 probability matrix Pij 2 read ACO parameters (mit , na, nap, ns, np, ρ, q0 )
3 for i = 1 to ns do 3 initial guess of solution−Q = J(x0), with x0 = [111 . . .1]�

4 generate random number r0 ∈ (0, 1) 4 calculate pheromone concentration to be deposited−T0 = 1/(ns ·Q)
5 if r0 < q0 then 5 Initialize pheromone matrix−Tij (0) = T0
6 choose j∗ for that Pij∗ = max(Pij) 6 for t = 1 tomit do
7 else 7 create nap ants – Algorithm 2
8 choose j∗ for that

(∑j∗
j=1 Pij

)
> r0 8 for k = 1 to nap do

9 end 9 for I = 1 to nap do
10 xi = (j

∗/np) · xmax 10 evaluate cost J(x) = J([εkσI ])�)
11 end 11 end
12 return x 12 end
13 end 13 select best ant xbest, with cost Jmin = J(xbest)

14 calculate�ij (t+ 1) = (1− ρ)�ij (t)
15 calculate�ijmin(t+ 1) = �ijmin(t + 1) + �0
16 calculate Pij (t+ 1)
17 end
18 returnxopt = xbest
19 end

where x0 is initial guess solution, xbest is best ant, and Jmin is minimum cost.

Table 3 – ACO inversion parameters and seeds used in algorithms.

ACO parameters
ns np na nap mit ρ q0

16 20 20 4 500 0.03 0.0
Seeds (10) 17, 19, 23, 31, 35, 41, 43, 57, 61, 79

and 3 (Table 2) can be found in Figure 2. Note that the first three
positions are not inverted, because they represent the air layer,
where EM pulse was generated. The ε and σ parameters for air,
as well as antenna height during survey, are known parameters.

The estimated values for ε and σ parameters were not sat-
isfactory. It should be remembered that it is necessary to deter-
mine simultaneously 26 unknown values. The ACO methodol-
ogy allowed a better estimation for dielectric permittivity (mean

Brazilian Journal of Geophysics, Vol. 32(4), 2014
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Figure 2 – Simultaneous estimated values for ε (a) and σ (b) parameters using ACO algorithm compared with model GPR data. Results after 500 iterations and
minimum entropy regularization criterion, applied on GPR data without noise. EXACT refers to original value used in generating synthetic data (Real value in Fig. 1).
SOL refers to estimated value from inversion technique (estimated value on Tables 4 and 5).

values) than for electric conductivity (mean values) as can be
seen in Figure 2.

The deterministic Quasi-Newton (QN) method was chosen in
order to improve the estimation for both ε and σ parameters,
as discussed in Modified cost evaluation in ACO above. Fig-
ure 3 presents the results for dielectric permittivity and conduc-
tivity profiles obtained after applying the Quasi-Newton inversion
method, and shows a better estimation for both ε and σ param-
eters when compared to Figure 2 results. The ε values were im-

proved after applying Quasi-Newton inversion method. However,
the electric conductivity was not improved.

Next, the estimated ε values were fixed from 4st to 16th
position and modified ACO Algorithm 4 (Table 2d) was run in the
next step to estimate only the unknown σ values. Figure 4 rep-
resents the results of this step, and shows that estimated values
for σ parameter are closer to values introduced in the FDTD mod-
eling. In the first step, the σ values of the first nine positions
were fixed, and the modified ACO inversion algorithm (Table 2d)

Figure 3 – Simultaneously estimated values for ε (a) and σ (b) parameters, considering the ACO results (Fig. 2) as an “initial guess” for Quasi-Newton method.
Modeled GPR data without noise. EXACT refers to original value used in generating synthetic data (Real value in Fig. 1). SOL refers to estimated value from inversion
technique (estimated value on Tables 4 and 5).

