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BEHAVIOR OF STRESSES AND HYDRODYNAMICS FROM MULTICOMPONENT SEISMIC DATA

Boris P. Sibiryakov, Lourenildo W.B. Leite and Wildney W.S. Vieira

ABSTRACT. A method for fluid-stress modeling of 3D seismic, and drilling data, provided new information on the stress conditions, and on the hydrodynamics of
the U11 layer of the Upper Jurassic sandstone reservoir in the Arigol field, Western Siberia, Russia. It is proposed to detect and outline oil fields, and divide them into

isolated traps, marked by low sedimentary overburden pressure, and fluid-trapping properties based on correlation between the structural pattern and mapped stress.
A different systematic approach was adopted, considering: the use of 3D component seismic data of Vp and Vs velocities; the density ρ, and the stress models of

the reservoirs to detect the areas of low overburden pressure P (x, y, z); and the vertical inclination of fractures (faults), ϕ(x, y, z), caused by the non-hydrostatic
behavior of stress.

Keywords: seismic structured media, porous media, fractured media.

RESUMO. Um novo método para a modelagem de tensão e fluidos em sı́smica 3D, além de dados de perfuração, forneceram nova informação para as condições

de tensão e para a hidrodinâmica da camada U11 do arenito reservatório do Jurássico Superior no Campo Arigol, Oeste da Sibéria, Rússia. São propostos métodos

para a detecção e delimitação de campos de petróleo, e segmentá-los em trapas isoladas, marcadas por baixa pressão da sobrecarga sedimentar, e por propriedades
de trapeamento de fluidos baseado na correlação entre os padrões estruturais e o mapeamento de tensões. Uma metodologia alternativa e sistemática foi adotada,

considerando-se o uso de: dados sı́smicos das componentes 3D para as velocidades Vp e Vs; a densidade ρ, e a modelagem dos reservatórios para detectar as áreas
de baixa pressão da sobrecarga P (x, y, z); e a inclinação vertical de fraturas (falhas), ϕ(x, y, z), causadas pelo comportamento não-hidrostático das tensões.
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58 BEHAVIOR OF STRESSES AND HYDRODYNAMICS FROM MULTICOMPONENT SEISMIC DATA

INTRODUCTION

In the new fluid-stress model, contour lines of anomalous over-
burden pressure (P ) are used as hydrodynamic barriers for hy-
drocarbon migration, and the geometry of fluid flow lines (hori-
zontal pressure gradients) corresponds to barriers between traps.

The areas of detected fluid-stress traps depend on the choice
of the boundary values of constant overburden pressure and its
horizontal gradients. It is proposed to map fluid-stress traps,
and to predict their sizes in a way similar to that for structural-
depositional and structural-stratigraphic traps.

Deep drilling within the hydrodynamic screened traps should
be undertaken, if they fall into the most contrasting and unex-
plored low pressure (P ) anomalies, aiming at to estimate the
fluid-stress properties of the section.

Unlike the traditional methods of hydrodynamic modeling, the
new method is based on 3D component seismic exploration data
(Vp, Vs, ρ). Stress, shear waves, porosity, specific surface, 3D
hydrodynamic pressure modeling of buried oil and gas traps have
received much attention recently.

This modeling is based primarily on downhole logging fol-
lowed by the estimation of porosity and permeability with implica-
tions on the inner borehole space. In this approach, seismic data
are used as supplementary information to specify the structural
framework, and to find relationships between the seismic image
and the hydrodynamic parameters of hydrocarbon reservoirs.

The present paper is part of a study about computing stresses
and strains using P and S wave velocities in order to localize
areas of small pressure in oil and gas producing layers as nat-
ural suction pumps, and it is devided in different relative inde-
pendent parts.

The first part concerns conventional seismic investigations
in order to obtain information about P and S wave velocities,
and also the seismic boundary configurations. The second part
concerns calculating stress and strain in the geological struc-
tures using the information obtained in the first part, and also the
non-trivial behavior of pressure, since it can decrease with
depth, and create natural pumps which accumulates fluids. And
the third is concerned with calculating pressure discontinu-
ities between solid and fluid, what depends on the structure of
the pore space.

In order to start to predict stress and strain for real geologi-
cal structures, we need to know P and S velocities, densities, and
the seismic boundary configurations. This is a separate classi-
cal problem of seismic investigations. We restrict our present
description to isotropic models, and for anisotropic cases the
equations are more complicated.

It is mandatory that the acquired data be three component.
From land observed data, we can use S waves from horizontal
vibroseis, together with VSP technology. From marine observed
data, we can use AVO technology looking for converted P-S-P
waves. In special cases, we can use petrophysical measurements
of borehole data.

The first appearances on pore space and integral geometry
were presented by Sibiryakov (2002) and Sibiryakov & Prilous
(2007). The theory of porous media is based on integral geom-
etry because such mathematical discipline deals with collective
geometrical properties of real reservoirs. It was shown by San-
taló (1953) that such collective properties are namely for porosity,
specific surface, average curvature and Gaussian curvature. For
example, cracked media has, as a rule, small porosity, but very
large specific surface area that creates anomalous high γ = vS

vP

ratio, what means a negative Poisson coefficient,

σ =
1− 2γ2
2− 2γ2 .

