
�

�

“main” — 2015/11/8 — 12:02 — page 89 — #1
�

�

�

�

�

�

Revista Brasileira de Geof́ısica (2015) 33(1): 89-100
© 2015 Sociedade Brasileira de Geof́ısica
ISSN 0102-261X
www.scielo.br/rbg

SEISMIC TRAVELTIME TOMOGRAPHY IN THE DOM JOÃO FIELD, RECÔNCAVO BASIN, BRAZIL

Naiane Pereira de Oliveira1 and Amin Bassrei2

ABSTRACT. Tomography was incorporated in Exploration Geophysics with the intention of providing high-resolution images of regions in Earth’s subsurface that
are characterized as potential reservoirs. In this work, seismic traveltime tomography in the transmission mode was applied to real data from the Dom João Field,

Recôncavo Basin, State of Bahia, Brazil. This basin represents a landmark of oil exploration in Brazil and has been intensively studied since the 1950’s. Today, the
Recôncavo Basin is still the principal oil producer in the State of Bahia, but there is a demand for new technologies, especially for mature fields, to improve hydrocarbon

recovery. Acoustic ray tracing for the computation of traveltimes was used for forward modeling, and the conjugate gradient algorithm with regularization through
derivative matrices was used as the inverse procedure. The estimated tomograms were consistent with available data from a sonic log near the acquisition area in terms

of the layer geometry, as well as the P-wave velocity range. The results showed that traveltime tomography is feasible for the characterization of reservoirs with a high

rate of vertical change, similar to the Dom João Field.

Keywords: traveltime tomography, seismic inversion, regularization, reservoir characterization, Recôncavo Basin.

RESUMO. A tomografia foi incorporada na Geof́ısica de Exploração justamente para fornecer imagens de alta resolução de regiões do interior da Terra, consideradas
como potenciais reservatórios. Neste trabalho aplicamos a tomografia sı́smica de tempos de trânsito no modo de transmissão em dados reais do Campo de Dom

João, Bacia do Recôncavo, Estado da Bahia, Brasil. Esta bacia representa um marco da exploração de petróleo no Brasil e vem sendo exaustivamente estudada desde
a década de 1950. Embora haja uma demanda por novas tecnologias, em especial para campos maduros, com o propósito de se aumentar a recuperação de hidrocar-

bonetos, a Bacia do Recôncavo é ainda a principal produtora do Estado da Bahia. Para o procedimento da modelagem direta foi utilizado o traçado de raios acústicos
e para o procedimento inverso foi utilizado o algoritmo do gradiente conjugado com regularização através de matrizes de derivadas. Os tomogramas estimados foram

consistentes com os dados provenientes do perfil sônico de um poço próximo ao levantamento tomográfico analisado, tanto em termos de geometria de camadas, como

também na faixa de velocidades da onda P. Os resultados mostraram que a tomografia de tempos de trânsito é viável para a caracterização de reservatórios com elevada
taxa de variação vertical, que é o caso do Campo de Dom João.

Palavras-chave: tomografia de tempos de trânsito, inversão sı́smica, regularização, caracterização de reservatórios, Bacia do Recôncavo.
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INTRODUCTION

Tomography is an established technique in medicine and has
been used in Exploration Seismology to create high-resolution
images of the Earth’s subsurface of potential reservoirs or already
confirmed reservoirs under development. Tomography is a special
type of inverse problem that estimates a function using integrals
along lines.

In Exploration Seismology, the tomographic technique is
grouped into two classes: traveltime tomography, which takes
into account only the traveltimes between the sources and the re-
ceivers, and dynamic tomography, which also considers the wave-
form of the signal received by the receiver. The tomography clas-
sification is also determined by the wave used in the survey, that
is, a direct, reflected or refracted wave. There are also tomography
formulations that use more than one type of wave.

In recent years, seismic tomography has been used for new
applications, such as more accurate estimations of velocity macro
models for seismic migration. This is the case for stereotomogra-
phy, which estimates velocity models from seismic reflection data
and the local inclination associated with picking events.

