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PROPOSAL OF CHANGE DETECTION IN LAND COVER FOR PIPELINE MONITORING
FROM RAPIDEYE AND IKONOS IMAGES

Paulina Setti Riedel, Mara Lúcia Marques, Mateus Vidotti Ferreira and Marcelo Elias Delaneze

ABSTRACT. The goal of this study was to improve and evaluate the applicability of a methodological procedure of pipeline monitoring to reveal indicators of third
party activities that may interfere with the structural preservation of pipes and environmental damages. The procedure was developed from the technique of change

detection through object-based classification of land cover, using high resolution satellite images applied to a section of the Guararema-Mauá – São Paulo pipeline,
Brazil. In the seven-month monitoring period performed with RapidEye imaging, an area of 2.024 km2 was identified as area of change, corresponding to 3.30% of the

total area analyzed. For the monitoring performed with Ikonos imaging during a four-month period, changes were detected in an area of 0.187 km2, which corresponded
to 1.92% of the total area analyzed. The main changes in land cover were from Bare Soil to Grassland, due to changes related to the different stages of agricultural

activity and reforestation areas, as well as the natural regeneration of vegetation over the pipeline and solid waste landfill. The results of the change detection of land

cover from object-based classification were close to the technique reference limit for areas with great complexity and diversity of space occupation.

Keywords: structural preservation of pipes, object-based classification, high resolution satellite images.

RESUMO. Este estudo teve por objetivo avaliar a aplicabilidade de um procedimento metodológico de monitoramento de faixas de dutos que revelem indicativos de
atividades de terceiros que podem interferir na integridade estrutural dos dutos e provocar danos ambientais. O procedimento foi desenvolvido a partir da técnica de

detecção de mudanças na cobertura da terra pela classificação baseada no objeto, com utilização de imagens orbitais de alta resolução. Este procedimento foi empregado
em um trecho da faixa de dutos Guararema-Mauá – SP, no monitoramento realizado por meio de imagens RapidEye. Em um peŕıodo de sete meses, foram identificados

2,024 km2 como área de mudança, que corresponde a 3,30% do total da área analisada. Para o monitoramento realizado a partir da imagem Ikonos, com peŕıodo de
quatro meses, foi identificada como mudança uma área de 0,187 km2, correspondendo a 1,92% do total da área analisada. As principais mudanças ocorridas foram

entre Solo Exposto e Vegetação Rasteira, devido às alterações ocorridas nos estágios de cultivo agŕıcola e áreas de reflorestamento, como também, estão associadas

às áreas de regeneração da vegetação da faixa de dutos e aterro sanitário. Os resultados da detecção de mudanças da cobertura da terra pela classificação baseada no
objeto atingiram acertos próximos ao limite de para esta técnica, em áreas com grande complexidade e diversidade de ocupação do espaço.

Palavras-chave: integridade estrutural dos dutos, classificação baseada no objeto, imagens orbitais de alta resolução.
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INTRODUCTION

The installation and operation of a petrochemical industry brings
many benefits to the region and the area of influence where it is
installed, generating income, jobs and improvements to produc-
tive and road infrastructures. However, the environmental issue
tends to be relegated to a secondary position behind economic ef-
ficiency, which seeks the optimization of refining facilities. There-
fore, such facilities end up being concentrated in large complexes,
generating a variety of social and environmental issues (Lora,
2002). The diagnosis of those issues must take into considera-
tion the conflicts and potential changes associated with the land
cover vegetation, water availability and demand, land use, envi-
ronmental risks and the land occupation in the areas surrounding
refineries and oil transportation facilities (Suarez, 1986).

New techniques have been employed to develop computa-
tional systems to analyze the risks to pipelines and their mainte-
nance needs. The most utilized methods for monitoring pipelines
include foot patrolling along the pipelines and aerial surveillance
with small aircraft and helicopters (Zirnig et al., 2002). These in-
spections check for construction activity near the pipelines and
maintenance of the service areas. The frequency of such inspec-
tions is determined by the intensity of human activity over the in-
fluence area of the pipeline (Roper & Dutta, 2005).

According to Hausamann et al. (2005), the changes in built-
up, vegetation and bare soil areas were considered as indicators
of third parties activities that may compromise the pipeline struc-
tural preservation. These indexes were the matter to be applied
in the present study to improve the methodological procedure of
pipeline monitoring developed from the technique of land cover
change detection by using high spatial resolution satellite images.