Revista Brasileira de Geof́ısica, Vol. 32(4), 2014
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Figure 4 – Estimated values for σ parameter after running the modified ACO algorithm (first
run), and considering the fixed ε values. GPR modeled data without noise. EXACT refers to
original value used in generating synthetic data (Real value in Fig. 1). SOL refers to estimated
value from inversion technique (estimated value on Tables 4 and 5).

was run. In the next step, the σ values of the first ten positions
were fixed. The process was repeated until the 16th position was
estimated.

Figure 5 shows the results for the second run (10th position,
Fig. 5a) and for the last run (16th positions, Fig. 5b). It should be
noted that ACO inversion parameters remain the same as shown
in Table 3 above. Also in Figure 5, the electric conductivity values
approximate the exact profile for the first eight positions (4th to

11th), but does not for the last five positions (12th to 16th). This
is probably due to errors introduced by the explicit FDTD method
used to simulate the EM wave; or else due to energy loss of the
EM wave propagating to deeper geological structure.

A statistical analysis compares real values for ε and σ param-
eters (defined to generate synthetic data) and estimated values af-
ter inversion (data presented in Figs. 2, 3, 4, and 5). Tables 4 and
5 presents, respectively, the statistical analysis for estimated ε

(a) (b)

Figure 5 – Estimated values for σ parameter using the modified ACO inversion algorithm. The conductivity is fixed (a) from 4th to 9th position in the second run, and
(b) from 4th to 15th position for the last run. GPR modeled data without noise. EXACT refers to original value used in generating synthetic data (Real value in Fig. 1).
SOL refers to estimated value from inversion technique (estimated value on Tables 4 and 5).
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Table 4 – Statistical evaluation of ε property estimated for GPR modeled data without noise consider-
ing 97% confidence interval. (*) indicates that values are outside 97% confidence interval. Lower and
Upper limits represent the lowermost and uppermost estimated value according inversion technique.

Real values Lower Mean estimated Upper
(ε) limit value limit

3.30×10–11 2.9849×10–11 3.4810×10–11 3.9771×10–11

3.30×10–11 2.7182×10–11 3.2143×10–11 3.7104×10–11

3.30×10–11 2.7731×10–11 3.2692×10–11 3.7653×10–11

3.30×10–11 2.7365×10–11 3.2326×10–11 3.7287×10–11

3.30×10–11 2.7439×10–11 3.2400×10–11 3.7361×10–11

3.30×10–11 2.8655×10–11 3.3616×10–11 3.8577×10–11

3.30×10–11 2.8022×10–11 3.2983×10–11 3.7944×10–11

4.40×10–11 4.0054×10–11 4.5015×10–11 4.9976×10–11

4.40×10–11 3.9051×10–11 4.4012×10–11 4.8973×10–11

4.40×10–11 3.8239×10–11 4.3200×10–11 4.8161×10–11

5.00×10–11 (*) 5.0939×10–11 5.5900×10–11 6.0861×10–11

5.00×10–11 4.8077×10–11 5.3038×10–11 5.7999×10–11

5.00×10–11 (*) 3.9439×10–11 4.4400×10–11 4.9361×10–11

and σ parameters, considering modeled GPR data without noise
and the 97% confidence interval. Tables 4 and 5 show that esti-
mated values agree with initial (real) values determined for gener-
ating synthetic data. However, the estimated ε and σ parameters
for deepest positions do not agree with real values in the 97%
confidence interval, and this aspect will be addressed later in the
paper.

Table 5 – Statistical evaluation of σ property estimated for GPR modeled data
without noise considering 97% confidence interval. (*) indicates that values are
outside 97% confidence interval. Lower and Upper limits represent the lowermost
and uppermost estimated value according inversion technique.