In this work, we used a kinematic approach of transmission
tomography for which the input data were the vector of observed
traveltimes between the sources and the receivers and the model
parameter to be estimated was the slowness (reciprocal of veloc-
ity) distribution of the 2-D medium. Piezoelectric sources were
used to generate ultrasonic pulses whose propagation path may
be modeled by the kinematic ray theory, which is a high frequency
approximation of the sound propagation phenomenon.

The Recôncavo Basin, in the State of Bahia, Brazil, has a great
historical and economic importance. After many years of produc-
tion, this basin is now in an advanced exploration stage. Mo-
tivated by the effective oil recovery in mature fields, highly ad-
vanced technology has been used in this basin to characterize
its mature fields. For this purpose, seismic tomographic surveys
have been conducted by PETROBRAS in some oil fields, such as
the Dom João Field.

The tomographic inversion is an ill-posed problem because
the existence, uniqueness and stability conditions are not com-
pletely satisfied. Mathematical techniques are used with the in-
tention of providing better conditioning for the numerical solution
of such problems. Iterative algorithms with regularization to solve
linear systems are committed to provide reliable solutions. The
input data in the system are the traveltimes between the sources
and the receivers and the distances propagated by each ray con-
necting such sources and receivers. Both inputs are provided
through acoustic forward modeling. The linear system is regu-
larized by derivative matrices derived to minimize the instability.

This regularization procedure has a crucially important parame-
ter, λ. We chose the so-called L-module proposed by Sá (1996)
for λ. The idea of the L-module was based on the well-known
L-curve.

Inverse Problems, Linearization, Regularization and
L-module

Inversion is a technique that estimates the parameters of a given
model using the observed data as an input. On the other hand,
forward modeling provides such data by assuming a synthetic
model. While the output of the forward problem is theoretically
unique, inverse problems show an inherent ambiguity in the con-
clusions that can be obtained.

The information description is used as the starting point
when analyzing geophysical data. A vector provides a practi-
cal representation of these values: d = [d1, d2, . . . , dM ]T

is the observed data parameters or simply observed data. The
model parameters, or simple model, is represented by m =

[m1, m2, . . . , mN ]
T . For the linear problem, the equation

d = Gm represents the solution of the forward problem, and
mest = G−1d represents the solution of the inverse prob-
lem. To solve an inverse problem, we must analyze the existing
issues, uniqueness and stability. If one of these conditions fail,
the problem is said to be ill-posed.

The method of linearization starts from an initial model,mo,
which is updated successively and is also known as the Gauss-
Newton method. It linearizes the nonlinear problem g(m) = d
around an approximate solution. The estimated model is then
obtained iteratively by solving a system of linear equations at
each step. This method will converge to the model associated with
the cost function closer to S(mo) (Menke, 1989).

The expression to update the current model is:

(GT )kΔdk = (GTG)kΔmk, (1)

where Δmk = mk+1 −mk is the estimated model param-
eters update for k-th iteration, (G)k is the tomographic matrix
for the k-th iteration, and Δdk is the data residual between the
k + 1-th and the k-th iterations.

Regularization techniques are applied in the numerical solu-
tion of discrete ill-posed problems to make the inversion more
stable. These techniques do not solve the original problem, but
an equivalent one, which is more robust in relation to the varia-
tions in the input data. The regularization by derivative matrices
is expressed by the objective function ϕ(m) (Bassrei & Rodi,
1993):

ϕ(m) = eTe+ λLn , (2)
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where Ln is a discrete derivative operator that imposes some
smoothing to the solution and λ is a non-negative constant
called the regularization parameter, which controls the amount of
smoothing on the solution. We can use the difference between the
physically adjacent model parameters as an approximation of the
first derivative (n = 1) matrix expressed as D1. The opera-
tor, also known as flatness, will then be L1 = mTDT1D1m
(Menke, 1989). We can also use a matrix that approximates the
second derivative (n = 2), expressed as D2. The operator,
L2 =m

TDT2D2m, is called roughness (Menke, 1989). The
general expression for Ln, either flatness or roughness is given
by:

Ln = ‖ln‖22 = (Dnm)TDnm, (3)

where n is the order of the derivative matrix. By developing
the equation ϕ(m) and using the appropriate substitutions
e = d−Gm and Ln = (Dnm)TDnm, we have:

ϕ(m) = (dT −mTGT )(d−Gm)
+ λ(Dnm)

TDnm.
(4)

When λ = 0, there is no regularization and the inversion is
reduced to the standard least squares method. Minimizing this
objective function ϕ(m) in relation to the model parametersm
and equating to zero, we obtain the following system of linear
equations:

(GTG+ λDTnDn)m
k = GTdk. (5)

When n = 0, Dn corresponds to the identity matrix re-
sulting in a zero-order regularization, and the solution reduces
to the damped least squares method. When n = 1, Dn cor-
responds to the first derivative matrix, and the regularization is
then called first-order. When n = 2, we have the second-order
regularization, which uses the numerical approximation of the
second derivative.

For the linearized process, we started with a homogeneous
initial model m0 and updated the model parameters iteratively
through the equation:

(GTG+ λDTnDn)
kΔmk = (GT )kΔdk. (6)

There are several methods presented in the literature to find
the optimal regularization parameter λ. Among them, the L-
module, which was proposed by Sá (1996), is based on the L-
curve. The concept of the L-curve is necessary to understand
the L-module. The L-curve is a graphical tool used to choose
the regularization parameter. Some recent applications of the
L-curve in Exploration Geophysics can be seen in Santos et al.
(2006, 2009).

The abscissas correspond to the error vector between the ob-
served and calculated data, ‖e‖ = ‖Gm− d‖. The ordinates
correspond to the amount of regularization, ‖Dnm‖. When
displayed on log-log scale, this curve usually resembles the shape
of the letter ‘L’, where the inflection region represents the region
of interest because it indicates the best regularization parameter.
Thus, each point on this curve is the result of an estimated model
by which its turn is related to λ, and the ideal point expresses the
balance between the error and the regularization.

The L-module measures the distance of a point on the L-
curve to the axes origin and is defined by the following equation
(Sá, 1996):

MODL2 =
[
eTe
]2
+
[
(Dnm)

T (Dnm)
]2 (7)

It is not necessary to construct the L-curve, and the interest
region minimizes the L-module. This method has another version
if the input data are corrupted by noise, according to the following
formula (Sá, 1996):

MODL2 =
[
eTe− rTr]2
+
[
(Dnm)

T (Dnm)
]2 (8)

where r is the vector that represents the noise in the data. When
the noise level added in the data is unknown, an estimate may be
used. Again, the curve must have a minimum.

Seismic Tomography in Dom João Field
Discovered in 1947, the Dom João Field is located in the
Recôncavo Basin. This basin is located in the state of Bahia,
northeastern Brazil, whose boundaries are the Aporá High to the
north and northwest, the Barra fault system to the south, the
Maragogipe fault to the west, and the Salvador fault system to the
east. It occupies an area of approximately 11,500 km2 according
to Silva et al. (2007). It has a historical importance for Petroleum
Geology in Brazil because it was the first producing basin. It has
been intensively studied over the past five decades by PETRO-
BRAS, which has resulted in approximately 5,050 drilled wells
and 30,000 km of recorded reflection seismic sections (Ribeiro &
Borghi, 2003).

The oil accumulation of the Dom João Field is concentrated
mainly in the sandstones of the Sergi Formation and secondarily
in the Água Grande Formation. The field has an area of 47 km2,
two-thirds of which are under water in the Todos os Santos Bay
(Milani & Araújo, 2003). The field structure is an elongated horst
in the SSW-NNE direction and is approximately 24 km long with
normal faults that limit this structural feature: Dom João fault
to the east and Nova América fault to the west. Also, according
to Milani & Araújo (2003), the production areas of the Sergi
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Formation occur at depths of approximately 200 to 300 m. The
Candeias-Sergi-Ilhas petroleum system has lacustrine shale as
source rock from the Candeias Formation, where normal faults
and blocks rotated juxtapose laterally the source rock and the
reservoir, allowing the oil to directly migrate into the structural
high of the basin.