Previous study (Marques et al., 2013) developed this pro-
cedure to the monitoring of ORBEL pipeline section from Rio
de Janeiro to Belo Horizonte (Brazil). For the present research,
this aforementioned procedure was improved and applied to the
GASPAL/OSVAT pipeline for Guararema-Mauá section, in the
State of São Paulo, Brazil. According to the Environmental Impact
Report of the São Paulo State Secretary of the Environment, in
the installation period the pipelines in São Paulo Metropolitan
Area crossed areas of low building density. Currently unplanned
land occupation near the pipeline service areas due to population
growth, has resulted an increasing anthropic pressure on them
(SEMA-SP, 2007).

Remote sensing (RS) products and techniques have proven to
be fundamental in the diagnosis and monitoring of the occupation
of space. The images serve as an important source of informa-
tion regarding phenomena occurring on the land surface and are

essential for understanding and modeling the dynamics of
changes in land use and cover, which helps to identify the ele-
ments that may constitute risks to the pipeline. The use of RS, as
well as the geographic information systems (GIS), improves the
capability to detect changes by enabling more frequent and sys-
tematic collection of information, and integration and analysis of
spatial data (Roper & Dutta, 2005).

From literature, conceptually, change detection can be de-
scribed as a process of identifying and quantifying changes in
objects or phenomena based on multi-temporal observations
(Singh, 1989; Coppin & Bauer, 1994; Seto et al., 2002; Lu et al.,
2004). Despite it is not a general requirement to change detec-
tion analysis, the application of RS products in change detection
must satisfy, if possible, the selection of images with the same
spatial and spectral resolution, which makes it possible to iden-
tify features for comparison between images (Lu et al., 2004).
High resolution satellite imagery is a rapidly evolving technol-
ogy that provides spatial and temporal information regarding the
different objects on the surface, with increasingly detailed and fre-
quent resolutions, improving the efficiency for classification of
specific features and identification of dynamic processes, as land
use (Im et al., 2008). To evaluate the contribution of high spatial
resolution sensors to the monitoring of pipelines, this manuscript
used RapidEye images (acquired in Sep/2011 and Apr/2012) and
Ikonos images (acquired in Nov/2011 and Mar/2012).

For Zirnig et al. (2001), change detection techniques can be
useful tools for detecting changes in the area surrounding the
pipeline, considering that in change detection, the data from one
image are compared to corresponding data of the preceding im-
age, based on each pixel of the images. Changes in the landscape
are reflected in differences in the corresponding pixels. However,
comparisons using this method can lead to problems due to nat-
ural changes in the vegetation, light, and surface conditions, such
as snow or rain, which result in radiometric changes in the pixels.
Thus, important corrections are necessary to reduce the high pro-
portion of false changes generated by automatic detection based
on RS images. According to Lu et al. (2004), the technique of
comparing multi-temporal images using an array of changes after
classification reduces atmospheric interference, and radiometric
correction is not required.

The technique of change detection for digital images classi-
fication is based on the distinction and identification of different
classes that have different spectral responses assigned, which al-
low their automated application to large areas. To the adoption of
this technique, classification algorithms are applied to extract the
features of interest from a multidimensional space, usually repre-
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sented by the different bands, creating an unique level of thematic
information: the classes (Lu et al., 2004).

The digital land use and land cover classification from those
images is challenging, due to the spectral mixing of objects in
the image, caused by the complexity of the elements found on the
terrestrial surface (Eikvil et al., 2009; Pu & Landry, 2012).

Thus, the object-based image analysis is an approach in-
creasingly used in classifying high spatial resolution remote sens-
ing images (Liu et al., 2008). The first step for object-based im-
age classification is the image segmentation into objects or im-
age segments, and then classifies these objects based on their
attributes and spatial relations, generating segments that are ho-
mogeneous in the spectral, geometric, texture and positional
characteristics of the image elements (Ryherd & Woodcock, 1996;
Shackelford & Davis, 2003).

The multiresolution segmentation algorithm approach uses
the growth of regions in which adjacent regions are grouped ac-
cording to the similarity criterion which considers the internal
heterogeneity of the regions. In the definition of similarity, it is
necessary to provide parameters of scale, form, tone, compact-
ness, smoothness and spectral bands which also allow the use of
a Thematic Layer (Baatz & Schäpe, 2000).

The classification of land use and land cover from object-
based analysis requires a hierarchical network elaboration in the
class structure, which is based on the semantic network and the
physical characteristics of the objects that compose a given class.
The semantic network represents a logical structure relating the
objects or classes to their meanings and relationships (Antunes,
2003), and may be classified in three kinds of hierarchical net-
works: inheritance hierarchies; group hierarchies and structured
groups (Hofmann, 2001).

