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ABSTRACT. The aim of this study was to map iron duricrust in order to subsidize the Carajás Railway duplication project, in a tract of approximately 200 km, located

between the states of Pará and Maranhão, north and northeast regions of Brazil. The vegetation is constituted of crop areas and grassland. The methodology is based

on the Crósta technique applied to six and four bands of the TM Landsat 5. The results showed that the application of the technique to four bands was more effective

to detect iron oxides. In the center-north to northeast of the study area, where a wide dissected plateau occurs, potential iron oxide concentrations are observed, which

are coincident with the main duricrust registered occurrences and roughly with the lateritic deposits located in the geological map.
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RESUMO. O objetivo deste trabalho foi mapear crostas lateŕıticas ferruginosas para subsidiar o projeto de duplicação da Ferrovia Carajás, num trecho de aproxi-

madamente 200 km, constituı́do, principalmente, por áreas agŕıcolas e pastagens, localizado entre os estados do Pará e Maranhão, regiões Norte e Nordeste do Brasil.

A metodologia enfocou a técnica Crósta, aplicada a seis e quatro bandas espectrais do sensor TM Landsat 5. Os resultados mostraram que a aplicação da técnica a

quatro bandas foi mais eficiente na detecção de minerais de óxido de ferro. Nas regiões centro-norte e nordeste da área de estudo, caracterizadas por um amplo platô

dissecado, encontram-se potenciais concentrações de minerais de óxido de ferro, que coincidem com as principais ocorrências cadastradas e aproximadamente com

os depósitos lateŕıticos indicados no mapa geológico.
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INTRODUCTION

The Carajás Railroad is situated in the north and northeast
regions of Brazil, with approximately 1,000 km extension and
connects the Carajás Iron Mine, on the southeast of the Pará
State, to the Ponta da Madeira Port, in São Luı́s, Maranhão State.
Due to the high consumption of iron ore during the last years, a
project for duplication of the railroad is being developed. Due to
the lack of materials with adequate geotechnical properties to be
used as railroad sub-ballast, option was made, under others, to
use ferruginous lateritic duricrust.

The lateritic duricrust coverage, according to Beauvais &
Colin (1993) and Bigarella et al. (1996) would be the result of
laterization processes – intense chemical weathering from any
preexisting rock – in regions of tropical climate with long dry
periods and an annual rainfall between 1,200 and 1,800 mm.
In the Amazon Region they have a wide distribution and would
have been formed during the Lower Tertiary and the Quaternary
(Pleistocene), as a result of the action of the South American and
Paraguaçu/Manzerini (Costa, 1991) peneplain surfaces.

The study area is located between the cities of Marabá, Pará
State and Açailândia, Maranhão State, and includes part of the
Carajás Railroad with approximately 200 km extension (Fig. 1). In
this region, an ample dissected plateau occurs at north and north-
east, with a maximum elevation of 475 m a.s.l., and ample hills
and isolated hillocks appear at southwest. The original vegetation
may be divided in open forest with “Cerrado” insets and dense
forest, both extensively substituted by agriculture, and by pas-
tures used to breed cattle. In the more outstanding portions of the
relief, are found isolated remnants of ferruginous lateritic crust
covers, developed over Cretaceous sandstones from Itapecuru
Formation, which are being explored and used in civil engineering
constructions.

The use of Landsat images for regional mineral exploration
is being used, with success, by various researchers such as
Kaufmann (1988), Varajão et al. (1988), Fraser (1991), Lough-
lin (1991), Bennett et al. (1993), Crósta & Rabelo (1993), Crósta
& Souza Filho (2009), under others. In this sense, the purpose
of this work is to determine the areas with best occurrence po-
tential of ferruginous lateritic crusts, using the digital processing
of TM images, in order to support future field surveys, which im-
plies in time and resources savings. For that purpose the “Crósta
technique” was used, known as a variation of the principal com-
ponents transform (Crósta & Moore, 1989).