The sandstones of the Sergi Formation are reservoirs of
greater extension and importance of the Recôncavo Basin, with
an original oil in place volume of 362 million km3 (Scherer &
Ros, 2009). The reservoirs range from fine sandstones to very
gross conglomerates that accumulated during the Late Juras-
sic. The sandstones are present throughout the basin and have
a maximum thickness of 450 m. According to Scherer and Ros
(2009), fluvio-aeolian deposits like the ones from the Sergi For-
mation show a very complex depositional history that gener-
ates significantly heterogeneities in the reservoirs. In addition to
depositional differences, there are systematic differences in the
dominant diagenetic processes. As a result, the Sergi deposits
present fast variation rates in lateral and vertical petrophysical
characteristics, decisively influencing the hydrocarbon recovery.

Preceding the processing of real data, we performed simula-
tions on synthetic data inspired by the same real data. This pro-
cedure assisted us in evaluating the ray tracing program. Figure 1
shows the geologic model that has a velocity range from 2800 to
4000 m/s. The model has 43 blocks in the horizontal direction
and 82 blocks in the vertical direction, totaling 3,526 blocks. The
velocity (or slowness) is constant in each square block with di-
mensions of 5×5 m. In terms of data acquisition geometry, one
well contains 141 sources and the other contains 140 receivers,
so there are 19,740 traveltimes. The linear system is overdeter-
mined with 19,740 data parameters or equations and 3,526 model
parameters or unknowns.

Due to the size of the problem, the matrix inversion approach
would be too costly. We used the conjugate gradient method in-
serted into the linearized inversion scheme. The parameters used
in the simulations with synthetic data came from the field data.
Thus, the source and the receiver depths from the field acquisi-
tion were used in the ray tracing algorithm. Our initial velocity
model corresponded to a homogeneous medium: a sandstone
with the P-wave velocity equal to 3,100 m/s. The initial guess
is very important, because according to Menke (1989), the lin-
earized method does not “see” the entire error surface S(m).
Instead, it sees only the part of S(m) in the vicinity ofmo and
approximates the rest of the surface as a paraboloid tangent to the
actual surface at that point. The new estimate is the minimum of
that paraboloid. Since any minimum with continuous derivates

is locally paraboloid in shape, the method will converge to the
minimum of the error function if the initial guess is close enough.

Figure 1 – True model for seismic tomography, suggested from real data from
the Dom João Field, Recôncavo Basin. The color bar indicates the P-wave
velocities in m/s.

Using the initial velocity distribution, the rays were computed
and the traveltimes were calculated. Each calculated traveltime
was compared to the observed traveltime, so the velocity model
was updated for each inversion iteration. Thus, the first ray trace
was with straight rays, and the following one was with curved
rays because the velocity model was updated for each iteration.
The processing time for each iteration was approximately 45 min-
utes using a PC with the Intel® CoreTM processor with 2.50 GHz
and 6 GBytes RAM memory. We used the curved ray tomography
approach, where the non-linear inversion was linearized through
Taylor’s series, and we tested 20 different regularization parame-
ters λ for each iteration.

In order to make the simulations closer to the field condi-
tions, Gaussian noise was added to the traveltime data. To se-
lect the regularization parameter λ, we used (i) the L-module ap-
proach (Figs. 2a and 3a), (ii) the curve of the Root Mean Square
(RMS) traveltime error Ed,rms (Figs. 2b and 3b), and (iii) the
curve of the RMS velocity error Ev,rms (Figs. 2c and 3c). Fig-
ures 2a, 2b and 2c are related to the first-order regularization, and
Figures 3a, 3b and 3c are related to the second-order regular-
ization. The first-order regularization convergence was achieved
with four iterations. Figure 4a shows the result after the first it-
eration, and Figure 4b shows the result after the fourth one. For
the second-order regularization, Figure 5a shows the estimated
tomogram after the first iteration, and Figure 5b shows the esti-
mated tomogram after the fourth one. The estimated tomograms
were consistent with the true model in terms of layer geometry,

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015
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as well as the P-wave velocity range. The RMS error between the
true velocities and the estimated velocity was approximately 1.80
to 3.48%, depending on the regularization order and the iteration.