In object-based approach, the classification algorithms em-
ploy attributes to describe spectral properties, geometric charac-
teristics and texture of the image objects. These attributes can be
grouped into: (a) Spectral attributes (mean, standard-deviation,
Gaussian distribution asymmetry, brightness, HSI transformation,
algebra between bands, NDVI) – spectral bands set making up the
image or the result of operations between bands, which discrimi-
nate objects by their tonality or statistical description; b) Geometry
attributes – describe objects as size, shape, width, length, area,
and their relationships; (c) Position attributes – locate an object
image relative to the entire scene, especially to geographically
referenced data; (d) Texture attributes – estimate the texture of
image objects. The texture is estimated by the Gray Level Co-
occurrence Matrix (GLCM) or by Spatial Dependence Matrix. In
Dependence Matrix is calculated spatial separation of one pixel

against another reference pixel (Definiens, 2009). The GLCM es-
timates the texture from the tabulation of the different combination
of gray level in a scene. The calculation depends upon the feature
angle: 0◦, 45◦ , 90◦ , 135◦ for all pixels direction of an image ob-
ject (Haralick et al., 1973; Haralick, 1979).

STUDY AREA

This study analyzed a section of the GASPAL/OSVAT pipeline
between the Guararema Terminal and Mauá (RECAP). This seg-
ment crosses areas of the municipalities of Guararema, Mogi das
Cruzes, Suzano, Ferraz de Vasconcelos, São Paulo and Mauá, in
the State of São Paulo, Brazil. The Guararema-Mauá pipeline is
represented in Figure 1.

For the test using the RapidEye image, covered area was
61.74 km2, Figure 1(a). For the Ikonos image test, total area cov-
ered was 9.75 km2, Figure 1(b). The RapidEye and Ikonos images
had different buffers sizes, which were previously defined accord-
ing to spatial resolution and costs for image scene.

MATERIALS AND METHOD

The REIS (RapidEye Earth Imaging System) sensor system col-
lects images in five spectral bands: Blue (0.44-0.51µm), Green
(0.52-0.59µm), Red (0.63-0.685µm), Red-Edge (0.69-0.73µm),
which is sensitive to changes in the chlorophyll content in
plants, and Near Infrared (0.76-0.85µm), with an imaging area
of 77.25 km. The satellite revisit time is 24 hours (off-nadir) and
5.5 days (nadir). The spatial resolution offered by this sensor is
6.5 m and 5 m for orthoimages and a 12-bit radiometric resolution
(RapidEye, 2007).

The Red Edge band, which corresponds to the transition band
between the Red and Near Infrared (NIR) bands, covers part of
the spectrum where the vegetation reflectivity increases drastically
from the Red band to the NIR band. The Red band is one of the
areas where chlorophyll absorbs light, and the NIR band is where
the leaf cell structure produces a strong reflection. Thus, varia-
tions in both the chlorophyll content and the structure of the leaf
provide additional information contributing to the identification of
plant types, nutrition and health, plant cover characteristics and
abundance, among other resources (Weichelt et al., 2012).

The Ikonos (Advanced Earth Observing Satellite) satellite
sensor is a high resolution satellite, encoded in 11-bit, with four
multispectral bands: Blue (0.44-0.51µm), Green (0.52-0.59µm),
Red (0.63-0.69µm), Infrared (0.76-0.90µm), 4 m resolution and
one panchromatic band (0.45-0.90µm), 1 m resolution. The ap-
plication of Ikonos images is important for studies such as more
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Figure 1 – Guararema-Mauá pipeline and area studied through RapidEye and Ikonos images.

detailed mappings of land cover and use, change detection, car-
tographic updating and monitoring environmental risks (Kalpoma
& Kudoh, 2007). The acquisition parameters of RapidEye and
Ikonos are described in Table 1. The use of the images was sup-
ported by a fellowship between IGCE/UNESP – Rio Claro and
CENPES/PETROBRAS.

Pipeline Monitoring Procedures

The procedures for pipeline monitoring were developed through
land cover classification for change detection from high spatial
resolution images (Ikonos and RapidEye). These procedures were
performed using ENVI, eCogniton and ArcGis softwares, following
the methodological steps described below.

Table 1 – Description of acquisition parameters of RapidEye and Ikonos images.