Real value Lower Mean estimated Upper
(σ) limit value limit

1.40×10–2 5.2635×10–3 1.1375×10–2 1.7487×10–2

1.40×10–2 5.1385×10–3 1.1250×10–2 1.7362×10–2

1.40×10–2 1.0138×10–2 1.6250×10–2 2.2362×10–2

1.40×10–2 1.0763×10–2 1.6875×10–2 2.2987×10–2

1.40×10–2 1.1638×10–2 1.7750×10–2 2.3862×10–2

1.40×10–2 1.1388×10–2 1.7500×10–2 2.3612×10–2

1.40×10–2 9.3885×10–3 1.5500×10–2 2.1612×10–2

4.00×10–3 1.3470×10–5 6.1250×10–3 1.2237×10–2

4.00×10–3 2.6347×10–4 6.3740×10–3 1.2487×10–2

4.00×10–3 3.8847×10–4 6.5000×10–3 1.2612×10–2

3.00×10–2 1.8513×10–2 2.4625×10–2 3.0737×10–2

3.00×10–2 (*) 1.2513×10–2 1.8625×10–2 2.4737×10–2

3.00×10–2 (*) 1.2638×10–2 1.8750×10–2 2.4862×10–2

Noisy FDTD modeled GPR data

The following discussion is performed into modeled GPR data
where a random noise was introduced. The ε and σ parameters
were estimated from modeled GPR data with two levels of noise:
1% and 5% noise. It is to noted that inversion techniques is to be
applied after filtering procedures in field data; then, these values
represent remaining noise after filtering. The geological structure
and the frequencies upon which GPR data were modeled are the
same as that used for inversion in GPR data without noise. In the
same way, inversion procedures are also the same as those used
in Ant Colony Optimization, so that one can easily compare the
results.

GPR data with 1% of noise

Figure 6 shows the results of the ACO inversion method run
according discussed in intrinsic regularization above. Figure 6a
reveals that mean values for ε parameter are closer to model
value than those for data without noise (Fig. 2a) in the first ap-
proximation. On the other hand, estimated values for σ parameter
(Fig. 6b) do not show changes in this first approximation. These
mean values of ε and σ parameters were then set as initial guess
for running the Quasi-Newton inversion method.

Figure 7 shows the results of applying Quasi-Newton inver-
sion method taking into account mean values defined by ACO in-
version (Fig. 6). It is noticed that of ε parameter is well fitted to
modeled values from the 4th to the 13th position. However, σ

Revista Brasileira de Geof́ısica, Vol. 32(4), 2014
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Figure 6 – Simultaneous estimated values for ε (a) and σ (b) parameters using ACO algorithm compared with model GPR data. Results after 500 iterations and
minimum entropy regularization criterion, applied on GPR data with 1% random noise. EXACT refers to original value used in generating synthetic data (Real value in
Fig. 1). SOL refers to estimated value from inversion technique (estimated value on Tables 6 and 7).

Figure 7 – Simultaneously estimated values for ε (a) and σ (b) parameters, considering the ACO results (Fig. 6) as an “initial guess” for Quasi-Newton method.
Modeled GPR data with 1% of random noise. EXACT refers to original value used in generating synthetic data (Real value in Fig. 1). SOL refers to estimated value from
inversion technique (estimated value on Tables 6 and 7).

parameter (Fig. 7b) is still far from convergence with modeled
values. In this way, the modified ACO inversion algorithm is ap-
plied to estimate only the values for σ; the values for ε parameter
are fixed from 4th to 16th position.

Figure 8 presents the results of running ACO inversion to
estimate only the σ parameter taking into account fixed values
for σ parameter. The estimated mean values for ε parameter show
a very good improvement when compared with GPR data with no
noise (see Fig. 4).

The σ parameter for the 9th position is then fixed, and the
modified ACO inversion procedure is repeated for positions from
10th to 16th, in the same way that was applied for GPR data with-
out noise. The results for the second and the last run are shown
in Figure 9.

The degree of convergence between estimated and modeled
(true) values when inverting GPR data with 1% of random noise
should be pointed out. Tables 6 and 7 can be used to evaluate
the degree of convergence for ε and σ parameters, respectively.