The popular model of tubular pore space has a very high
cross-sectional curvature,K1, and a very small longitudinal cur-
vature, K1. This means that the Gaussian curvature KG =√
K1K2 is much less than average curvatureKA = K1+K2

2
.

In granular media,KG andKA are close to each other (Smirnov,
1964).

METHODOLOGY

The general subject of the paper is a model for the calculation
of fluid velocity prediction into borehole. This important study
would be impossible without the prediction of stresses in the hy-
drocarbon (oil and gas) producing layer. After stress prediction,
we must predict pressure discontinuities between the solid and
liquid phases in order to calculate fluid pressure far from well,
and then calculate the velocity of fluid into borehole.

The first research paper published on this subject was
Sibiryakov et al. (2004), where percolating process was not
considered. Besides, there was no words about optimal coordi-
nates for well positioning. In the present work we continue with
this study, and show all steps from common stress prediction,
based on multicomponent seismic, to fluid velocity prediction
using laboratory measurements of the pore space structure.

The state of elastic layered media is described in the gen-
eral case by six (three normal and three tangential) stress ten-
sor components. Complex stress behavior of buried traps is
modeled on the basis of P and S layer velocities, and of the
bulk density of reservoir and cap rocks. Overburden pressure and
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tangential stress intensity (the measure of non-hydrostatic be-
havior of stress) are other key parameters, the so-called scalar
invariants of stress tensor. Overburden pressure is one third of
the sum of vertical and horizontal stresses; if they are equal,
the overburden pressure is simply the weight of the overlying
(Sibiryakov, 2004).

Stress is non-hydrostatic even in horizontal layered media
subject to only vertical gravity compactation without horizontal
displacement. Vertical stress is defined as equal to the weight of
the overburden in the form: σzz = Pz = P0. The correspon-
dent horizontal stress is sufficiently lower than Pz , and given by:
σxx = Px = P0(1 − 2γ2), (σxx = σyy in this case,
and applied in this paper example), where γ = VS

VP
(Sibiryakov

et al., 2004).
Pressure is always a scalar quantity, and the simplest case

for overburden pressure is

P =
1

3
(σxx + σyy + σzz) = P0

(
1− 4
3
γ2
)
,

which is sufficiently less than the overlying weight Pz .
Structural effects complicate stress modeling, since in the

general case the equilibrium equations should be integrated with
the boundary conditions of loading continuity, displacement on
layer boundaries, and zero stress on the free Earth’s surface.
However, overburden pressure depends on velocity ratio (γ) and
rock density.

Note that overburden pressure breaks at layer boundaries if
the velocity ratio γ has a jump. In the simplest case of layered
media, the jump of overburden pressure at layer boundaries is
ΔP = 4

3
P0(γ

2
1 − γ22). Therefore, overburden pressure drops

jumpwise with depth, if the underlying (γ2) velocity ratio is higher
than the overlying (γ1) one. This idea would appear strange to
geologists, but it is a fact related to the non-elementary behavior
of stress in solids.

The behavior of continuous vertical stress at layer boundaries
is rather simple, whereas horizontal stress behaves in a complex
way and changes jumpwise, which causes the non-elementary
behavior of overburden pressure as the sum of vertical and hori-
zontal stresses. As a result, low pressure zones favorable for ac-
cumulation of fluids can arise even in the absence of anticlines.
The presence of an anticline complicates the drop of overburden
pressure, as rocks slide down the fold limbs produce additional
horizontal extension, but this is not a necessary condition for the
emergence of a favorable setting for fluid accumulation.

The intensity of tangential stress is a measure of mechanic
instability, and it is the parameter responsible for the failure of

the solid rock skeleton and fracturing. In simple layered media,
tangential stress, scalar invariant, PT = J = 1

2(σzz −
σxx), also depends on velocity ratio, and it is shown to be
given by J = γ2Pz . Obviously, tangential stress increases
with depth and rock weight, which should cause fracturing and
failure. Tangential stress breaks at layer boundaries if velocity
ratio γ differ in the different layers, and this discontinuity oc-
curs also in the general case when tangential stress shows com-
plex dependence on wave velocities and boundary geometry.
The proportions between individual components of tangential
stress and their intensities controls the inclination of fractures.
Note that the above considerations concern primarily the present
stress field. This is especially important in calculating fluid flow
into boreholes, as the underground hydrodynamics is apparently
controlled uniquely by the actual rock stress.

The key stress parameters of a section discontinuity (namely,
overburden pressure, normal components of horizontal stress,
intensity of tangential stress), for horizontal and non-horizontal
boundaries, depend on the velocity ratio (Poisson’s ratio) change
at these boundaries. Therefore, multicomponent P and S wave
seismic surveys are indispensable in studies of stress conditions
of oil and gas traps. It does not mean that experiments should
include both P and S surveys, but multicomponent VSP, mul-
ticomponent modifications of ultrasonic logging, or laboratory
measurements of samples, can be used.

