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SUBSURFACE STRESS PREDICTION USING SEISMIC DATA FOR OIL AND GAS EXPLORATION

Lourenildo W.B. Leite, Wildney W.S. Vieira and Boris Sibiryakov

ABSTRACT. The present paper is part of a project that has for objective the prediction of stress in sedimentary basins, as a contribution to geological and engineering
methods and techniques for oil and gas exploration. Such an attractive and important scientific theme is based on the knowledge of the compressional (vP ) and shear

(vS ) wave velocities and the densities (ρ) distributions, in order to localize low pressures zones in sedimentary basins. It is rather usual to think and accept that pressure
increases continuously with depth, and we show here that this is not the case. The vertical and horizontal pressure variations act as natural pumps that pushes fluids

from high to low pressure zones. The major physical parameter for this phenomenon is played by the γ = vS
vP

ratio discontinuity along the interfaces. Most of the
seismic exploration is based on the acoustical wave equation, that results in a knowledge for the compressional wave velocity model. To obtain the shear wave velocity

information it is necessary a 3D component sensor survey, and density log information can also be incorporated. Shear wave velocities can also be obtained from

VSP technology, and by petrophysical measurements. There are tables and regression models for seismic velocities and densities that can also be incorporated in this
prediction. As a result of the γ ratio behavior, an anticline is not necessarily the only structural condition for a potential area for oil and gas accumulation. A trap can be

present as a horizontal structure if there is a positive γ ratio discontinuity, or a negative discontinuity of the Poisson σ ratio across the horizontal boundary (lower minus
upper values). These physical conditions are responsible for producing a pressure discontinuity, such that there will be a sufficiently lower pressure zone underneath

than above the boundary. In this case, the lower horizontal boundary is said to be a fluid attractor surface. In the opposite physical conditions, this boundary does not

have fluid attraction properties. For the developed theory implemented here, the example presented here is the 2D Marmousi subsurface model for simpler and direct
visualization, but the theory accounts for a 3D case.

Keywords: sedimentary basin modeling, pressure prediction, subsurface stress.

RESUMO. O presente trabalho faz parte de um projeto que tem por objetivo a predição de tensões em bacias sedimentares, como uma contribuição aos métodos

e técnicas da geologia e da engenharia de exploração de óleo e gás. Este assunto cient́ıfico, atrativo e importante, é baseado no conhecimento das distribuições das
velocidades das ondas sı́smicas compressionais (vP ) e cisalhantes (vS ) e das densidades (ρ), com a finalidade de se localizar zonas de baixa pressão no subsolo.

É muito comum se imaginar e aceitar que a pressão aumenta continuamente com a profundidade, e mostramos aqui que este não é o caso. As variações verticais e
horizontais de pressão agem como bombas naturais que forçam os fluidos se moverem das zonas da alta para as de baixa pressão. O parâmetro f́ısico principal que rege

este fenômeno é a medida de descontinuidade representada pela razão γ = vS
vP

ao longo das interfaces. A maior parte dos métodos sı́smicos de exploração é baseada

na equação de onda acústica, o que resulta no conhecimento do modelo de velocidade das ondas compressionais. Para se obter a informação das ondas cisalhantes é
necessário que o levantamento seja com sensores 3D, e a informação de poço também possa ser incorporada. Velocidades das ondas cisalhantes também podem ser

obtidas com a tecnologia VSP, e com medidas petrof́ısicas. Existem modelos de tabelas e de regressão para velocidades sı́smicas e densidades que também podem
ser incorporadas na predição. Como resultado do comportamento da razão γ, um anticlinal não é necessariamente a única condição estrutural para a potencialização

de acumulações de óleo e gás. Uma trapa pode estar presente numa estrutura horizontalizada se a descontinuidade na razão γ for positiva, o que significa uma
descontinuidade negativa no coeficiente σ de Poisson ao longo da interface (parâmetros da parte inferior menos o da parte superior). Estas condições f́ısicas são

responsáveis por produzirem uma descontinuidade de pressão, de forma que existirá uma zona de pressão suficientemente mais baixa sob a interface do que acima dela.