Brazilian Journal of Geophysics, Vol. 32(4), 2014
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Figure 8 – Estimated values for σ parameter after running the modified ACO algorithm (first run), and considering the fixed
ε values. GPR modeled data with 1% of random noise. EXACT refers to original value used in generating synthetic data
(Real value in Fig. 1). SOL refers to estimated value from inversion technique (estimated value on Tables 6 and 7).

(a) (b)

Figure 9 – Estimated values for σ parameter using the modified ACO inversion algorithm. The conductivity is fixed (a) from 4th to 9th position in the second run, and
(b) from 4th to 15th position for the last run. GPR modeled data with 1% of random noise. EXACT refers to original value used in generating synthetic data (Real value
in Fig. 1). SOL refers to estimated value from inversion technique (estimated value on Tables 6 and 7).

These statistical analyses show that estimated values agree with
true (real, synthetic) values determined for generating synthetic
data. However, the estimated ε and σ parameters for deepest po-
sitions do not agree with real values in the 97% confidence inter-
val, and this aspect will be addressed later in the paper.

GPR data with 5% of noise

The sequence of procedures for inversion applied in previous
section is also used here, but now dealing with modeled GPR
data with 5% of random noise. Figure 10a shows a good first

approximation for ε parameter, despite the differences from po-
sition 13th. Figure 10b, like previous correlated figures, does not
show good approximation for σ parameter values.

These initial mean ACO values were used as initial guess to
Quasi-Newton inversion method (see Fig. 11). Figure 11a shows
that applying Quasi-Newton inversion method enabled good fit-
ting for the ε parameter, as noted for inversion of 1% noise GPR
data (Fig. 7a). The convergence problem still remains for esti-
mating σ parameter (Fig. 11b). Keeping ε parameter constant,
the modified ACO inversion algorithm is applied for estimating σ
parameter (Fig. 12).

Revista Brasileira de Geof́ısica, Vol. 32(4), 2014
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Table 6 – Statistical evaluation of ε property estimated for GPR modeled data with
1% of random noise considering 97% confidence interval. (*) indicates that values are
outside 97% confidence interval. Lower and Upper limits represent the lowermost and
uppermost estimated value according inversion technique.

Real values Lower Mean estimated Upper
(ε) limit value limit

3.30×10–11 2.9849×10–11 3.4810×10–11 3.9771×10–11

3.30×10–11 2.7182×10–11 3.2143×10–11 3.7104×10–11

3.30×10–11 2.7731×10–11 3.2692×10–11 3.7653×10–11

3.30×10–11 2.7365×10–11 3.2326×10–11 3.7287×10–11

3.30×10–11 2.7439×10–11 3.2400×10–11 3.7361×10–11

3.30×10–11 2.8655×10–11 3.3616×10–11 3.8577×10–11

3.30×10–11 2.8022×10–11 3.2983×10–11 3.7944×10–11

4.40×10–11 4.0054×10–11 4.5015×10–11 4.9976×10–11

4.40×10–11 3.9051×10–11 4.4012×10–11 4.8973×10–11

4.40×10–11 3.8239×10–11 4.3200×10–11 4.8161×10–11

5.00×10–11 (*) 5.0939×10–11 5.5900×10–11 6.0861×10–11

5.00×10–11 4.8077×10–11 5.3038×10–11 5.7999×10–11

5.00×10–11 (*) 3.9439×10–11 4.4400×10–11 4.9361×10–11

Table 7 – Statistical evaluation of σ property estimated for GPR modeled data with
1% of random noise considering 97% confidence interval. (*) indicates that values
are outside 97% confidence interval. Lower and Upper limits represent the lower-
most and uppermost estimated value according inversion technique.