MATERIAL AND METHOD

In tropical regions the natural vegetation may dramatically limit
the application of the multispectral sensor data, in minerals’ detec-

tion and mapping, since it tarnishes their spectral answer (Siegal
& Goetz, 1977; Carranza & Hale, 2002). Although the region un-
der study is located on the periphery of the Amazon Region, where
originally open forests and “Cerrado” insets and dense forests
occurred (BRASIL, 1973; BRASIL, 1974), both were intensively
substituted by agriculture and pastures for cattle breeding, which
increases the possibilities for success in relation to the use of
remote sensors in mineral surveys.

Considering this, the methodology was based on digital im-
ages from the TM Landsat 5, using applications Spring 5.1 and
ArcGis 9.x. The area under study is covered by the scenes/point
orbit 222/63, 222/64, 223/63 and 223/64, obtained in differ-
ent dates during the dry season. The satellite images are freely
available at: <http://www.cbers.inpe.br/>. In this work the Geo-
graphic Coordinate System and Datum SAD69 were used.

The original images were not submitted to any pre-pro-
cessing, with exception of the geometric correction, as demon-
strated by Loughlin (1991). The image processing focused on
the reflectance in the 350-1,500 nm interval of the electromag-
netic spectrum, associated to the minerals of the iron oxide group
(Fig. 2, Hunt & Salisbury, 1970). The “Crósta technique” was in-
dividually applied to the set of images of each scene (Crósta &
Moore, 1989), a variation of the principal components transform,
which aims to remove the information redundancy contained in
the original images. In a simplified view, it is based on the previ-
ous knowledge of the spectral signature of specific targets in the
spectral bands, in order to define and select the principal compo-
nents which contain the desired information. An important aspect
of this technique is that it indicates, based on the signal and mag-
nitude contributions of each original image, if the target of interest
will be enhanced in the PCs images as light pixels (high digital
levels) or dark (low digital levels). This successful technique is
being used by many researchers (Loughlin, 1991; Crósta & Ra-
belo, 1993; Davidson et al., 1993; Ruiz-Armenta & Prol-Ledesma,
1998; Souza Filho & Drury, 1998; Sabine, 1999; Carranza & Hale,
2002; Tagestani & Moore, 2002; Ranjbar et al., 2004).

STUDY AREA

Geology

The study area (Fig. 1) includes lithotypes from the Amazon Cra-
ton, Tocantins Province and Parnaı́ba Province, varying in ages
from the Mesoarchean to the Cretaceous (Faraco et al., 2004; Vas-
concelos et al., 2004).

The Amazon Craton is represented by charnockitoids, in-
cluded in the Cajazeiras Enderbite unit, which crops out exclu-
sively in the northeast portion of the area.
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Figure 1 – Geologic map of the study area based on Faraco et al. (2004) and Vasconcelos et al. (2004).

Figure 2 – Spectral signatures of iron oxide, vegetation and clay. Extracted from Carranza & Hale, 2002.

The units included in the Tocantins Province crop out in the
center-west region, and are constituted by very weathered rocks,
represented by phyllites, shales and slates, with an approximate
N-S orientation, belonging to Couto Magalhães and Xambioá
Formations.

The Parnáıba Province covers the largest portion of the study
area and includes, mostly, transitional and marine fluvial sand-
stones, of Devonian and Cretaceous age, included in Itapecuru,
Codó, Pastos Bons, Pedra do Fogo, Poti and Pimenteiras For-
mations, besides igneous bodies of basic and alkaline igneous
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bodies, cropping out in the extreme south (Mosquito and Sam-
baiba Formations). Under the outcropping units are the fluvial
sandstones and pelites from Itapecuru Formation which are the
most important expression in the area. Over this unit is described
a detrital/lateritic coverage with Tertiary age.

Quaternary sediments crop out along the Tocantins and
Araguaia River plains and their main tributaries, being constituted
by unconsolidated sands, clays and gravel levels.

Lateritic coverage

The lateritic coverage, according to Beauvais & Colin (1993) and
Bigarella et al. (1996) may be classified in two distinct types:
autochthonous and allochthonous. The autochthonous, which
are of special interest for this work, are conformed by an upper
duricrust or concretionary horizon mainly constituted by minerals
such as hematite and goethite.