Neste caso, a parte inferior da interface é dita ser uma superf́ıcie de atração de fluidos. No caso oposto das condições f́ısicas, a interface inferior não tem as propriedades
de atração de fluidos. Para a teoria aqui desenvolvida e implementada, o exemplo apresentado é do modelo da bacia do Marmousi 2D para uma visualização mais direta,

mas a teoria admite um caso 3D.

Palavras-chave: modelagem de bacia sedimentar, predição de pressão, tensão na subsuperf́ıcie.
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96 PRESSURE PREDICTION IN SEDIMENTARY BASIN

INTRODUCTION

This paper is a continuation of a major study for the prediction
of subsurface stress and strain using P and S wave velocities
(vP(x), vS(x)) and density (ρ(x)) to localize zones of pres-
sure discontinuity, that act as natural suction pumps in oil and
gas productive layers. As a result of these studies, Sibiryakov et
al. (2014, 2015) are example of publications, and they deal with
different aspects of the research studies.

The main question here raised is: How sensitive is the pres-
sure prediction calculus to variations of velocity and density dis-
tribution models?

The answer to this inquiry could be given by sensitivity anal-
ysis of the problem’s differential equation system, or in a more
practical way by numerical experiments. We chose this later route
based on migration methodology, where testing is performed with
smoothed versions of the input a priori information.

To develop the theory for stress-strain prediction for practical
application in oil and gas exploration, the first part has to be re-
lated to conventional seismic investigations to obtain the P and
S wave velocities and densities model. Also, the configuration of
seismic boundaries in the sedimentary basins can be necessary.
With these informations, the second part follows with the predic-
tion of stress and strain, and of the nontrivial behavior of pressure.
As a third continuation part, is the prediction of pressure discon-
tinuity between solid and fluid, that depends on the structure of
the pore space.

The present description considers only isotropic models, and
the theory also says that it is mandatory the knowledge of vP(x),
vS(x) and ρ(x). For anisotropic cases the equations are more
complicated, more control parameters, and the data needs more
processing. Since we have discretized the model in uniform 3D
grid, the layer cells forming the 3D geological structure have
constant elastic parameters.

The data needed for pressure prediction can be 3C (three
component sensors) to obtain P and S (SH and SV) wave modes,
and density log information can be incorporated. Also S wave
velocities can be obtained from VSP technology, and by petro-
physical measurements (Galperin, 1985; Biondi, 2010; Hardage
et al., 2011).

The theory is based on the static stress-strain equations,
where the overload gravity weight is responsible for the strain and
stress effects in the subsurface. Therefore, organizing this prob-
lem calls for Hooke’s generalized law of linear elasticity.

Another approach is to take into consideration the layer in-
terface curvatures, and to model this case as a confined plate
(Sibiryakov et al., 2015), what becomes a more complex prob-

lem. For instance, the anticline structure can be a very useful trap,
especially if it has a negative discontinuity (lower minus upper
parameters) in the γ = vS

vP
ratio. In this case, exists also an ad-

ditional horizontal stretching due to the negative curvature of the
anticline structure. It is interesting, that the effects of the struc-
ture slope and curvature contribute in opposite directions; the
slopes produce an additional compression, while the average sur-
face curvature (Smirnov, 1964) produces a horizontal stretching.
If there is an anticline structure with a positive discontinuity in the
γ ratio, it can be a compensational effect. The additional pressure
due to the γ discontinuity, and the additional stretching due to
the average curvature may eliminate each other. In this case, the
anticline structure is not a fluid attractor.

Basin studies aiming at oil and gas exploration contain many
theorectical aspects related to engineering, geology, geochem-
istry and geophysics, in order to characterize the reservoirs
(Hantschel & Kauerauf, 2009). Ameem (2003) presents a special
bibliography for methods and theories on crustal stress studies,
and also Zang & Stephansson (2010) is here used as a system-
atic reference. But, it should be clear that here we are developing
a specific data driven method that is based on vP(x), vS(x) and
ρ(x) knowledge, where we would like to map low pressure zones
that are important to locate a successful drilling zone for oil and
gas exploration.