Image Date
Imaging

Elevation Angle
Imaging
Azimuth

Solar
Elevation Angle

Solar
Azimuth

RapidEye

September 2011
09/09/2011 86.63 2.79 84.12 2.47
09/09/2011 86.63 2.79 84.13 2.51
09/09/2011 86.63 2.78 84.13 2.43

April 2012
04/19/2012 88.80 2.80 84.72 2.20
04/12/2012 88.10 9.70 84.38 1,77
04/05/2012 86.75 9.81 84.22 2.37

Ikonos
November 2011

11/25/2011 86.28 115.05 68.39 87.25
11/25/2011 83.68 38.87 68.44 87.31
11/25/2011 72.89 19.09 68.46 87.41

March 2012 03/14/2012 73.39 320.05 56.35 54.73

Revista Brasileira de Geof́ısica, Vol. 32(4), 2014
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Image Pre-processing

Pre-processing of the Ikonos images acquired on November 2011
and March 2012 was done according to the following procedures:
(a) Geometric correction – The orthorectification was executed
using RPC’s (Rational Polynomial Coefficient), Digital Elevation
Model (scale 1:2000) and control points obtained from digital
aerial photographs (0.2 m resolution); (b) Image fusion – the
multispectral bands (4 m) were fused with the panchromatic band
(1 m), resulting in bands of 1 m resolution.

In this manuscript there were no radiometric correction, since
according to Lu et al. (2004), the technique of change detection
comparing multi-temporal images using an array of changes after
classification, reduces atmospheric interference.

The RapidEye images required no further pre-processing
procedure, since it was already orthorectified when acquired with
a correction level A3 (RapidEye, 2007).

Elaboration of the Thematic Map T1
Land cover classes, presented in Table 2, were defined according
to the identification of activities that may compromise the structure
of the pipeline. From this definition, the classes were determined
based on the spectral characteristics of the objects.

The object-based approach classification must be initiated
with image segmentation. Segments were generated using a Mul-
tiresolution Segmentation algorithm that enables the identifica-
tion of the image contents with different levels of detail (Baatz

& Schäpe, 2000). The parameters applied to images segmenta-
tion, considering RapidEye (Sep/2011) and Ikonos (Nov/2011),
are showed in Table 3.

The classification of land cover was based on the spectral
behavior, geometric characteristics and texture of the objects.
Following the hierarchical class structure, training samples were
obtained for each class of land cover. These samples are needed
to describe the classes and the context in which they are in-
serted, making it possible the analysis of the histograms of at-
tributes generated by the Sample Editor, to select the attributes
for classification.

The maps of the initial land cover (T1) were drawn from the
RapidEye images acquired on September 2011 and Ikonos images
acquired on November 2011 through the classification algorithm
Assign Class (Definiens, 2009). The parameters were described
in hierarchical networks, illustrated in Figures 2 and 3. After that,
classes were edited by visual interpretation.

Change Detection Procedure

The change detection process was carried on using eCogni-
tion software (Definiens, 2009), according to the steps described
below.

Segmentation

In the searching for the best segmentation, tests were performed
to obtain the parameters of scale, shape and compactness,

Table 2 – Land Cover Class Description.

Land Cover Class Description
Shadow Shadow of natural and built-up elements
Asphalt Roads and streets paved with asphalt cover

Bare Soil Areas without buildings or vegetation land cover
Arboreal Cover Medium and tall trees in forested and urban areas

Grasslands Areas covered by grasses and shrubs
Cover Concrete, ceramic and asbestos roofs and concrete paved areas

Swimming Pools Swimming pools
Flooded Area Areas temporarily covered by water

Rivers/Reservoirs Water streams, lakes and reservoirs

Table 3 – Segmentation process parameters for maps of the initial land cover (T1).

Land Cover Map T1
Image RapidEye (Sep/2011) Ikonos (Nov/2011)

Segmentation
Parameters

Scale 80 40
Shape 0.4 0.4

Compactness 0.5 0.5
Band B, G, R, N and RE B, G, R and N

Brazilian Journal of Geophysics, Vol. 32(4), 2014
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Figure 2 – Hierarchical network used in classification – RapidEye, Sep/2011 (T1).

Figure 3 – Hierarchical network used in classification – Ikonos, Nov/2011 (T1).
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seeking the best values of the parameters to extract the objects in
the image, according to the classes of interest. After several trials
three levels of segmentation were established, which parameters
are described in Table 4.

Table 4 – Segmentation Process Parameters.

RapidEye Images: Sep/2011 and Apr/2012
T1 Bands T2 Bands Parameters Level III

B T1 B T2 Scale 80
G T1 G T2 Shape 0.4
R T1 R T2 Color 0.6
RE T1 RE T2 Compactness 0.5
N T1 N T2 Smoothness 0.5
Thematic Map T1 — —
Ikonos Images: Nov/2011 and Mar/2012

T1 Bands T2 Bands Parameters Level III
B T1 B T2 Scale 40
G T1 G T2 Shape 0.4
RE T1 RE T2 Color 0.6
N T1 N T2 Compactness 0.5
Thematic Map T1 Smoothness 0.5

Identification of Change Areas (Change Map – CM)

Multi-temporal algebraic bands were applied to identify change
areas, as proposed by Foresti (1986). Red bands ([R T2]-[R T1])
for both sensors (Ikonos and RapidEye) were used to evidence
distinct spectral response assigned for different materials in the
study areas. These bands allow better characterization of land
cover changes in vegetated areas, as well as built-up areas
(Jensen, 1983; Forster, 1985).