Real value Lower Mean estimated Upper
(σ) limit value limit

1.40×10–2 5.2635×10–3 1.1375×10–2 1.7487×10–2

1.40×10–2 5.1385×10–3 1.1250×10–2 1.7362×10–2

1.40×10–2 1.0138×10–2 1.6250×10–2 2.2362×10–2

1.40×10–2 1.0763×10–2 1.6875×10–2 2.2987×10–2

1.40×10–2 1.1638×10–2 1.7750×10–2 2.3862×10–2

1.40×10–2 1.1388×10–2 1.7500×10–2 2.3612×10–2

1.40×10–2 9.3885×10–3 1.5500×10–2 2.1612×10–2

4.00×10–3 1.3470×10–5 6.1250×10–3 1.2237×10–2

4.00×10–3 2.6347×10–4 6.3750×10–3 1.2487×10–2

4.00×10–3 3.8847×10–4 6.5000×10–3 1.2612×10–2

3.00×10–2 1.8513×10–2 2.4625×10–2 3.0737×10–2

3.00×10–2 (*) 1.2513×10–2 1.8625×10–2 2.4737×10–2

3.00×10–2 (*) 1.2638×10–2 1.8750×10–2 2.4862×10–2

Figure 12 shows a higher variation for σ parameter values
than those shown for inversion of modeled GPR data with 1% of
random noise (see Fig. 8). To approximate better estimative for
σ parameter, ε parameter is fixed, and modified ACO method is
repeated from 10th to 16th position. The results for the second
and the last run are shown in Figure 13.

Tables 8 and 9 provide an evaluation of the degree of con-
vergence of ε and σ parameters. It is important to note, how-
ever, that values for σ parameter show more dispersion than
those obtained from inversion of model GPR data with 1% of
random noise. These statistical analyses show that estimated
values agree with true (real, synthetic) values determined for

Brazilian Journal of Geophysics, Vol. 32(4), 2014
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Figure 10 – Simultaneous estimated values for ε (a) and σ (b) parameters using ACO algorithm compared with model GPR data. Results after 500 iterations and
minimum entropy regularization criterion, applied on GPR data with 5% random noise. EXACT refers to original value used in generating synthetic data (Real value in
Fig. 1). SOL refers to estimated value from inversion technique (estimated value on Tables 8 and 9).

Figure 11 – Simultaneously estimated values for ε (a) and σ (b) parameters, considering the ACO results (Fig. 10) as an “initial guess” for Quasi-Newton method.
Modeled GPR data with 5% of random noise. EXACT refers to original value used in generating synthetic data (Real value in Fig. 1). SOL refers to estimated value from
inversion technique (estimated value on Tables 8 and 9).

generating synthetic data. However, the estimated ε and σ pa-
rameters for deepest positions do not agree with real values in the
97% confidence interval, and this aspect will be addressed later
in the paper.

CONCLUSIONS
The ACO and Quasi-Newton inversion techniques produced
good results in reconstructing both the dielectric permittivity (ε)
and electric conductivity (σ) from synthetic ground-penetrating
radar data. The simultaneous estimation of ε and σ parameters

were not tried up this date, and could only be accomplished
when GPR data from three different frequency sources (800,
1000 and 1200 MHz) was taken into account. This is particu-
larly important since previous estimations considers only dielec-
tric permittivity (ε) to derived velocity for GPR data, and, then,
a series of geotechnical and geological properties of the under-
ground media. In this way, the paper presents new procedures
to determine velocity (see Eq. (1)), and to derive dielectric per-
mittivity (ε) and electric conductivity (σ) maps from GPR sur-
veys data.

Revista Brasileira de Geof́ısica, Vol. 32(4), 2014
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Figure 12 – Estimated values for σ parameter after running the modified ACO algorithm (first run), and considering the
fixed ε values. GPR modeled data with 5% of random noise. EXACT refers to original value used in generating synthetic
data (Real value in Fig. 1). SOL refers to estimated value from inversion technique (estimated value on Tables 8 and 9).

(a) (b)

Figure 13 – Estimated values for σ parameter using the modified ACO inversion algorithm. The conductivity is fixed (a) from 4th to 9th position in the second run,
and (b) from 4th to 15th position for the last run. GPR modeled data with 5% of random noise. EXACT refers to original value used in generating synthetic data (Real
value in Fig. 1). SOL refers to estimated value from inversion technique (estimated value on Tables 8 and 9).