In addition, maps of stratigraphic surfaces, if they include the
above stress parameters listed, should give two sets of data: one
for the layer below, and the other for the layer above the mapped
surface. Only three stress components are continuous in the gen-
eral case, and the other three show jumpwise changes at layer
boundaries.

Computing stress components implies integration of equa-
tions of equilibrium, that is a system that reflects the fact that the
stress-induced 3D forces are equal to the gravity force (weight,
overload, overload weight, mgz, mass × acceleration × thick-
ness, stress dimension), whereas the horizontal forces cancel
each other and their sum is zero.

The system of equations includes six unknown stresses and
only three equations of equilibrium. Thus, it is not closed in the
general case, but it can be made closed using an elastic model of
stress-strain relationship. This is justified by relative simplicity of
the model, and by the possibility to measure the elastic constants
using P, S and PS waves. The closed system of partial derivative
equations can be transformed into a system of integral singular
equations. Methods for the transformation of these singular sys-
tems into regular ones were suggested by Kupradze (1963) and
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Parton & Perlin (1985), and they imply in the use of conjugate
operators of fundamental solutions. Sibiryakov & Zaikin (1994)
have applied this method for 2D applications to stress modeling
in seismic sections in East and West Siberia.

However, direct extrapolation of the method for 3D problems
complicates the computation. It can be simplified in view of the
fact that many geological structures in West Siberia are quite
shallow dipping; i.e., one tangential stress component is small
relative to the two others. Sibiryakov & Zaikin (1994) used a
particular solution to inhomogeneous equilibrium equations as
Poisson-type integrals where the integration is made over the
structure volume. The effect of 3D structures on stress is more
local than of 2D ones, as it decreases in inverse proportion to the
square distance from the structure.

We propose here a new method to calculate Poisson-type
curvature integrals that are reduced to a succession of 2D quadra-
tures followed by common 1D integration. Stress is defined by
velocity discontinuity and the effect of structure geometry.

As an example from the Arigol field, the local high (Vakh pat-
tern holes) contribution due geometry is 20% of the total effects.
Therefore, the overburden pressure in the producing bed, and in
the layers below and above, is controlled mainly by the velocity ra-
tio. The area has hundreds of wells, and the the overburden stress
was estimated using density logs. The distribution of layer P wave
velocities was obtained by CMP stacks and VSP data from three
boreholes. The greatest difficulty was in the estimation of veloc-
ity ratio, since there was no direct P or S velocity measurements
made. Nevertheless, petrophysical data used ultrasonic measure-
ments of the Jurassic sandstones, and allowed to find that the
γ ratio for the producing bed ranges between 0.577 and 0.550.
Velocity ratio for other layers were inferred from density-velocity
relationships.

It is obviously expected that if the γ ratio is higher in the pro-
ducing bed, its overburden pressure is lower than in the overly-
ing. Indeed, the pressure deficit in the producing bed is about 50
atmospheres in the average (Sibiryakov et al., 2004).

Figure 1 shows overburden pressure on the roof of a Juras-
sic reservoir. First, the pressures are about 30% lower than in
the overlying layer. Second, the pressure in the producing bed
shows about to 5 MPa drop at the transition to the overlying
layer. The layer fluid pressure differs from the mapped overburden
pressure.

The pressure discontinuity between the rock skeleton and
the fluid is controlled by the structure of the pore space and by
the skeleton-fluid compressibility ratio. However, the orthogonal
trajectories, to the shown contour lines of overburden pressure,

coincide with fluid flow lines, if the pore space structure in the
producing bed remains invariable (Sibiryakov et al., 2004).

Examining the probable flow lines and calculated points of
discharge in Figure 1, the local enclaves of these lines may ac-
count for depth variations of the oil-water contact (OWC). There-
fore, orthogonal to pressure isolines on the surface of the produc-
ing bed are the probable fluid flow lines, and the sinks point to
fluid and gas discharge. This fact should be taken into consider-
ation as an additional criterion in the selection of new exploratory
drilling sites.

Still referring to Figure 1, the overburden pressure and inten-
sity of tangential stress estimated on the basis of velocity ratio γ
were assumed constant over the reservoir, and the flow lines are
thus estimative. Almost all lines converge toward the top of the
structure. The points of local discharge, to the right and left of the
main borehole complex, are prominent even in this generalized
model. More detailed information from S wave data may provide
a basis for a higher-resolution map of the local discharge in the
producing bed.

Figure 2 shows the map of tangential stress intensity for the
same surface of Figure 1, where the region of lowest pressure al-
most coincides with faults within the region of minimum tangen-
tial stress, which indicates a certain stability of the structure as a
whole. High tangential stresses cluster near a fault, which appears
as a rather realistic result.

Maximum tangential stresses do not always coincide with
faults detected by geological methods; possibly, because not all
faults may be associated with the present-day stresses. This reg-
ularity can be used in age discrimination of faults.

Figure 3 shows calculated fracture inclinations, φ(x, y, z),
around the structure. The fracture planes are inclined about 45
degrees with respect to the vertical, which may correspond to
either randomly oriented fractures or to anisotropic medium with
rhombic symmetry. However, fractures change their inclinations
near faults to roughly vertical inclinations, thus producing another
preferred inclination. This result can be checked by shear wave
splitting techniques in multicomponent VSP.