(a)

(b)

(c)

Figure 2 – Auxiliary curves for the synthetic data corresponding to different iter-
ations used to choose the optimal regularization parameter using the first-order
regularization. The linearized inversion was done with the conjugate gradient, and
the data were corrupted with random noise (noise factor μ = 0.1): (a) MODL
curve; (b) RMS error curve between the observed traveltimes and the calculated
traveltimes; (c) RMS error curve between the true velocities and the estimated
velocities.

(a)

(b)

(c)

Figure 3 – Auxiliary curves for the synthetic data corresponding to different itera-
tions used to choose the optimal regularization parameter using the second-order
regularization. The linearized inversion was done with the conjugate gradient, and
the data were corrupted with random noise (noise factor μ = 0.1): (a) MODL
curve; (b) RMS error curve between the observed traveltimes and the calculated
traveltimes; (c) RMS error curve between the true velocities and the estimated
velocities.

Table 1 summarizes all of the simulations with synthetic
data using a linearized inversion through the conjugate gradient

Brazilian Journal of Geophysics, Vol. 33(1), 2015
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method with regularization by derivative matrices. The data were
corrupted with random noise (noise factor μ = 0.1). Both reg-
ularization orders were used, i.e., first-order n = 1 and second-
ordern = 2. The optimum regularization parameter was selected
using the L-module criterion (Figs. 2a and 3a). The stop criterion
was the RMS residual between the estimated velocity distribution
between iterations k and k + 1:

ΔEv,rms = 1/N

√√√√ N∑
i=1

(vk+1i − vki )2. (9)

Table 1 – Simulation results with synthetic data using a linearized inversion
through the conjugate gradient method with a regularization by derivative matri-
ces. The data were corrupted with random noise (noise factorμ = 0.1). n = 1
indicates a first-order regularization, and n = 2 indicates a second-order reg-
ularization. λopt is the optimum regularization parameter, andΔErms is the
RMS velocity residual between iterations k + 1 and k.

Iteration 1 2 3 4
n 1 1 1 1
λopt 108 106 108 108

Ed,rms (%) 1.43 1.37 1.37 1.37
Ev,rms (%) 2.63 1.82 1.80 1.80
ΔErms (m/s) 6.42 1.01 0.13 0.05

n 2 2 2 2
λopt 1010 105 106 109

Ed,rms (%) 1.43 1.35 1.35 1.35
Ev,rms (%) 3.48 3.24 3.03 3.01
ΔErms (m/s) 6.09 1.52 0.62 0.10

A velocity residual of 0.1 m/s or a maximum of 10 iterations
was used.

The tomographic data with the crosswell geometry were ac-
quired by Schlumberger in a research project sponsored by
PETROBRAS. The single source could move in the well so that
there was a total of 141 source points. Additionally, a cable with
20 receivers with a 3 m spacing could move in the other well, so
there was a total of 140 receiver points. The wells have a cer-
tain inclination with respect to the datum plane, which was 100 m
above sea level. Figure 6 shows the valid traveltimes as a com-
bination of source number and receiver number. We can see that
the region with deeper sources and receivers is better illumined.

Careful attention was necessary during the ray tracing proce-
dure. For the predicted 19,740 rays numerically generated, only
14,200 were recorded in the field. We had 14,048 rays after the re-
moval of rays with picking errors. The imaging algorithm requires
the coordinates of sources and receivers, as well as a velocity
model. The initial model was again homogeneous (3,100 m/s).

The discrete model used had 3,526 blocks, with each block mea-
suring 5×5 m. The processing time for each iteration was 40 min-
utes, and in each iteration, the linear system is solved 20 times,
each time for a different regularization parameter. Note that the
inversion with real data was faster because there were less equa-
tions, although the number of unknowns was the same.