Table 5 – Thresholds used to determine change and no change areas.

RapidEye Ikonos

Class Sep-Apr Class Nov-Mar

No Change –2620≤NC≤126 No Change –350≤NC≤–80

Red Change RC>126 Red Change RC>20

Blue Change BC<–2620 Blue Change BC<–350

The output images were analyzed taking into account three
change statements: No Change (NC), areas that remain un-
changed; Red Change (RC), when the objects have lower spec-
tral response in the T1 image than T2 image; Blue Change (BC),
when the objects have higher spectral response in T1 image
than in T2 image. From these statements, the thresholds were
defined to determine change areas in the RapidEye and Ikonos
images (Table 5).

Change map classification (Land Cover Map – LCM)

The areas identified as Red Change (RC) and Blue Change (BC)
were grouped and labeled as Change Areas (CA). These CAs were
classified according to the object-based approach. For the classi-
fication of land cover was employed the Assign Class algorithm,
implemented in eCognition (Definiens, 2009). The attributes for
classification were selected from training samples, which were
obtained for each class of land cover. From these samples were
generated histograms of the selected attributes used for classifi-
cation of change areas in both RapidEye and Ikonos images. The
parameters were described in hierarchical networks, as illustrated
in Figures 4 and 5.

In the analysis and quantification of the land cover change
areas, for each monitoring (RapidEye and Ikonos), classes with
the same land use characteristics were grouped; thus, the Light,
Medium, and Dark Bare Soil classes were grouped together to
form the Bare Soil class, and the Light, Medium and Dark Cover
classes were grouped together to create the land cover class.

Adjusted Land Cover Map – ALCM

The study identified Change and No Change areas with the pur-
pose of analyzing activities that may interfere in pipelines oper-
ations. Although the four-month period used for the Ikonos im-
ages may be considered a short time to detect some changes, it
is nevertheless adequate for the monitoring of the service as well
as the influence areas of the pipeline, due to the need to prevent
accidents and control third party activities. Considering that the
frequency of observations should be proportional to the density
of occupation along the pipeline influence area, some areas will
be visited weekly, and even daily.

Therefore, to adjust for and control possible changes, some
premises were considered. The first premise is related to the
impossibility of arboreal development in such a short period.
The second premise considers the land cover classes Rivers/
Reservoirs, Asphalt and Swimming Pools to be constant. Lastly,
the third premise determines that no change will occur for the
Shadow class. Thus, after the automatic classification of the land
cover classes of the areas defined as Change, some rules were
applied in the classification process to limit the identification
and classification of false changes (Table 6).

Generation of Thematic Map T2

After adjustments were done to obtain the ALCM, the land cover
maps were updated with the changes identified in the period
from September 2011 to April 2012 (RapidEye image) and from

Brazilian Journal of Geophysics, Vol. 32(4), 2014
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Figure 4 – Hierarchical network used in the classification – RapidEye.

Figure 5 – Hierarchical network used in the classification – Ikonos.
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Table 6 – Rules applied to the classification process to limit the identification of false changes.

LCM Rule T1 Object ALCM
Arboreal Vegetation T1 Object Present Flooded Area Grassland

Bare Soil T1 Object Present Cover Cover
Arboreal Vegetation T1 Object Present Bare Soil Grassland

Cover T1 Object Present Cover No Change
Arboreal Vegetation T1 Object Present Arboreal Vegetation No Change

Grassland T1 Object Present Arboreal Vegetation No Change
Bare Soil T1 Object Present Bare Soil No Change
Shadow T1 Object Present Shadow No Change

Flooded Area T1 Object Present Flooded Area No Change

November 2011 to March 2012 (Ikonos image). The new infor-
mation was superimposed to the Thematic Maps T1 to generate
the Thematic Maps T2.