The vertical inclination of fractures, called φ(x, y, z), are
obtained from the rotation of the stress system to give the
stress diagonal matrix, where the diagonal elements are the main
stresses, and where σxx ≈ σyy (Novacky, 1970).

Physical-mathematical theory

We now follow with the physical-mathematical theory necessary
to give a basement, and explain the results presented in Figures 1,
2 and 3, and we divided it into sections.

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015
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Figure 1 – Map of tectonic stress (represented by pressureP ) of Jurassic reservoir, where the contour lines are overburden pressureP = P0
(
1− 4

3
γ2
)

(dark blue
lines) drawn in an arbitrary scale, and superposed to the color scale. Orthogonal trajectories are probable fluid flow lines (red arrows). The pressure scale is in color
and placed on the left side, and shows variations between 26-28 Megapascal (MPa), 1 MPa= 10 atmospheres. The center of the map is dominated by a low pressure
zone. The dots with numbers are producing boreholes. Heavy red lines are geological faults. Isolated circular enclaves correspond to local hydrodynamic systems.

We start with the system of equations of equilibrium used
to estimate stresses as given below, where two differential equa-
tions are homogeneous and one non-homogeneous (Sibiryakov
& Prilous, 2007):

∂σxx
∂x

+
∂σxy
∂y
+
∂σxz
∂z
= 0, (1)

∂σyx

∂x
+
∂σyy

∂y
+
∂σyz

∂z
= 0, (2)

∂σzx

∂x
+
∂σzy

∂y
+
∂σzz

∂z
= ρg. (3)

The first two Eqs. (1) and (2) correspond to full cancellation of
horizontal 3D forces produced by inner stresses, and the last one
means that vertical 3D forces are simply equal to the normalized
gravity force.

The common solution of this system is to obtain the dis-
placement components, and it is given by the sum of the fun-
damental solution, uFk , obtained for the complete homogeneous
system, and of particular solution, uPk , given by the above non-
homogeneous system, in the form: uk = uFk + u

P
k . To obtain

this solution, it is used boundary integral methods. The result
is a type of Poisson’s integral, which illustrates the participation
of additional displacement and stress, represented by volume V ,
due to more or less complex geometry of geological structures.
The fundamental solution of the system of Eqs. (1), (2) and (3) is
given by Novacky (1970) in the form:

uk(x) =
g

V 2S

∫
V

Γkz(x,y)dVy. (4)

The additional displacement uk(x), due to structure deforma-
tion, is the integral of the fundamental solution, Γkz(x,y), over

Brazilian Journal of Geophysics, Vol. 33(1), 2015
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Figure 2 – Map of intensity of tangent stress, J = γ2P0 , as a measure of non-hydrostatic pattern (dark blue lines), where the high values are located around
small stress zones. The lines are drawn in an arbitrary scale, and superposed to the color scale. The color pressure scale is on the left side and shows values between
15.3-16.0 in MPa. The dots with numbers are producing wells. Heavy red lines are geological faults.

the structure volume V of the equilibrium equation. It depends
on the square S wave velocity, and z in Γkz relates to the verti-
cal component, as in the gravity g. The integration covers all the
volume represented by the y coordinate.

Pressure discontinuity between rock skeleton and fluid

Consider a fluid-filled reservoir, and let un be the normal dis-
placement of a grain skeleton. Applying the Gauss theorem, we
obtain:

∫∫
S

unds =

∫∫∫
V

Div−→u dV = fV P0
ρ0c2
, (5)

where S is the grain surface, V the total volume, fV is the pore
space volume, P0 is the fluid pressure, and ρ0c2 is the fluid in-
verse compressibility (non-compressibility). Also,

∫∫
S

unds = 〈un〉S, (6)

where 〈un〉 is the mean normal displacement, and by substitut-
ing this formula in Eq. (5) gives:

P0

ρ0c2
=
1

f

〈un〉
r0
σ0r0, (7)

where σ0 = SP
VT

is the Specific Surface Area (SSP) (SP is the
total empty porous, and VT is the total volume of sample), and
r0 is the mean grain radius.

In a solid grain, the relation:

Δ(ui + xie) = 0 (8)

is a rigorous relationship, where Δ is the Laplace operator, ui
is the displacement in grain, and e is the dilatation of the grain
material. By definition, pressure is given by the dilation times the
bulk module, as:

P = e

(
λ+
2

3
μ

)
. (9)

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015
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Figure 3 – Map of calculated fracture inclinations φ(x, y, z) in producing bed. The color scale of the left shows a variation between 46 and 64 degrees with respect
to the vertical (to the left and/or to the right). The blue areas show roughly vertical fractures, and the brown areas show more normal fractures with a more chaotic
distribution. In the center of the map, we can describe more randomly inclined fractures (darker areas). The dots with numbers are producing wells. Heavy red lines are
geological faults.