The lateritic coverage occupies the top and middle slope por-
tions. The duricrust horizon is a lithified layer of red color and
nodular, columnar or, more rarely planar structure, with thick-
nesses in the order of 0.5-3 m, which vertically turns into red-
dish and yellowish latosols (Figs. 3, 4, 5). The organic horizon, if
present, has a thickness of less than 0.5 m.

Figure 3 – Lateritic coverage with columnar structure. Thickness in the order of
2.5 m. Fazenda Água Boa, Cidelândia, Maranhão State.

Figure 4 – Detail of the duricrust horizon in the middle of the lateritic profile.
Note the abundance of lithorelicts. Highway BR-230, Km 05.

IMAGE ANALYSIS AND PROCESSING

The geologic remote sensing must consider, not only the geologic
model of the specific targets, but also the typology, occurrence
and spectral characteristic of the other materials which constitute
the landscape (for example, relief, hydrography, vegetation, soil
use), since they contribute to the spectral answer of each pixel,
and help in the data interpretation.

The colored composition R5G4B3 (Fig. 6) enhances those
aspects of the landscape. Based on the method adopted in this
work, the most propitious areas for the identification of the lateritic
coverage would by those where the vegetation cover is absent or
incipient. Those areas are generally (pink color), concentrated in
the north-northeast, center-south and southeast regions.

Crósta technique applied to six spectral bands

Tables 1, 2, 3 and 4 provide the matrices of the eigenvectors
from the principal components transform applied to the six orig-
inal TM bands reflected from scenes/point orbit 222/63, 222/64,
223/63 and 223/64, which cover the study area. The PC1 of Ta-
ble 1 does not indicate a significant spectral feature, since it is
composed by a positive mixture of all bands, in this case with a
higher proportion of band TM5, showing information about to-
pography (shading) and albedo. The magnitude of the eigenval-
ues indicates that more than 90% of the information of the images
of the PCs is contained in this principal component. The PC2 is
dominated by the contribution of TM4, which presents the spec-
tral answer due to vegetation. The PC3 demonstrates the contrast
between the spectral information of the visible (channels 1-2-3)
and of the infrared from the electromagnetic spectrum (channels
4-5-7).
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Figure 5 – Occurrence of boulders in the duricrust horizon. Coordinates: Lat/Long 5◦29′36,09′′S/49◦11′59,55′′W.

Figure 6 – Color composition R5G4B3. The green color indicates vegetation (undifferentiated), the pink, is exposed soil and the magenta indicates urban areas. The
continuous yellow line represents the approximate position of the Carajás Railroad. The yellow triangles correspond to the occurrence of catalogued lateritic crusts.

Since the three first PCs do not show any information about
the iron oxide minerals, the three other will contain the spectral
information referring to these minerals. It should be mentioned

that the information of interest represents only 0.14% of the to-
tal variance of the scene. The PC4 is formed through moderate
contributions and opposed signals of the TM1 (23.44%), TM2
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(−35.41%) and TM3 (−12.92%) bands. Since the iron oxide
minerals have absorption in the TM1 and TM2 bands and high
reflectance in TM3 band, they will be enhanced as dark pixels
in PC4. The PC4 also presents a moderate negative contribu-
tion from TM4 (−12.44%), which indicates that the vegetation
will also be enhanced as dark pixels. PC5 is formed by moderate
to high contributions and opposed signals of TM5 (−18.99%)
and TM7 (49.72%) bands. In nature, the clay minerals are one
of the most common products deriving from rock weathering. In
accordance with Figure 2, they exhibit high reflectance in TM5
band and little absorption in TM7 band. Thus, the clay minerals
are mapped as dark pixels in PC5. In PC6 the iron oxide miner-
als are mapped as light pixels, since there is an intense reflection
in TM4 band (50.88%) and low to moderate absorption in TM1
(−8.77%) and TM2 (−25.73%) bands.

Table 1 – Matrix of eigenvectors from the six original TM bands reflected from
the scene/point orbit 222/63. The cells enhanced in bold indicate the PCs which
contain spectral information referring to iron oxide minerals.