(a)

(b)

Figure 4 – Results from the synthetic data using a linearized inversion through
the conjugate gradient method with a first-order regularization. The data were
corrupted with random noise (noise factor μ = 0.1). (a) Estimated tomogram
after the first iteration; (b) Estimated tomogram after the fourth iteration.

Once more, we used the L-module estimator to choose λ
for the first- and second-order regularization. The curves in Fig-
ures 7a and 8a show this criterion. Depending on the iteration
k, we can estimate that the best λ ranges from 108 to 1010 for
both orders. The first-order is shown in Figure 7a, and second-
order is shown in Figure 8a.

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015
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(a) (b)

Figure 5 – Results from the synthetic data using a linearized inversion through the conjugate gradient method with a second-order regularization. The data were
corrupted with random noise (noise factor μ = 0.1). (a) Estimated tomogram after the first iteration; (b) Estimated tomogram after the fourth iteration.

Figure 6 – Graphical representation of the traveltime from the Dom João Field.
Time in seconds.

The first-order regularization convergence was achieved with
seven iterations. Figure 9a shows the result after the first itera-
tion, and Figure 9b shows the result after the seventh one. Fig-
ure 10a shows the estimated tomogram after the first iteration for
the second-order regularization, and Figure 10b shows the esti-
mated tomogram after the ninth one. The estimated tomograms
were consistent with available data from a sonic log near the ac-
quisition area in terms of layer geometry, as well as the P-wave
velocity range.

Table 2 summarizes all of the simulations with real data using
a linearized inversion through the conjugate gradient method with
regularization by derivative matrices. Both regularization orders
were used (first-order n = 1 and second-order n = 2). Simi-

lar to the synthetic data, the stop criterion was the RMS residual
between the estimated velocity distribution between the iterations
k and k+1. Again, a velocity residual of 0.1 m/s or a maximum
of 10 iterations was used.

CONCLUSIONS

Seismic tomography combines two important aspects: the esti-
mation of physical properties and medium imaging. The basic
idea of non-linear traveltime tomography is quite comprehensive
and widely applicable in reservoir geophysics. However, it re-
quires mathematical treatment to deal with the non-linearity and
the fact the inverse problem is ill-posed. In this sense, we used
the linearized inversion through the conjugate gradient method
with regularization by derivative matrices. The L-module approach
was used to select the optimal regularization parameter, λopt.

There is no general method for determining whether a solu-
tion obtained by the iterative method really does minimize error in
the global sense. However, we believe that there is a good con-
vergence in our case, because the studied area is reasonably well
known, that is, some information about its lithology is available in
the literature. This allowed us to choose an initial guess that rep-
resented satisfactorily the region. That also can be confirmed by
our numerical results and the correlation with sonic profile near
the acquisition area. This third well containing the sonic log is ap-
proximately 530 m away from the first well and 430 m away from
the second well, being the first and the second wells the ones used
in the tomographic inversion. Despite the distance, significant

Brazilian Journal of Geophysics, Vol. 33(1), 2015
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(a) (b)

Figure 7 – Auxiliary curves for the real data corresponding to different iterations used to choose the optimal regularization parameter using a first-order regularization.
The linearized inversion was done with the conjugate gradient: (a) MODL curve; (b) RMS error curve between the observed traveltimes and the calculated traveltimes.

(a) (b)

Figure 8 – Auxiliary curves for the real data corresponding to different iterations used to choose the optimal regularization parameter using a second-order regu-
larization. The linearized inversion was done with the conjugate gradient: (a) MODL curve; (b) RMS error curve between the observed traveltimes and the calculated
traveltimes.

Table 2 – Simulation results with real data using a linearized inversion through the conjugate gradient method with a regular-
ization by derivative matrices. n = 1 indicates a first-order regularization, and n = 2 indicates a second-order regularization.
λopt is the optimum regularization parameter, andΔErms is the RMS velocity residual between iterations k + 1 and k.