Eq. (8) means, that the sum ui + xie is a harmonic vector.
As its mean value is zero in the grain center, we can assume this
harmonic function to be zero in the grain material, and make a
relationship between displacement, ui, and dilatation, e; in other
words, ui = −xie, and also for the average value in the form:

〈un〉 = −〈e〉r0. (10)

Eq. (10) relates normal displacement in liquid and dilatation in
solid.

Substituting the relations (10) and (9) into Eq. (7), we can
write in explicit form the pressure discontinuity, P0P , between solid
and liquid in the form:

P0

P
=
σ0r0

f

ρ0c
2

λ+ 2
3μ
. (11)

Eq. (11) shows that the pressure gradient in solid, ∇P , perfectly
coincides with the fluid flow lines if the pore structure, ∇P0,
and it remains invariable in the producing layer, if the structure

of the pore space (porosity and specific surface) are constant
in this layer.

The pressure discontinuity depends on the ratio of two non-
dimensional parameters of the pore structure; to be specific, the
product of the SSA (σ0) by the mean grain radius (r0) and inverse
porosity (f−1). Yet, Eq. (11) contains small factors in the numer-
ator and in the denominator which may lead to the instability of
the estimation, especially in the case of a gas-saturated fluid.

Compressibility decreases abruptly at low gas contents, and
viscosity varies slowly. Therefore, gas saturation of liquids is
not necessarily favorable to oil production, but reduces the pres-
sure gradient which is not always canceled by the respective fluid
viscosity decrease.

According to Eq. (10), the problem of calculating fluid flow
into a borehole is reduced to the integration of Poisson’s equa-
tion:

Δu̇i =
1

η

σ0r0

f

ρ0c
2

λ + 23μ
GradiP, (12)

Brazilian Journal of Geophysics, Vol. 33(1), 2015
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where Gradi = ∇i = ∂
∂xi
, (i = x, y, z), and η the fluid

viscosity. Boundary conditions for this equation (conditions of
viscous adhesion) require the velocities of particles be zero over
the entire complex surface of pores. The problem of integration
of Eq. (12) and flow rate estimation requires calculating of stress
and, and also the knowledge of two parameters of the pore space
and fluid compressibility.

The methods of integration for Eq. (12) are straightforward,
even in the case of an arbitrarily complex pore structure; perme-
ability is unnecessary as it appears in a complex way as a result
of phase interaction and the pore structure. In a particular case of
non-interacting fractures, modeled by rectilinear segments with
constant crack opening, Eq. (12) can be easily integrated to yield
the equation for flow rate in the form:

u̇i =
δ2

12η

σ0r0
f

ρ0c
2

λ + 23μ
GradiP

= KGradiP,

(13)

where δ is the mean crack opening, and δ2 represents permeabil-
ity for this particular pore structure. Thus, the pressure difference
between the skeleton and the fluid depends on the geometry of the
pore space (mainly on its SSA), and on the hydrodynamic prop-
erties (compressibility and viscosity) of the fluid. The problem of
the pore pressure estimation cannot be solved separately from the
problem of general stress calculation. Eq. (13) plays the role of
Darcy’s law for the specific model now in focus.

Percolation and permeability near borehole

Sibiryakov (2002) described that the estimation of stresses and
strains in oil-gas structure requires the integration of equations
of equilibrium of the kind:

∂σik
∂xk

= ρg, (i, j, k = 1, 2, 3; or x, y, z), (14)

for every layer.
For elastic rock deformation, the equation of equilibrium

derived from Eqs. (1), (2), and (3) for the condition of Hooke’s
law, in closed form is given by:

(λ+ μ)GradiDiv
u+ μΔui = ρgi, (15)

where gi, (i = x, y, z), gz = g, gx = gy = 0 (Landau,
1988). The Lame parameters λ and μ are determined from P and
S wave velocities.

For boundary conditions, we can write the stress for the inside

of any layer as an expression of the form:

σikn
+
k (Sm) = σikn

−
k (Sm),

u+i (Sm) = u
−
i (Sm),

(16)

where Sm stands for a surface numbered m, and n+ and n−

points to outside or to the inside of the surface Sm.
On the free surface of Earth we have the evident stress bound-

ary conditions in the form:

σikn
+
k (S0) = 0, (17)

where the summation over the repeated index is implicit.
Besides conditions in Eqs. (16) and (17), there are some con-

ditions for the lateral surfaces that bounds the oil-gas structure.
For the usual case, these conditions depend on the geological
structures, but often these conditions are not sufficient, espe-
cially if the horizontal dimension of the structure is larger than the
vertical dimension. Sometimes it is possible to use as boundary
conditions the normal field of stresses without the effect of the
structure.

The second part Eq. (16) becomes evident, because the fluid
pressure equals the normal stress in solid matrix, and not the
pressure in solid, because the lateral stresses are not equal to
the normal stress.