Validation of the classification

The study used error matrices and the Kappa coefficient of agree-
ment to determine the statistical accuracy of the results in Change
and No Change areas, before and after the adjustment to limit false
changes. The results obtained in the classification of changes
in the land cover classes were also evaluated. The error matrix
represents the mapping accuracy through analysis of the agree-
ment between reference samples and the product of the classifica-
tion (Congalton & Green, 2009). The stratified random sampling
method was used to select validation samples. The reference sam-
ples were acquired based on visual interpretation of Rapid Eye
and Ikonos images. This procedure was supported considering
the features of the classes and the high resolution of the images,
likewise adopted in Campos et al. (2005), Gamanya et al. (2007),
and Platt & Rapoza (2008). One hundred samples of each image
were acquired of each class of Change and No Change to evaluate
the change areas. To validate the classification of the land cover
classes, 50 samples of each land cover class were obtained in the
segments defined as change areas, a number considered suffi-
cient to determine the accuracy of change detection, according to
Congalton & Green (2009). The exception was the class Arboreal
Vegetation, where 18 samples were acquired of the RapidEye im-
age but no sample from the Ikonos image was acquired, as there
was no change detected in this class.

RESULTS AND DISCUSSION

The Figures 6 and 7 show the maps of the initial land cover (T1)
outcome, respectively, from RapidEye and Ikonos images classi-
fication.

The results obtained from change detection using the Rapid-
Eye images and those results obtained after adjustments to con-
strain false changes are showed in error matrices (Table 7). The
percentage of correct values was 88 and 83%, and agreement
Kappa coefficient was 0.76 and 0.66, respectively. The quality of
classification is considered by the reference ranges values pro-
posed by Landis & Koch (1977). The aforementioned coefficients
for change areas classifications observed in the present study are
qualified as a good agreement.

The change detection results from Ikonos images showed a
percentage of 65% for correct values and 66% for the results ob-
served after adjustments to constrain false changes. Both proce-
dures showed an agreement Kappa coefficient of 0.31 and 0.32,
respectively (Table 8), indicating a reasonable accuracy to the
identification of the change areas.

Although the study area is located in a metropolitan region
of accelerated socioeconomic dynamics, it showed few areas of
change in the analyzed period. The monitoring done through
RapidEye image during a seven-month period, identified a change
area of 2.024 km2, corresponding to 3.30% of the total area
analyzed (61.29 km2). For the monitoring realized through the
Ikonos image over a four-month period, the areas identified as
change areas totaled 0.187 km2, corresponding to 1.92% of the
area analyzed (9.75 km2).

The main changes occurred between Bare Soil and Grass-
land, which are to a great extent explained by the different stages
of agricultural activity and reforestation areas. Changes to Bare
Soil are also associated with areas of vegetation regeneration
over the pipeline and in the waste landfill. The analysis of these
changes indicates that this area presents some limitations to the
process of urban expansion, despite the proximity to the nucleus
of the metropolitan region (Figs. 8 and 9).

As we can see in Tables 9 and 10, agreement Kappa coefficient
for the land cover classification was 0.65 and the overall accuracy

Brazilian Journal of Geophysics, Vol. 32(4), 2014
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Figure 6 – Initial Land Cover Map (T1), elaborated from RapidEye image.

Table 7 – Change Areas Error Matrices in the RapidEye Monitoring.

Change Areas Error Matrix Adjusted Change Areas Error Matrix
Reference Data Reference Data

Classified Data
Change No Change Total

Classified Data
Change No Change Total

Change 79 3 82 Change 67 1 68
No Change 21 97 118 No Change 33 99 132

Total 100 100 200 Total 100 100 200
Overall Accuracy 88% Overall Accuracy 83%

Kappa 0.76 Kappa 0.66

Table 8 – Change Areas Error Matrices in the Ikonos Monitoring.

Change Areas Error Matrix Adjusted Change Areas Error Matrix
Reference Data Reference Data

Classified Data
Change No Change Total

Classified Data
Change No Change Total

Change 33 2 35 Change 32 0 32
No Change 67 98 165 No Change 68 100 100

Total 100 100 200 Total 100 100 200
Overall Accuracy 65% Overall Accuracy 66%

Kappa 0.31 Kappa 0.32
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Figure 7 – Initial Land Cover Map (T1) elaborated from Ikonos image.

Table 9 – Land Cover Classification Error Matrix – RapidEye image.

Reference Data
Classified Data

Cover Bare Soil
Arboreal

Vegetation
Grassland Total

Cover 37 8 0 0 45
Bare Soil 13 37 0 0 50

Arboreal Vegetation 0 0 3 0 3
Grassland 0 5 15 50 70

Total 50 50 18 50 168
Overall Accuracy= 76%

Kappa= 0.65

Table 10 – Land Cover Classes Change Areas and Conditional Kappa – RapidEye image.