Iteration 1 2 3 4 5 6 7 8 9

n 1 1 1 1 1 1 1 1 1

λopt 108 108 108 108 108 109 1010 – –

Ed,rms (%) 12.60 12.28 11.96 11.67 11.46 11.44 11.43 – –

Ev,rms (%) 8.90 1.82 1.85 1.48 1.19 0.17 0.02 – –

n 2 2 2 2 2 2 2 2 2

λopt 1010 1010 1010 1010 1010 1010 1010 1010 1010

Ed,rms (%) 12.76 12.41 12.13 11.98 11.88 11.85 11.78 11.63 11.63

Ev,rms (%) 7.54 2.95 2.35 1.89 1.68 1.63 1.19 0.32 0.10

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015
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(a) (b)

Figure 9 – Results from the synthetic data using a linearized inversion through the conjugate gradient method with a second-order regularization. The data were
corrupted with random noise (noise factor μ = 0.1). (a) Estimated tomogram after the first iteration; (b) Estimated tomogram after the fourth iteration.

(a) (b)

Figure 10 – Results with real data using a linearized inversion through the conjugate gradient method with a second-order regularization. (a) Estimated tomogram
after the first iteration; (b) Estimated tomogram after the ninth iteration.

correlations were found between the sonic log with the estimated
tomogram. A comparative analysis was performed every 50 m in
the depth ranging between 400 and 550 m, and the values for the
estimated P-wave velocity were consistent in most intervals.

The use of ray theory as a high-frequency approximation for
acoustic wave propagation was feasible because the media in
both synthetic and real data examples did not have abrupt veloc-
ity changes. There was a region at shallow depths, without rays,

where the inversion result was inconsistent. One possibility to
improve the quality of the solution could be to use a sonic log as a
priori information because the initial model has an important role
in the inversion. However, such information was not available.

In general, the results showed that traveltime tomography
can be used for the characterization of reservoirs with a high
rate of vertical change like the situation of the Dom João Field,
Recôncavo Basin.
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APPENDIX A:
The Conjugate Gradient Method

The Conjugate Gradient (CG) is an optimization method to find
the solution of a linear system Ax = y. The CG is an itera-
tive method that starts with an initial estimate of x0 that will be
refined at each step based on the minimization of the residual
rk = y −Axk. Because of rounding errors in the numerical
calculations, the estimate forxniter will not be the exact solution
but will be a good approximation (Hestenes & Stiefel, 1952). In
this case, the matrixA is symmetrically positive and, up to niter
iterations, we will have find a satisfactory approximation for the
solution of the system. The following formulas express the CG
method:

p0 = r0 = y −Ax0 (x0 arbitrary) (A1)

αi =
(pi, ri)

(pi,Api)
, (A2)

xi+1 = xi + αipi, (A3)

ri+1 = ri − αiApi, (A4)

βi = −(ri+1,Api)
(pi,Api)

, (A5)

pi+1 = ri+1 + βipi. (A6)

where (pi, ri) represents the inner product between vectors pi
and ri and so on, pi is the direction that leads to a minimum,
and α is the step in the direction of the gradient gi = −ri. To
avoid repeatedly taking the same direction, the term gi is used to
correct xi+1. The CG method suggests that we take a set of di-
rections pi such that the gradient vector is orthogonal to the new
direction.

APPENDIX B:
Traveltime Seismic Tomography and Ray Tracing

Tomography is an image reconstruction technique with many ap-
plications in Geophysics (Stewart, 1991). It is based on the idea
that a set of observed data consist of integrals along lines of some
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physical quantity:

ti =

∫
Ri

s(x, z)dl = g[s(x, z)], (B1)

where ti is the traveltime related to the i-th raypath, Ri is the
raypath along which the integration is computed, dl is the ray-
path element, and s(x, z) is the slowness of the block. The mid-
dle point is (x, z), where x is the horizontal coordinate and z is
the vertical coordinate. g[s(x, z)] represents the variable g as a
function of the slowness s(x, z). Equation (B1) has a non-linear
behavior because it describes the raypath for non-homogeneous
media.

A simpler way to parameterize the velocity distribution is to
divide the study area into small cells or blocks and to assign con-
stant values of slowness (reciprocal of velocity) to each cell. The
use of high-frequency sources allows for a precise determination
of traveltimes, which will provide high-resolution images of ve-
locity structures.