To calculate the pressure discontinuities between liquid and
solid, it is necessary to integrate the equation of equilibrium in a
small volume of the producing layer with boundary conditions on
the pore space like:

σikn
+
k (S) = P∞(S), u

+
i (S) = u

−
i (S). (18)

In the above equation, P∞ = constant is the pressure in the
fluid. On the external boundaries of an elementary volume (edges
of cube, for example) we require the same displacements like in
the edges of elastic cube without the pore space. These conditions
gives the constant value P∞, which is in equilibrium state with
respect to the stresses in the solid. We have no doubt that this
pressure depends on the structure of the pore space, but first of
all on the SSA of the pore space.

The first step to attack the percolation and permeability is to
calculate the stress for the entire area. The second part is to calcu-
late the stress near the borehole. And the third step is to calculate
the stress discontinuity between solid and liquid. As a result, we
obtain the estimation of fluid flow as a function of the common
stress-strain condition on the structure of the pore space, and on
the fluid viscosity.
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Volume dissipative forces by viscosity

The tangential surface force, FSτ , due to viscosity is given by the
expression FSτ = σ0 ∂uτ∂n , while the tangential volume force,
FV τ , due to the same effect is given by:

FV τ = σ0η
∂uτ

∂n
, (19)

where σ0 is the SSA, η is the viscosity, u̇ is the particle veloc-
ity, and n and τ are the normal and tangent directions of liquid-
grain contact. For cracks sufficiently long compared to their open-
ing, it would be convenient to use a simpler problem from the
Navier-Stokes equation; namely, the solution of the problem about
flowing between two infinite plates in the form (Landau, 1988):

∂p

∂x
= η
∂2uτ

∂z2
. (20)

In this equation p is pressure in liquid, and uτ = ux = ux(z)
for the particular case of Figure 4, where uy = uz = 0, and it
represents a layout of the physical process of the flow, showing
the sticking at the boundaries.

Figure 4 – Cross section of flow between infinite two plates. The length of dom-
inant fracture is much larger than the crack opening.

The solution of Eq. (20) takes the form:

∂p

∂x
= P = constant, u̇x =

P

2η
(h2 − z2). (21)

In the above equations, h is the crack opening. Hence, the surface
force due to viscosity is given by the formula:

η
∂p

∂x
= −hP. (22)

And the volume force acting in any point of the continuum is:

σ0η
∂p

∂x
= −σ0hP = −2σ0

h
η〈ux〉. (23)

In the above equation 〈ux〉 is the average particle velocity be-
tween two planes. It means, that the Navier-Stokes equation con-
tains an additional term that describes the volume dissipative
force against the fluid velocity, namely:

〈Fτ 〉 = −k2u̇r ,
(
k2 = 2

σ0

h
=
σ20
f

)
, (24)

where f is porosity.

Stresses in solid near borehole

For the solid near borehole the equations of equilibrium in cylin-
drical coordinates are:

∂σzz

∂z
+
∂τrz

∂z
+
τrz

r
= ρg (25)

∂σrr

∂r
+
σrr − σϕϕ
r

+
∂τrz

∂z
= 0. (26)

The correspondent pattern of stresses are shown in Figure 5.

Figure 5 – Stress nomenclature in cylindrical coordinates, and the representa-
tion of the borehole with liquid and solid around it.

The above equations have very simple solutions, because
for very large layer thickness in comparison to the radius of the
borehole, the tangent stress τrz is equal to zero in all volume of
rocks near the borehole.

There is an already known formula for the deformation (e) of
an elastic medium of density ρ, with a cylindrical cavity of radius
r0, and saturated by a liquid of density ρ0, given by:

eϕϕ(r0) =
ur(r0)

r0
= ρgz

(
σ

1− σ −
ρ0
ρ

)
. (27)

In the above formula, σ is the Poisson ratio, ur is the radial dis-
placement, and g the gravity. Besides that, considering that there
is planar incompressibility (no change in density with respect to
the z coordinate, compression along z, dilation along (x, y) axis,
dilation along z axis, compression along (x, y) axis) in solid,
we write for the deformation that:

err + eϕϕ = 0. (28)
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The respective solutions of Eqs. (25) and (26) for the elas-
tic stresses near borehole is given by the formulas (Sibiryakov,
1993):

σrr = (1 − 2γ2)P0 −
(r0
r

)2
P0η, (29)

σϕϕ = (1− 2γ2)P0 +
(r0
r

)2
P0η. (30)

In Eqs. (29) and (30), γ = VS
VP

, P0 is the weight of overburden
rocks, and η = 1− 2γ2 − ρ0ρ .

Equation of equilibrium and fluid velocity

The equation of equilibrium with dissipative force around the
borehole has the following form:

Δu̇r − k2u̇r − 1
η

∂p

∂r
= 0, (31)

where u̇r is the particle fluid velocity in the borehole. The nor-
malized components are: the first term (Δu̇r) the volume force,
the second (−k2u̇r) is the volume dissipative force, and the third(− 1

η
∂p
∂r

)
the volume force due to pressure.