Land Cover
Class

Change
Areas (km2)

User’s
accuracy (%)

User’s
Kappa

Producer’s
accuracy (%)

Producer’s
Kappa

Cover 0.1563 82 0.74 74 0.64
Bare Soil 0.9875 74 0.62 74 0.62

Arboreal Vegetation 0.0018 100 1.0 17 0.57
Grassland 0.8787 71 0.59 100 0.79
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Figure 8 – Change Areas Classification – RapidEye monitoring.

was 76%, denoting a substantial agreement. This good perfor-
mance of the classification can be verified in the change areas
classified as Grassland, Cover, and Bare Soil. The exception was
the Arboreal Vegetation class, which showed a low performance
in the classification, obtaining a producer’s conditional Kappa of
0.17%. This must be considered in order to avoid an incorrect
interpretation of the vegetation growth.

The best performing class in the classification was Cover, with
an overall of 82% and user’s conditional Kappa of 0.74. Analyz-
ing the performance of each class, we observed that the error of
including the Arboreal Vegetation class in the Grassland class
caused a lower user conditional Kappa (0.59).

The change detection process through the RapidEye images
monitoring achieved a high level of agreement. According to the
Z test, and considering a 95% confidence interval, the result of
the RapidEye monitoring classification was better than random,
since theZ value achieved (14.47) is higher than 1.96 (Table 11).

The results allowed identifying and quantifying land cover
of the change areas in each monitoring, as shown in Table 10.
In the study area with RapidEye monitoring, the classes that
showed greater change were Bare Soil (0.9875 km2) and Grass-

lands (0.8787 km2), demonstrating that the changes in the seven-
month period were not of great significance when compared to
the total area analyzed.

Table 11 – Analysis of the individual Kappa in the RapidEye Moni-
toring Classification Error Matrix.

Error Matrix Kappa Variation Z Test

RapidEye Classification 0.65 0.0020 14.47

The analysis of the results obtained in the study indicates
that the procedure used for pipeline monitoring with RapidEye
images was adequate. However, when Ikonos images were used,
the results obtained had an overall accuracy of 56% and a Kappa
coefficient of 0.34, which indicate a reasonable agreement coeffi-
cient (Tables 12 and 13).

The results obtained by the study indicate that for Grasslands
the overall accuracy was 100% and the user’s conditional Kappa
for was 1.0.

The analysis of the Ikonos monitoring indicates that there
were few changes in the four-month period analyzed, with small
changes being detected in the classes Cover (0.0913 km2) and
Grasslands (0.0858 km2).
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Figure 9 – Change Areas Classification – Ikonos monitoring.

Table 12 – Land Cover Classification Error Matrix – Ikonos image.

Reference Data
Classified Data

Cover Bare Soil Grassland Total

Cover 1 1 0 2

Bare Soil 47 34 1 82

Grassland 2 15 49 66

Total 50 50 50 150

Overall Accuracy= 56%

Kappa= 0.34

Table 13 – Land Cover Classes Change Areas and Conditional Kappa – Ikonos image.

Land Cover
Class

Change
Areas (km2)

User’s
accuracy (%)

Kappa
(user’s)

Producer’s
accuracy (%)

Kappa
(producer’s)

Cover 0.0016 50 0.25 2 0.01

Bare Soil 0.0258 41 0.12 68 0.29

Grassland 0.0858 74 0.61 98 0.96
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According to the Z test, and considering a 95% confidence
interval, the classification results of the Ikonos monitoring was
better than random, since the Z value achieved (7.37) is higher
than 1.96 (Table 14).

Table 14 – Analysis of the individual Kappa in the Ikonos
Monitoring Classification Error Matrix.

Error Matrix Kappa Variation Z Test
Ikonos Classification 0.34 0.0021 7.37

The results reached in the RapidEye images were adequate to
the monitoring of the influence area of the pipeline allowing the
identification of the main types of land cover in larger areas and
also the understanding of the diversity into a geographic context.

For Eikvil et al. (2009), the manual classification is tough on
high resolution images due the ambiguity among the objects. This
fact shows that the resolution is near to the limit for small objects
detection, like small buildings. Thus, the automated classification
results show a performing nearby to visual interpretation and ratify
the applicability of automated classification techniques.

In remote sensing, the scenes can be differently perceived
or observed as spatial resolution image change, as a result of
two interrelated problems: the scale and the zooning, which lead
to different inference of the scene, simply because it could ag-
gregated areal units physically and thus perceptually changed
(Powers et al., 2012).