In the geometric acoustics approach, the energy may be trans-
ported along curves whose trajectories are orthogonal to the wave-
front movement. A more logical way to analyze the ray trace with-
out using the concept of the wavefront is through Fermat’s princi-
ple. Several methods are described in the literature to determine
the ray path between two points. The following steps describe the
numerical algorithm proposed by Andersen & Kak (1982). Ap-
plying Fermat’s principle and knowing that Euler’s equation is a
necessary condition for the existence of an extreme value of the
integral

∫ P2
P1
n ds, we obtain the following differential equation

for a non-homogeneous medium:

d

ds

(
n
dr

ds

)
= ∇n, (B2)

where n(x, z) is the refraction index at position (x, z), r is the
ray position vector, dr/ds is a vector tangent to the ray at (x, z),
ds is the length element in the ray trajectory, and∇n = dn/dr
is the refraction index gradient. This differential equation is re-
ferred to as the ray equation of the radius, and for a certain regu-
lar neighborhood (where the refraction index varies smoothly), its
solution represents a family of rays with a shorter acoustic path
(Andersen & Kak, 1982).

Developing the ray equation, we obtain:
(
∇n · dr

ds

)
dr

ds
+ n
d2r

ds2
= ∇n. (B3)

Expanding the position vector in the Taylor series at the point
s + Δs, where Δs is the ray increment, and considering only

the first three terms, we have:

r(s+Δs) = r(s) +
dr

ds
Δs+

1

2

d2r

ds2
(Δs)2. (B4)

Isolating the curvature vector d2r/ds2 in Eq. (B3) and sub-
stituting it into Eq. (B4), we obtain the following expression:

r(s+Δs) = r(s) +
dr

ds
Δs+

1

2n

×
[
∇n−

(
∇n · dr

ds

)
dr

ds

]
(Δs)2.

(B5)

The next point along the ray is estimated by the following
equations:

xk+1 = xk + cosαkΔs

+
1

2sk
(sk,x − dk cosαk)Δs2,

zk+1 = zk + sinαkΔs

+
1

2sk
(sk,z − dk sinαk)Δs2,

(B6)

where sk,x and sk,z are the slownesses in the x and z directions,
respectively. dk is defined as:

dk = sk,x cosαk + sk,z sinαk. (B7)

Starting from a given initial point (x0 , z0)which corresponds
to the source position, one may obtain the successive points along
the ray because the values of sinαk and cosαk are easily cal-
culated. According to Andersen & Kak (1982), this method has
some limitations, as the errors caused in the discretization pro-
cess or due to the abrupt velocity transitions may be cumulative.
To minimize this problem, one must adopt a grid with a sufficient
resolution so that the medium is properly sampled, resulting in
smoother velocity transitions. One can also smooth the velocity
field and use the bilinear interpolation of the refraction index and
its partial derivatives.

One problem in ray tracing is finding the coordinates of the
receiver where the ray comes from the source. For a homogeneous
medium, the connection between the source and the receiver is a
straight ray, which makes the problem trivial. Considering a non-
homogeneous medium, however, one must account for the ray
curvature. In this case, the problem is predicting the launch angle
of the ray from the source so the ray reaches a particular receiver.
The bonding process between source and receiver is called ray
linking. For this study, the adopted methodology for the ray trac-
ing is based in Schots (1990): the angle and the traveltime for
each ray is calculated using the linking method, where the initial
angle between source and receiver is a straight line in relation to
the horizontal axis. If there is a strong variation in the slowness
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distribution, several rays may not reach the goal after an estab-
lished number of iterations. In this case, after tracing all rays, one
uses as initial angle for non-convergent rays the ray angles that
are closer to the rays that have converged. Using the shooting
method and considering a circle of a given radius, with center at
the receiver (xg, zg), any ray that enters and finishes in the area

will belong to this receiver. The Newton-Raphson method, which
compares the traveltime of this ray with the traveltime given from
the linking method or of a previous ray, is used to find the receiver.
The chosen ray will be the one with the shorter time, according to
Fermat’s principle.
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