Let us try to find a solution for the above Eq. (31), consid-
ering that there is planar incompressibility for the liquid and for
the solid, and that there is a linear relationship with respect to
the vertical z coordinate, like in Eq. (25). It means that there is a
term ∂2u̇

∂2z2
= 0 in the Laplace operator, such that this operator

simplifies to the form:

Δu̇r =
∂2u̇r

∂r2
+
1

r

∂u̇r

∂r
. (32)

With the assumption of planar (not in volume) incompressibility,
there is additional conditions for Eq. (32) in the forms:

∂u̇r
∂r
+
u̇r
r
= 0, u̇r =

C(r)

r2
, (33)

where C(z) is an arbitrary function. Besides that, we can write
Eq. (32) in the form:

∂2u̇r
∂r2

+
1

r

∂u̇r
∂r

=
∂

∂r

(
∂u̇r

∂r
+
u̇r

r

)
+
u̇r

r2
=
u̇r

r2
.

(34)

Substituting Eq. (34) in Eq. (32) gives a simpler expression for
Eq. (31) in the form:

∂p(r)

∂r
= η

(
C(z)

r3
− k2u̇r

)
. (35)

Integrating the above equation with respect to r, with inferior
limit r and superior R, follows that:

p(r) = P∞ − η
(
C(z)

2r2
− k2C(z) ln R

r

)
. (36)

To take into account, that on the borehole surface r = r0,
p→ P0, R >> r0, and p(R) = P∞ we get:

p(r0) = P0

= P∞ − η
(
u̇0

2r0
+ k2u̇0r0 ln

R

r0

)
.

(37)

In the above equation, R is the horizontal range of producing
layer, P∞ is the pressure in liquid outside the borehole (very far
from it, and inside the reservatory), and P0 is the pressure in
borehole liquid.

From Eq. (37), we obtain the fluid velocity, u̇0(r0), into bore-
hole in the form, and in its approximations:

u̇0(r0) =
P∞ − P0
η

2r0

1 + 2k2r20 ln
R
r0

≈ P∞ − P0
η

1

r0 ln
R
r0

f

σ20

= K
f

σ20
,

(38)

where
K =

P∞ − P0
η

1

r0 ln
R
r0

.

We simplified to the last form to emphasize the dependence of
u̇0(r0) on f , σ0, and its ratio f

σ20
, with K representing a con-

stant term. Figure 6 shows the plot of u̇0(r0) versus σ0 and f ,
where the quantity f

σ20
plays the role of permeability.

Also, for positive pressure contrast,+|P∞−P0|, the flow is
from layer reservatory to borehole, and when negative, −|P∞−
P0|, from borehole to layer reservatory.

Due to large SSA parameter, the velocity is almost of zero
flow in spite of sufficient porosity. It is interesting to mention that
there is no necessity to use Darcy’s law. Besides that, Eq. (38)
does not contain the permeability coefficient, k. However, there
is empiric relation between the SSA, σ0, the porosity, f , and the
permeability, k, namely (Sibiryakov & Prilous, 2007):

k =
D2pf

3

150(1− f)2 , Dp =
6

σ0
, (39)

where SE is the total area of the porous space, and VT is the
total volume of the sample, and σ0 = SE

VT
. The Eq. (39) can be

rewritten as:

σ0 =

√
6

5

f
3
2

(1− f)
1√
k
. (40)
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Figure 6 – Plot of the Eq. (38) for the velocity flow as a function of porosity, f , and SSA,σ0 .

In spite of that, the percolation process depends on the porosity
and on the SSA only. The hydrofracture effect is due to very small
SSA for several large fractures compare to a lot of small fractures.
Permeability plays the role of inverse square of the SSA.

Estimation of liquid pressure far from borehole

The value P∞ contained in Eq. (38) can be determined by solv-
ing the discontinuity problem existent between pressures of the
solid and the liquid. The common stress-strain condition is given
by integration of the equation of equilibrium Eq. (14), rewritten
below:

∂σik

∂xk
= ρgi (41)

Let us take into account usual boundary conditions like continuity
of force and displacement vectors. The configuration of bound-
aries and elastic properties are obtained by multiwave seismic.

The pressure is always a scalar. In liquid, the pressure, P0,
is defined as the normal stress in solid represented by σnn. The
pressure in solid, PS, is defined as the average of normal (σnn)
and tangential stresses (στi ), in the form:

PS =
1

3
(σnn + στ1 + στ2 ).

For simply common stress conditions with the vertical com-
ponent equal to the weight of rocks, and the horizontal compo-
nents containing a factor of the type σ

1−σ , (σ is the Poisson
coefficient), it is possible to formulate the following problem
related to Figure 7.

Figure 7 – A cube volume where the liquid pressure is P∞ and in the solid
is P .

The elementary cube is submitted to vertical displacement
u0, while horizontal displacements are equal to zero. Inside the
cube there is a liquid with constant pressure P∞. On the bound-
ary solid-liquid the average normal displacement is given by the
formula:

〈un〉 = P∞
ρ0c20

f

σ0
. (42)
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Under the condition of fluid incompressibility, then for the average
tangent (uS) displacement on the boundary solid-liquid it can be
shown that: 〈

∂uS
∂n

〉
= −〈un〉

πl0
. (43)

with l0 as a dominant distance between cracks. This result comes
from differential geometry, and the quantities

〈
∂uS
∂n

〉
and 〈un〉πl0

have opposite sign due to physical counter action at the boundary
solid-liquid.