METHODOLOGY

The stress and strain tensor fields

The stress [σ = σ(x, y, z)] and strain [ε = ε(x, y, z)] lin-
ear elastic continuum fields are related by the generalized Hooke’s
law, and described as tensors, functions of the space coordinates,
and they are represented by nine components. Figure 1 illustrates
these quantities for an arbitrary Cartesian reference coordinate
system (x, y, z), where any other desired plane, (x′ , y′, z′), can
be drawn to to have stress and strain calculated. Therefore, for the
general anisotropic media the stress (σ) and strain (ε) tensors
obey the spatial coordinate rotation relation given by:

σij =
∑
k,l

aijklσ
′
kl, (1)

and

εij =
∑
k,l

bijklε
′
kl, (2)

where the coefficients aijkl and bijkl define the new plane with
respect to a reference system. The elastic linear relation between
stress and strain is given by the generalized Hooke’s law (Mavko
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et al., 1999):

σij =
∑
k,l

cijklεkl, (3)

In this description, the first index (i) in σij and εij stands for the
plane direction, and the second (j) for the component direction.
It follows that the stress-strain will depend on the plane orienta-
tion passing by a considered point Q (see Fig. 1), and calculated
by their nine components. As we particularize, the stress state is

represented at a pointQ by a matrixS, with the elements are σij :

S =

⎡
⎢⎣
σxx σxy σxz

σyx σyy σxz

σzx σzx σzz

⎤
⎥⎦ . (4)

The differential equations that follow in the sequel are related
to Figure 1 (similar figures can be presented to described strain),
that serve to represent a physical particle of the subsurface, and
the solution of the equations correspond to the integration over
these infinitesimal quantities.

Stress States
We now look at expressions to represent the stress field. Therefore, turning to the stress matrix (4), it can be decomposed in three parts
in the form: S = S0 + SD + SN, such that it allows for a physical interpretation (Persen, 1975). For the state S0 we have that:

S0 =

⎡
⎢⎣
PH 0 0

0 PH 0

0 0 PH

⎤
⎥⎦ , (5)

where
PH =

1

3
(σxx + σyy + σzz), (6)

with the sum (6) for the normal stresses in Eq. (5) defining the called hydrostatic pressure, and this state is present in any plane around
the point Q. For the state SD we have that:

SD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σxx − PH 1

2
(σxy + σyx)

1

2
(σxz + σzx)

1

2
(σxy + σyx) σyy − PH 1

2
(σyz + σzy)

1

2
(σxz + σzx)

1

2
(σzy + σyz) σzz − PH

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

For the above Eq. (7), applying the symmetry property: σxy = σyx, σxz = σzx, σyz = σzy , SD results in a null state; i.e.,
SD = 0. For the state SN we have that:

SN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1

2
(σxy − σyx) 1

2
(σxz − σzx)

1

2
(σxy − σyx) 0

1

2
(σyz − σzy)

1

2
(σxz − σzx) 1

2
(σzy − σyz) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

Similarly, applying the symmetry property, the state SN simplifies to:

SN =

⎡
⎢⎢⎣
σxx − PH σxy σxz

σyx σyy − PH σxz

σzx σzx σzz − PH

⎤
⎥⎥⎦ . (9)

called the deviatory state for the diagonal elements (normal stresses), where the hydrostatic state is subtracted to remain the nonhydro-
static state.

Brazilian Journal of Geophysics, Vol. 34(1), 2016
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98 PRESSURE PREDICTION IN SEDIMENTARY BASIN

Figure 1 – A physical particle, and the stress field representation, σij , where τi,j stands for the tangential components of σij . The letters (α,β, γ) are the rotation

angles for the (z′, y′, z′) with respect to the (x, y, z) system. The particle is referenced to the pointQ located at the origin of the Cartesian system.