TM1 TM2 TM3 TM4 TM5 TM7
Eigenvalue

(%)

PC1
0.49 0.23 0.23 0.51 0.59 0.22

96.31
21.59% 10.13% 10.13% 22.47% 25.99% 9.69%

PC2
–0.12 0.28 0.06 –0.74 0.47 0.36

3.35
–5.91% 13.79% 2.96% –36.45% 23.15% 17.73%

PC3
–0.70 –0.32 –0.24 0.32 0.50 0.07

0.19
–32.56% –14.88% –11.16% 14.88% 23.26% 3.26%

PC4
0.49 –0.74 –0.27 –0.26 0.25 –0.08

0.09
23.44% –35.41% –12.92% –12.44% 11.96% –3.83%

PC5
0.05 –0.14 –0.24 0.13 –0.34 0.89

0.04
2.79% –7.82% –13.41% 7.26% –18.99% 49.72%

PC6
–0.15 –0.44 0.87 –0.04 –0.06 0.15

0.01
–8.77% –25.73% 50.88% –2.34% –3.51% 8.77%

Table 2 – Matrix of eigenvectors from the six original TM bands reflected from
the scene/point orbit 222/64. The cells enhanced in bold indicate the PCs which
contain spectral information referring to iron oxide minerals.

TM1 TM2 TM3 TM4 TM5 TM7
Eigenvalue

(%)

PC1
0.54 0.20 0.23 0.55 0.53 0.18

95.27
24.22% 8.97% 10.31% 24.66% 23.77% 8.07%

PC2
–0.11 0.27 0.04 –0.67 0.56 0.38

3.11
–5.42% 13.30% 1.97% –33.00% 27.59% 18.72%

PC3
0.73 0.18 0.22 –0.44 –0.43 –0.08

1.29
35.10% 8.65% 10.58% –21.15% –20.67% –3.85%

PC4
–0.34 0.70 0.32 0.21 –0.39 0.32

0.23
–14.91% 30.70% 14.04% 9.21% –17.11% 14.04%

PC5
0.16 –0.33 –0.31 0.08 –0.26 0.83

0.08
8.12% –16.75% –15.74% 4.06% –13.20% 42.13%

PC6
–0.15 –0.51 0.83 –0.05 –0.01 0.14

0.02
–8.88% –30.18% 49.11% –2.96% –0.59% 8.28%

The same reasoning may be extended to the eigenvectors ma-
trices of Tables 2, 3 and 4, in which are exposed the statistical
results of the principal components transform, applied to the six
original bands of the other scenes. In these tables, PC1 may be
interpreted as albedo and shading, PC2 represents the difference
between the spectral bands of the visible and the infrared and PC3
maps vegetation. The spectral information referring to the iron
oxide minerals is contained in the other PCs and corresponds to
0.9% of the total variance of the scenes. Thus, iron oxide minerals
will be mapped as light pixels in PC4 and PC6 on Table 2, and the
clay minerals will be mapped as dark pixels in PC5 and secondar-
ily in PC4. In Table 3, the iron oxide minerals are mapped as light
pixels in PC4 and as dark pixels in PC6, and the clay minerals
mapped as dark pixels in PC5. In Table 4, the iron oxide minerals
are mapped as light pixels in PC4 and as dark pixels in PC6 and
the clay minerals are mapped as dark pixels in PC5 and PC4.

Table 3 – Matrix of eigenvectors from the six original TM bands reflected from
the scene/point orbit 223/63. The cells enhanced in bold indicate the PCs which
contain spectral information referring to iron oxide minerals.