The relation between σ0, l0 and f is described by Sibiryakov
& Prilous (2007), and it has a simply form given by:

σ0l0 = 4(1− f) (44)

The simplification of boundary conditions as in Eqs. (42) and
(43) gives the possibility to determine all stresses and displace-
ments as a function of the unknown constant P∞. On the vertical
sides of the cube there are displacements equal to constant value,
but on the other side it is equal to zero. The usual boundary con-
dition; to be specific, equality between normal force in solid and
unknown pressure P∞ in liquid, gives a functional equation for
determining the value P∞ as an inverse problem, namely:

〈
λθ(P∞) + 2μenn(P∞)

〉
= P∞, (45)

for given θ(P∞) and enn(P∞) functionals, with λ and μ as
Lame parameters of the solid material.

CONCLUSIONS
We described the main steps for the estimation of complex stress
behavior in a given structural-velocity model of a medium, and
calculation of the storage capacity of buried traps. The first re-
sults of mathematical modeling and geological interpretation of
the obtained fluid-stress maps are associated with the formation
of a new step in applied geodynamics, namely fluid-stress mod-
eling of oil and gas traps.

The basic principles of this modeling are as follows. The rela-
tionship between overburden pressure, which is a scalar function
P (x, y, z), and rock stress (six components in the 3D model:
σxx, σyy , σzz , σxy, σxz , σyz) is a fairly complex function in
a general case. However, it is obvious that fluids accumulate in
closed sites of porous reservoirs where the overburden pressure
is minimum.

Under these assumptions, detected regions are a sort of
fluid-stress traps in which hydrocarbons can accumulate rather
by influence of stress (σ = constant) than by structural (z =
constant) factors.

Maps of horizontal gradients of overburden pressure are es-
pecially informative for the detection and outlying these traps, and
they reveal: convergent (inflow) and divergent (outflow) pressure
gradients; isolated inflow regions in the detected trap separated by
the geometry of outflow lines (fluid-stress barriers); and possible
fluid-stress traps in structural and non-structural conditions.

There is no possibility to use the Biot parameters, and the
reason is that we have seismic waves velocities and densities of
rocks, what gives a possibility to calculate Lame’s constants for
the integration of equilibrium equations.

The construction of the maps of Figures 1 and 3 used log
data, core samples and 3D seismic data image of the Upper Juras-
sic sandstone reservoir of the Arigol field, that contains numer-
ous sites of lithological replacement and faulting. Geological
prospecting surveys show different depths of oil-water contact
(OWC), what contradict the accepted arch-layer model for the
reservoir.

The paradoxical behavior of the OWC depths finds a sound
explanation within the limits of a fluid-stress model, since the sin-
gle Upper Jurassic reservoir was subdivided by us into nine fluid-
stress traps on the basis of correlation of the overburden pressure
and its horizontal gradients (see Fig. 2).

Comparison of the maps of intensity of tangential stresses
J(x, y, z) = 1

2(σzz − σxx) = γ2σzz and of inclinations
φ(x, y, z) of stress-produced fractures (see Figs. 2 and 3) leads
to the following conclusions:

• faults detected from 3D seismic data correspond to local
anomalies of tangential stresses;

• the observed mismatch can be related to the difference
between the present-day stress and the past stress along
the faults;

• different OWC depths in boreholes with numbers 124, 136,
139 can be caused by their position in different fluid-stress
zones.

At this point, an interesting question arises of how to sepa-
rate tangential stress (all stress out the orthogonal plane) in rock
matrix from their natural fractures, since seismic data do not al-
low seeing in this centimeters scale (sub-seismic data). The an-
swer is related to the scalar J(x, y, z) that is responsible to
produce cracks, if it is sufficiently large, and we can only calculate
the probabilistic orientation of cracks.

Note that the method of fluid-stress modeling has some
limitation as quantitative estimates of stresses are, both in oil-
saturated and water-saturated, as well as dry rocks. Therefore,
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it must always be integrated with other methods of seismic-
geological modeling. At present, the fluid percolation theory
based on Darcy’s law says that we can ignore stress-strain state
in solids; besides, percolation theory contains porosity, and does
not contain SSA that creates forces to stop percolation.

We need predict stress-strain in solid, and pressure discon-
tinuity between phases, what depends on the structure of the
pore space, and not only on porosity. Therefore, it is not neces-
sary to use Darcy’s law for determining the permeability, since it is
only a geometric property of porous medium. Permeability value
is directly proportional to porosity, and inversely proportional to
the square of the specific surface for a specimen.

Porosity and SSA give a possibility to use alternative meth-
ods for measuring permeability.

The velocity of fluid into a borehole depends on common
stress-strain conditions of the producing layer, on the structure
of the pore space (SSA and porosity) and on the viscosity of
the fluid.

The solution shows that the main factor of oil production is
the specific surface area of porous and cracks. The solution does
not contain the permeability; instead, there is the inverse square
of the SSA that plays the role of permeability.

The hydrofracture effect is due to a very small SSA for several
large fractures, in comparison to a lot of small fractures.
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