From the above discussion, we posed physically the stress
field representations by the hydrostatic pressure state (6), and by
the deviatory state (9). But, still other representations are possi-
ble as seen in the sequel, and all of them must be adapted here
for analyzing the 2D case. The simple word “pressure” (positive
or negative) is here always related to the normal stresses.

Isotropic Media
For an isotropic media, perfect linear elastic, the relation between
stress and strain is given by Hooke’s law in the simpler form:

σij = λθδij + 2μεij, (10)

where λ and μ are the Lamé’s elastic parameters, and δij Kro-
necker’s delta (δij = 0, if i �= j and δij = 1, if i = j). The
dimensionless θ parameter represents the dilatation given by the
divergence of the displacement vector 	u as:

θ = ∇· 	u = ∂ux
∂x
+
∂uy

∂y
+
∂uz

∂z
. (11)

The dimensionless strain tensor components εij are defined in
terms of the displacement components ui as:

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (12)

Also, the shear-extensional linear process produces a rotation
tensor that is given by:

ϕij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (13)

Therefore, once we know the displacement vector components
(ui), the functionals quantities in Eqs. (10), (11), (12) and (13)
can be calculated (Lowrie, 2011).

From the above discussion, for an isotropic media only two
constants are necessary to completely specify the stress-strain re-
lation. Boundary conditions are usually described by stress and
strain relations (mixed boundary problem) across an interface, for
continuity, free condition, and discontinuity. To be specific as an
example, a discontinuity condition would be the case for a bound-
ary along the a reservoir, with a geometrical form of an anticline,
or of a stratigraphic trap.

We take in consideration only the constitutive parameters
(density, Lamé’s parameters); that means, the model does not take
into account the separate structure contributions (like porosity,
specific surface area, fluids, etc) for changes in the velocities and
density distributions.

Since the model is related to the wave propagation in a perfect
linear elastic medium, the elasto-dynamic equations of motion are
given by:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂σxx
∂x
+
∂σxy
∂y
+
∂σxz
∂z

= ρ
∂2ux
∂t2

∂σyx

∂x
+
∂σyy

∂y
+
∂σyz

∂z
= ρ

∂2uy

∂t2

∂σzx

∂x
+
∂σzy

∂y
+
∂σzz

∂z
= ρ

∂2uz

∂t2
.

(14)

resumed to the form,

∂σij

∂xj
= ρ
∂2ui

∂t2
, (i, j = 1, 2, 3); or

(i, j = x, y, z).

(15)

That means that the spatial stress variation is related to the iner-
tial force per unit volume, and without internal forces (the gravity
effect).

Revista Brasileira de Geof́ısica, Vol. 34(1), 2016
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The velocities of the basic seismic body waves (P and S) in
homogeneous, isotropic, elastic media are given by:

vP =

√√√√K + 43μ
ρ

=

√
λ + 2μ

ρ
,

vS =

√
μ

ρ
,

(16)

whereK is the bulk modulus (the modulus of incompressibility),
μ is the shear modulus (modulus of rigidity), ρ is the density of
the material through which the wave propagates, and λ is related
toK and μ. From the above relations (16), the shear module is
calculated by μ = v2s ρ, the lambda module by λ = v2Pρ− 2μ,
and the gamma ratio by γ =

vS

vP
.

The density is usually a parameter admitted to change slowly
with depth, from the surface to the top of the target interface; but, in
some geological situations the density discontinuity can be rather
severe. In the present case the density varies with ρ = ρ(x, z),
and is integrated over the calculating grid.

Now we turn to the differential equation system to be inte-
grated, and that represents the problem’s description for the static
system, where the time variation is null. In this case, the equations
are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂σxx

∂x
+
∂σxy

∂y
+
∂σxz

∂z
= 0

∂σyx
∂x
+
∂σyy
∂y
+
∂σyz
∂z

= 0

∂σzx

∂x
+
∂σzy

∂y
+
∂σzz

∂z
= ρg

(17)

and resumed to the form,

∂σij

∂xj
= ρgδ3j , (i, j = 1, 2, 3); or

(i, j = x, y, z).