The ACO inversion technique is a time-consuming process.
However, it demonstrated to be a very good technique for a
first and simultaneous estimation of both ε and σ parameters.
It worked well even though the initial values introduced for those
parameters are far from real values [1 1]�. The classical ACO in-
version algorithm was here modified to estimate two variables at
the same time: dielectric permittivity (ε) and electric conductivity
(σ), according Table 2 algorithms.

The Quasi-Newton technique, on the other hand, demon-

strated to produce good solutions from mean values obtained
from ACO inversion. This technique did not work when initial
values of the variables are set far from their real values. However,
when initial values to estimate are close to real, it saves much
processing time compared to ACO technique. Then, it can be ap-
plied to refine estimations as close as possible.

The electric conductivity (σ) is the most difficult variable to
be estimated from synthetic GPR data. The ACO technique was
modified to keep ε parameter constant and to estimate σ values

Brazilian Journal of Geophysics, Vol. 32(4), 2014
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Table 8 – Statistical evaluation of ε property estimated for GPR modeled data with
5% of random noise considering 97% confidence interval. (*) indicates that values are
outside 97% confidence interval. Lower and Upper limits represent the lowermost and
uppermost estimated value according inversion technique.

Real values Lower Mean estimated Upper

(ε) limit value limit

3.30×10–11 2.9767×10–11 3.4728×10–11 3.9689×10–11

3.30×10–11 2.7227×10–11 3.2188×10–11 3.7149×10–11

3.30×10–11 2.6839×10–11 3.1800×10–11 3.6761×10–11

3.30×10–11 2.6239×10–11 3.1200×10–11 3.6161×10–11

3.30×10–11 2.7154×10–11 3.2115×10–11 3.7076×10–11

3.30×10–11 2.8639×10–11 3.3600×10–11 3.8561×10–11

3.30×10–11 2.8743×10–11 3.3704×10–11 3.8665×10–11

4.40×10–11 4.0462×10–11 4.5423×10–11 5.0384×10–11

4.40×10–11 3.8453×10–11 4.3414×10–11 4.8375×10–11

4.40×10–11 3.9398×10–11 4.4359×10–11 4.9320×10–11

5.00×10–11 (*) 5.0861×10–11 5.5822×10–11 6.0783×10–11

5.00×10–11 4.7300×10–11 5.2261×10–11 5.7222×10–11

5.00×10–11 4.0253×10–11 4.5214×10–11 5.0175×10–11

Table 9 – Statistical evaluation of σ property estimated for GPR modeled data with
5% of random noise considering 97% confidence interval. (*) indicates that values
are outside 97% confidence interval. Lower and Upper limits represent the lower-
most and uppermost estimated value according inversion technique.

Real value Lower Mean estimated Upper

(σ) limit value limit

1.40×10–2 3.1385×10–3 9.2500×10–3 1.5362×10–2

1.40×10–2 2.2635×10–3 8.3750×10–3 1.4487×10–2

1.40×10–2 9.2635×10–3 1.5375×10–2 2.1487×10–2

1.40×10–2 1.3763×10–2 1.9875×10–2 2.5987×10–2

1.40×10–2 1.3638×10–2 1.9750×10–2 2.5862×10–2

1.40×10–2 1.3638×10–2 1.9750×10–2 2.5862×10–2

1.40×10–2 3.7635×10–3 9.8750×10–3 2.5987×10–2

4.00×10–3 3.0135×10–3 9.1250×10–3 1.5237×10–2

4.00×10–3 3.0135×10–3 9.1250×10–3 1.5237×10–2

4.00×10–3 2.8885×10–3 9.0000×10–3 1.5112×10–2

3.00×10–2 1.8138×10–2 2.4250×10–2 3.0362×10–2

3.00×10–2 (*) 1.2263×10–2 1.8375×10–2 2.4487×10–2

3.00×10–2 (*) 1.2638×10–2 1.8750×10–2 2.4862×10–2

for the deepest positions on the objective function, as shown in
Table 2. This procedure led to well fitted results for both electrical
properties.