The Ikonos images were better suited for a more detailed
monitoring of the pipeline, due to their higher spatial resolution
(1 m). Thus, they allow for a better identification of objects in
the classification process of change areas. However, it should
be noted that the variation in the periods analyzed (September
2011 to April 2012 for RapidEye monitoring and November 2011
to March 2012 for Ikonos) causes differences in the detection of
changes, especially in agricultural and reforestation areas, due to
management and stages of cultivation.

The analysis of applicability of the pipeline monitoring
through land cover changes detection procedures using Rapid-
Eye and Ikonos images also considered a quantitative evaluation
realized from the estimated monitoring process execution time
for each sensor employed (Table 15).

For a pipeline monitoring using optical images, it is necessary
to observe the image acquisition characteristics covering the area
to be analyzed. This is due to the possibility of the images being
captured at different dates, which cause differences in the spectral
response of the objects. In the test performed in the Guararema-
Mauá/SP pipeline, it was possible to identify such spectral vari-
ation, especially in areas with vegetation cover. As we can see in
Figure 10, the vegetated areas present a higher spectral response

in the visible bands (Blue, Green, Red and Red Edge) of the image
shown on the left of Figure 10 (captured on 04/19/2012), while
in the image on the right of Figure 10 (captured on 04/05/2012)
the vegetated areas show a lower spectral response. We can also
see that this variation generates differences in the values of the
Normalized Difference Vegetation Index (NDVI) obtained from
different dates. Thus, it is advisable not to make an image mosaic
for pipeline monitoring for lengths requiring more than one image
to be covered. In this way, the spectral characteristics produced
by the different image acquisitions will be respected, facilitating
the definition and estimation of attributes and thresholds of the
classification process.

CONCLUSIONS

The methodological procedure of change detection and classifica-
tion was adequate for monitoring the pipeline. Through the analy-
sis of the results, it was possible to consider that in the segments
analyzed no anthropic activities were detected that could compro-
mise the pipeline structure or interfere with the maintenance of
the service strip.

The accuracy to change detection analysis was 83% and
63% for RapidEye and Ikonos imagery, respectively. The mon-
itoring with RapidEye images showed 3.3% of changes in the
area, mostly occurred between Bare Soil and Grassland, which
could be explained by the different stages of agricultural activ-
ity and reforestation areas. For the monitoring by Ikonos images,
the changes of 1.92% of the area, detecting alteration between
Cover and Grassland classes, while few changes were detected in
built areas.

Regarding the use of object-based classification with high
spatial resolution images for pipeline monitoring, we highlight
the recommendation of not creating an image mosaic when the
images are captured on different dates, once high resolution im-
agery increased the difficult to find attributes and thresholds to
identify similar features into the area.

Levels of correctly classified land cover using the object-
based method achieved are considered to be close to the limit
of application of this technique with multi-temporal data of high
complexity and diversity of space occupation. Higher overall lev-
els could only be achieved by applying the manual edition to
some segments that present classification errors. This limitation
was also noted in literature, corroborating the need for develop-
ment of specific rules and integration of user knowledge in the
process to increase the precision of the change detection.

This study has presented the problem of aggregation of ho-
mogeneous units due to the variation of resolution. Despite using
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Table 15 – Pipeline Monitoring Process.

Pipeline Monitoring Stages
Execution Time

RapidEye Ikonos

Pre-processing
Orthorectification Orthorectified product 4h/scene

Fusion — 1h/scene

Elaboration of

Thematic Map T1

Supervised Classification 4h/scene 4h/scene

Visual Edition 1h/km2 10h/km2

Change Detection
Segmentation, Change Detection

and Classification of Change Areas
6h/scene 8h/scene

Figure 10 – Spectral response of vegetated areas in the RapidEye images captured in different dates.

high spatial resolution, differences have occurred in the number
and size of the segments generated in Ikonos (1 m) and RapidEye
(5 m) images. This requires caution in the selection of parame-
ters and attributes to be used for image classification, they must
be adequate to the spatial resolution of the specific image used in
monitoring procedures.
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BAATZ M & SCHÄPE A. 2000. Multiresolution segmentation: an opti-
mization approach for high quality multiscale image segmentation. Ange-
wandte Geographische Informationsverarbeitung, 12: 12–23.

CAMPOS VO, FEITOSA RQ, MOTA GLA, PACHECO MAC & COUTINHO
HLC. 2005. Um método para modelagem do conhecimento multitem-

Brazilian Journal of Geophysics, Vol. 32(4), 2014



�

�

“main” — 2015/6/2 — 11:56 — page 670 — #16
�

�

�

�

�

�

670 PROPOSAL OF CHANGE DETECTION IN LAND COVER FOR PIPELINE MONITORING FROM RAPIDEYE AND IKONOS IMAGES

poral no processo de classificação automática de imagens de sensores
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