(18)

It means that the sum of horizontal stress variations are con-
sidered null, and the vertical component is given by the gravity
load in terms of force per unit area (ρg). Therefore, lateral tec-
tonic stress is not here taken into consideration. The quantities ρ
and g, in other case, can be considered as spatial functions; i.e.,
ρ = ρ(x, y, z) and g = g(x, y, z).

We consider at first a simple model formed by a horizontally
layered medium. The equation of equilibrium for the linear elastic
medium for every single layer is given by:

∂σik

∂xk
= ρgi, (19)

where σik are the components of stress tensor, ρ is the rock den-
sity, and gi is the gravity acceleration. For the case of vertical
gravity, gi=z(z) ≈ g, it is taken as constant for a rather short
depth variation, and a simpler Eq. (19) is written in the following
form:

∂σzz
∂xz

= ρg. (20)

The above equation has an elementary solution given by:

σzz|z=z0 =
∫ z=z0
z=0

ρgdz = ρgz0 = P0(z0), (21)

where P0 = ρgz0 is the weight of rocks per unit area; that is, the
vertical pressure due to the overload at any depth z0.

In the physical aspects of this description, it is not taken in
consideration geological faulting and lithological diagenesis for
the rock volume forming the reservoir (Nelson, 2001). Also, in
another paper we deal with the case of bending of the geologi-
cal formation resulting in an anticline structure (Sibiryakov et al.,
2015).

Scalar Pressure Field
The pressure field present in the subsurface rocks is a main
characteristic of the stress condition of the geological structures.
Stress is nonhydrostatic even in horizontal layered media subject
only to vertical gravity compactation without horizontal displace-
ment. Lateral tectonic stress is, therefore, a condition to be ex-
plicitly considered in organizing the model.

For the present simplified model, the vertical stress, σzz(z),
is defined as equal to the weight of the overburden; i.e.:

σzz = Pz = P0(z). (22)

The horizontal stress, σxx(z), considering that σyy = σxx in
this case, is sufficiently lower than the vertical stress, σzz , and
from Eqs. (17) and (21), it is shown to be given by:

σxx = Px = P0(1− 2γ2), (23)

where P0 = P0(z), γ = γ(z) =
vS(z)

vP(z)
.

The scalar invariant hydrostatic pressure field, P (z) = PH ,
was defined above as the average P = PH = 1

3(σxx+σyy+

σzz). Using the generalized Hooke’s law in the form (10), it is
demonstrated that this field is given by:

P = PH =

(
λ +
2

3
μ

)
θ, (24)

where θ(z) is the dilatation given by Eq. (11), andλ(z) andμ(z)
are the already described Lamé’s parameters.

Brazilian Journal of Geophysics, Vol. 34(1), 2016
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Another important physical characteristic is the overburden
pressure discontinuity at layer boundaries (ΔP = P+ − P−,
at z, and z positive downwards), that will exist if the velocity γ
ratio has a discontinuity. Considering the simplest case of layered
media, and Hooke’s law (10), it is demonstrated that the disconti-
nuity ΔP is given by:

ΔP (z) =
4

3
(γ21 − γ22)P0(z), (25)

where γ1 is the upper and γ2 the lower layer parameters across
the interface positioned at depth z. Therefore, the overburden
pressure varies stepwise as positive or negative with depth, if the
underlying γ ratio is different from the overlying γ ratio. This idea
may appear rather strange in simple geological descriptions, but it
is an important fact related to the nonelementary behavior of stress
in solids, and at this point we can recall Heim’s rule for lithostatic
stress variation in the subsurface (Zang & Stephansson, 2010),
as depicted if Figure 2.