The estimated values for both ε and σ parameters showed
to fit closer to the initial/real values even when random noise was

introduced into synthetic GPR data. These results seem to be due
to error propagation in synthetic GPR data generation through
FDTD. It is to be remembered that error propagation is time de-
pendent in explicit methods, such as FDTD (Vilhena et al., 2008;
Tirabassi et al., 2009). Then, deviation of estimated dielectric
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permittivity (ε) and electric conductivity (σ) values from
real/initial values in deepest positions is a consequence of syn-
thetic GPR data modeling (FDTD). This will not be the case when
applying ACO and Quasi-Newton inversion techniques directly on
surveyed GPR data.

The obtained results open new perspectives in processing
multichannel GPR data. The ACO and Quasi-Newton inversion
techniques can be applied for mapping dielectric permittivity and
electric conductivity distribution in the subsurface, and also are
important parameters to determine a number of physical proper-
ties of the geological and geotechnical media through which EM
waves propagate. Mapping ε and σ distribution can be applied
for environmental purposes, such as contamination plume con-
trol, or for high-way and rail-road applications.

APPENDIX
DIRECT MODEL
The governing Maxwell equations for GPR direct modeling are:

∇×
→
E = −∂

→
B

∂t
− ρ

′

μ

→
B Faraday law (A.1)

∇×
→
H = −∂

→
D

∂t
+
σ

ε

→
D Ampere law (A.2)

∇ ·
→
B = 0 Gauss law for electric field (A.3)

∇ ·
→
D = 0 Gauss law for magnetic field (A.4)

where
→
E is electric field vector (V/m),

→
H is magnetic field vec-

tor (A/m),
→
B is magnetic flux density (Wb/m2),

→
D is electric flux

density (C/m2), ε is dielectric permittivity (F/m), μ is magnetic
permeability (H/m), σ is electric conductivity (S/m), and ρ′ is
equivalent magnetic resistivity (Ω/m).

For isotropic and non-dispersive materials, the following
relationships are valid:

→
B = μ

→
H (A.5)

→
D = ε

→
E (A.6)

∂
→
H

∂t
= − 1
μ
∇×

→
E − ρ

′

μ

→
H (A.7)

∂
→
E

∂t
= −1
ε
∇×

→
H − σ

ε

→
E (A.8)

In 1-D modeling considered here, the EMw propagated in the
x direction, since GPR antennas could be disposed in a number

of arrays (antenna parallel to profile survey). The Maxwell equa-
tions were then simplified to coordinates in the transverse electric
(TE) mode (Taflove, 1995, p. 57):

∂Ex

∂t
=
1

ε
(−σEx) (A.9)

∂Ey
∂t
=
1

ε

(
− ∂Hz
∂x
− σEy

)
(A.10)

∂Hz
∂t
=
1

μ

(
− ∂Ey
∂x
− ρ′Hz

)
(A.11)

Assuming that initial field conditions are null

(Ex(t = 0) = 0),

Eq. (A.9) is ∂Ex∂t = 0. Then, two equations can be written in TE
mode:

∂Ey

∂t
=
1

ε

(
− ∂Hz
∂x
− σEy

)
(A.12)

∂Hz
∂t
=
1

μ

(
− ∂Ey
∂x
− ρ′Hz

)
(A.13)

FDTD Numerical Modeling of Electromagnetic Wave
Propagation
FDTD modeling is an explicit method, such that the forward values
of the EM wave take into account the previous ones. It is based on
time-domain Maxwell equations for isotropic media, according to
solutions proposed by Yee (1966). Vieira (2003) expanded Yee’s
(1966) solution for 2-D EMw propagation in geological, multi-
layer conditions, according to C++ codes (Rodŕıguez, 2001; Bulla,
2006). Recently, Irving & Knight (2006) presented a FDTD numer-
ical modeling for EMw propagation in the 2-D geological space.