TM1 TM2 TM3 TM4 TM5 TM7
Eigenvalue

(%)

PC1
0.50 0.22 0.21 0.55 0.56 0.20

96.1622.32% 9.82% 9.38% 24.55% 25.00% 8.93%

PC2
–0.13 0.04 0.23 –0.69 0.56 0.36

3.41–6.47% 1.99% 11.44% –34.33% 27.86% 17.91%

PC3
0.76 0.20 0.20 –0.42 –0.39 –0.07

0.3037.25% 9.80% 9.80% –20.59% –19.12% –3.43%

PC4
–0.36 0.37 0.77 0.16 –0.31 0.11

0.09–17.31% 17.79% 37.02% 7.69% –14.90% 5.29%

PC5
0.07 –0.27 –0.12 0.12 –0.34 0.88

0.043.89% –15.00% –6.67% 6.67% –18.89% 48.89%

PC6
–0.13 0.83 –0.50 –0.05 –0.06 0.18

0.01–7.43% 47.43% –28.57% –2.86% –3.43% 10.29%

Table 4 – Matrix of eigenvectors from the six original TM bands reflected from
the scene/point orbit 223/64. The cells enhanced in bold indicate the PCs which
contain spectral information referring to iron oxide minerals.

TM1 TM2 TM3 TM4 TM5 TM7
Eigenvalue

(%)

PC1
0.41 0.20 0.18 0.60 0.60 0.21

91.1718.64% 9.09% 8.18% 27.27% 27.27% 9.55%

PC2
–0.04 0.06 0.25 –0.71 0.51 0.40

5.70–2.03% 3.05% 12.69% –36.04% 25.89% 20.30%

PC3
0.77 0.31 0.25 –0.27 –0.40 –0.10

2.7036.67% 14.76% 11.90% –12.86% –19.05% –4.76%

PC4
–0.37 0.22 0.66 0.22 –0.39 0.41

0.31–16.30% 9.69% 29.07% 9.69% –17.18% 18.06%

PC5
0.24 –0.33 –0.41 0.06 –0.27 0.77

0.1011.54% –15.87% –19.71% 2.88% –12.98% 37.02%

PC6
–0.18 0.84 –0.49 –0.03 –0.02 0.15

0.02–10.53% 49.12% –28.65% –1.75% –1.17% 8.77%
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If the number of spectral bands is reduced in the principal
components transform, in order to avoid a certain spectral an-
swer, the chances to concentrate the spectral answer of a certain
mineral class in only one principal component increase (Lough-
lin, 1991). In this sense, as deduced from Figure 2, the principal
components transform was applied to channels TM 1-3-4-5. The
substitution of TM7 band by TM5 band produces a despicable
effect in the analysis result. The omission of one infrared band
has the purpose to avoid mapping of clay minerals.

Crósta technique applied to four spectral bands

The Tables 5, 6, 7 and 8 show the eigenvector matrices from prin-
cipal components transform, applied to TM 1-3-4-5 bands from
scenes/point orbit 222/63, 222/64, 223/63 and 223/64, which
cover the study area. In them, PC1 may be interpreted as albedo
and shading, since there is a positive contribution of all spectral
bands, PC2 as vegetation, since it presents a high negative con-
tribution to TM4 band and PC3 represents the difference between
the visible (TM1-3) and the infrared (TM4-5) spectral bands.

Table 5 – Matrix of eigenvectors from TM 1-3-4-5 bands from the scene/point
orbit 222/63, for the mapping of the iron oxide minerals. The cells enhanced in
bold indicate the PC which contain spectral information referring to iron oxide
minerals.

TM1 TM3 TM4 TM5
Eigenvalue

(%)

PC1
0.52 0.25 0.54 0.62

96.49
26.94% 12.95% 27.98% 32.12%

PC2
–0.07 0.33 –0.74 0.57

3.21
–4.09% 19.30% –43.27% 33.33%

PC3
0.77 0.29 –0.31 –0.48

0.20
41.62% 15.68% –16.76% –25.95%

PC4
–0.38 0.86 0.24 –0.24

0.10
–22.09% 50.00% 13.95% –13.95%

Table 6 – Matrix of eigenvectors from TM 1-3-4-5 bands from the scene/point
orbit 222/64, for the mapping of the iron oxide minerals. The cells enhanced in
bold indicate the PC which contain spectral information referring to iron oxide
minerals.