Numerical modeling performed in this work was adapted from
Rodŕıguez (2001), Vieira (2003) and Bulla (2006) algorithms. The
program codes were, however, written in FORTRAN-90 program-
ming language. The numerical modeling was performed in 1-D
space to avoid diffractions of EMw in the first moment.

Taking into account Eqs. (A.12) and (A.13) and substituting
finite differences in time and space domains, the following sys-
tem was derived (Taflove, 1995; Sections 3.6.3-3.6.5):

Ey
∣∣n+1
i
= Ca(m)Ey

∣∣n
i

+Cb1(m)

(
Hz
∣∣n+ 12
i
−Hz

∣∣n+ 12
i−1

) (A.14)

Hz
∣∣n+1
i
= Da(m)Hz

∣∣n
i

+Db1 (m)

(
Ey
∣∣n+1
i+1
−Ey

∣∣n+1
i

) (A.15)
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Ca
∣∣
i
=

(
1− σiΔt

2·εi

)
(
1 + σiΔt

2·εi

) (A.16)

Cb1
∣∣
i
=

(
Δt
εiΔx

)
(
1 + σiΔt2·εi

) (A.17)

Da
∣∣
i
=

(
1− ρ′iΔt

2·μi

)
(
1 +

ρ′iΔt
2·μi

) (A.18)

Db1
∣∣
i
=

(
Δt
μiΔx

)
(
1 +

ρ′iΔt
2·μi

) (A.19)

wherem is matrix representing geological model,Δt is time in-
crement andΔx is space increment.

Equations (A.14) and (A.15) were used to compute EMw
propagation in the geological model (Fig. 1). The EM source was
a bandpass Gaussian pulse with Fourier spectrum symmetrical
about f to approximate the GPR pulse (Taflove, 1995; p. 110),
where f is input data in code FDTD.

The code program was improved with absorbing boundaries
to avoid reflections from model edges and multiple reflections, to
determine reflection coefficients and attenuations as well as am-
plitude of

→
E and

→
H in any geological model coordinate. Since

the simulation was performed in 1-D space, it was supposed that
EMw show onlyEy andHz , and that it propagates in x direction;
it was also assumed that the time increment was Δt = Δx/c,
where c is speed of light in vacuum, the maximum time for stabil-
ity conditions. Then, considering that the network extended from
x = 0 to x = jΔx, the conditions for truncating Ey compo-
nent at boundaries were:

Eny (0) = E
n−1
y (1) (A.20)

Eny (j) = E
n−1
y (j − 1) (A.21)

Eqs. (A.20) and (A.21) simulate EMw propagation in a free
numerical domain that may be truncated at given positions.
Eq. (A.20) is an absorbing boundary similar to that proposed by
Mür (1981); however, it requires less computational efforts than
PML (Perfect Matched Layer ), since 1-D space EMw propagation
was applied in this study.

Numerical stability and dispersion

The FDTD algorithm can cause dispersion errors of the propagat-
ing waves on the net formed with the Yee cells (1966). Dispersion
may be defined as the phase speed variation from spectral compo-
nents of a wave during its propagation. Dispersion errors caused
by the algorithm may vary with wavelength, direction of propaga-
tion and discretization of the grid.

Therefore, the choice of spatial increment (Δx) is motivated
by precision reasons (Taflove, 1995). In order to guarantee the
precision of values from calculated fields,Δxmust be chosen as
a fraction smaller than the thinnest dimension of the spreader ob-
ject, and also as a fraction of the smallest wavelength (λ). Thus,
the field values do not vary between the consecutive points of the
grid in a significant way. The values used for the largest spatial
discretization are between λ/10 ≤ Δx ≤ λ/20. Furthermore,
to avoid numerical instabilities, the FDTD algorithm requires
temporal increment Δt to be related with spatial increment Δx
in the following way:

Δt ≤ Δx
c

(A.22)

This relation must be achieved in order for the FDTD algo-
rithm to converge during iterations.
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