TM1 TM3 TM4 TM5
Eigenvalue

(%)

PC1
0.56 0.21 0.58 0.55

95.57
29.47% 11.05% 30.53% 28.95%

PC2
–0.05 0.30 –0.69 0.66

2.91
–2.94% 17.65% –40.59% 38.82%

PC3
0.78 0.18 –0.40 –0.44

1.33
43.33% 10.00% –22.22% –24.44%

PC4
–0.26 0.91 0.17 –0.26

0.20
–16.25% 56.88% 10.63% –16.25%

Table 7 – Matrix of eigenvectors from TM 1-3-4-5 bands from the scene/point
orbit 223/63, for the mapping of the iron oxide minerals. The cells enhanced in
bold indicate the PC which contain spectral information referring to iron oxide
minerals.

TM1 TM3 TM4 TM5
Eigenvalue

(%)

PC1
0.52 0.22 0.58 0.59

96.38
27.23% 11.52% 30.37% 30.89%

PC2
–0.09 0.27 –0.69 0.66

3.23
–5.26% 15.79% –40.35% 38.60%

PC3
0.81 0.18 –0.41 –0.39

0.31
45.25% 10.06% –22.91% –21.79%

PC4
–0.26 0.92 0.15 –0.26

0.08
–16.35% 57.86% 9.43% –16.35%

Table 8 – Matrix of eigenvectors from TM 1-3-4-5 bands from the scene/point
orbit 223/64, for the mapping of the iron oxide minerals. The cells enhanced in
bold indicate the PC which contain spectral information referring to iron oxide
minerals.

TM1 TM3 TM4 TM5
Eigenvalue

(%)

PC1
0.43 0.19 0.63 0.62

91.90
22.99% 10.16% 33.69% 33.16%

PC2
0.03 0.30 –0.72 0.63

5.19
1.79% 17.86% –42.86% 37.50%

PC3
0.84 0.25 –0.23 –0.42

2.65
48.28% 14.37% –13.22% –24.14%

PC4
–0.33 0.90 0.17 –0.21

0.26
–20.50% 55.90% 10.56% –13.04%

The spectral information referring to the iron oxide minerals
is contained in PC4, which corresponds to only 0.64% of the
total variance of the scenes. In Table 5 the iron oxide minerals
are mapped as light pixels, since they present high contributions
of opposed signals in TM1 (-22,09%) and TM3 (50%) bands.
In analog form, in Tables 6, 7 and 8 the iron oxide minerals are
mapped in PC4 as light pixels. Figure 7 depicts the mosaic of im-
ages from PC4 from the different scenes, in which the iron oxide
minerals are enhanced as light regions. It can be noticed that the
concentrations are constituted by little fragmented areas, mostly
concentrated in the north-northeast portion, which coincides with
an ample dissected plateau and to areas with exposed soil, where
the largest and thickest occurrences of lateritic crusts were deter-
mined. The results are also approximately coincident with what is
indicated in the regional geologic map (Fig. 1).

CONCLUSION

The results obtained allow to conclude that:

• The application of the Crósta technique with four spectral
bands has proven to be more efficient for the mapping of
the iron oxide minerals.
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Figure 7 – Mosaic of images from PC4 from the scenes/point orbit 222/63, 222/64, 223/63 and 223/64, generated from the principal components transform of the
original TM 1-3-4-5 channels. The iron oxide minerals are enhanced as light regions. The continuous yellow line represents to the approximate position of the Carajás
railroad. The yellow triangles correspond to known occurrences.

• The PC 4 contains the spectral information referring to the
iron oxide minerals in the study area. It can be noticed that
the concentrations are constituted by little fragmented ar-
eas, which occur, mostly, in the north-northeast portion.
These areas coincide with an extended dissected plateau
and of areas with exposed soil, where the largest and
thickest occurrences of lateritic crusts were determined.
The results also coincide approximately with the informa-
tion of the geologic map.

• The concentrations of iron oxide minerals indicate the
geographic proximity with the railroad track, and so they
become potential targets to be investigated.
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CRÓSTA AO & RABELO A. 1993. Assessing Landsat TM for hydrother-

mal mapping in central-western Brazil. In: Proceedings of the Ninth

Thematic Conference on Geologic Remote Sensing, Pasadena, Califor-

nia, USA, 1053–1061.
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