Continuing now with the intensity of tangential stress, which
is a form to measure the mechanical instability responsible for
the failure of the solid rock skeleton and fracturing. For the sim-
ple layered media, the scalar invariant tangential stress, PT (z),
is defined by the average of the difference between horizontal and
vertical stresses, and with the use of Hooke’s law (10), we arrive
at the result:

PT =
1

2
(σzz − σxx) = γ2Pz. (26)

Again, it also depends on velocity γ ratio.
For the computational experiments, where the data is of any

origin, the vertical and horizontal numerical partial derivatives
with respect to x, y and z are calculated using symmetrical forms
(Abramowitz & Stegun, 1970). For the first order derivatives along
x or z as:

∂

∂x
f0,0 =

1

4h
(f1,1 − f−1,1 + f1,−1 − f−1,−1) + O(h2).

(27)

And for the second order derivatives along x and z as:

∂2

∂x∂z
f0,0 =

1

4h2
(f1,1 − f−1,1 + f1,−1 − f−1,−1) + O(h2).

(28)

The main full application should be to predict 3D stress and
strain around a geological reservoir volume, and to present the
results in form of a data cube, from where vertical and horizon-
tal sections can be extracted and interpreted. To be specific, here

we have only produced vertical sections, and this means that the
blocks have unitary thickness across the y axis for the results to
be in force per unit area.

In the next section we present one form of sensitivity analysis
to measure qualitatively the decay of the resolution in the stress
prediction, that depends on the smoothing of the input data. An-
other form of sensitivity analysis would take us to the domain of
the differential components of stress-strain field in a feature work
(Frank, 1978). And in the present example we stay close to the
seismic migration methodologies.

RESULTS

The experiments were devided in two main parts based on the
input data: Original and Smoothed input data (vP , vS and ρ).
Among the several experiments, the selected results for presenta-
tion had symmetrical smoothing operators with the lengths of 41,
81, and 101 points.

The same smoothing process (but could have been different)
was equally applied to the input model components (vP , vS and
ρ) to analyze the resolution decay of the prediction results. We
focused on some reservoir targets, as the input parameters sys-
tematically deviate from the original (real) values, what follows
the same criteria as used in the numerical tests for stack, inver-
sion and migration experiments. For the smoothing process, we
used the routine Smooth2a that is present in the SU (Cohen &
Stockwell, 2005) and Matlab (Schilling & Harris, 2005) codes,
and it represents an averaging symmetric rectangular operator,
and for the borders, the operator is supplied with less points, as
the central point of the rectangular operator reaches the end of the
smoothing area (Reeves, 2009).

The data selected and used for the present test was from
the Marmousi seismic project (Versteeg & Grau, 1991), and de-
scribed by Martin et al. (2006) as we show in Figure 3, where we
call attention to the gas an oil reservoir targets. The Marmousi
model has the compressional and shear wave velocities and den-
sity models that are shown in the figure sequence organized in
Table 1, together with impedance calculation.

Table 2 gives the sequence of figures of the calculated consti-
tutive parameters based on the input data.

There are different categories of figures for presenting the sub-
surface stress field, and Table 3 lists the results for field magni-
tudes and ratios.

The simple Table 4 lists the figure that we put in evidence for
the result of the vertical field discontinuity.

The double line of Table 5 shows the results for the field vari-
ations calculated by spatial derivatives.

Revista Brasileira de Geof́ısica, Vol. 34(1), 2016
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Table 1 – Input data and impedance.

Figure Description

4 vP (x, z) velocity

5 vS(x, z) velocity

6 ρ(x, z) density

7 IP (x, z) = vPρ, P wave impedance

8 IS(x, z) = vSρ, S wave impedance

9 ΔIPS(x, z) = IP − IS , P-S waves impedance contrast

10 RPS =
IP − IS
IP + IS

, vertical normalized impedance contrast coefficient

Table 2 – Constitutive parameters.

Figure Description

11 γ(x, z), gamma ratio

12 μ(x, z), shear module

13 λ(x, z), lambda module

14 σ(x, z), Poisson module

Table 3 – Pressure fields.

Figure Description

15 σzz = Pz, vertical pressure

16 σxx = Px, horizontal pressure

17 PH , hydrostatic pressure field

18 PXH = σxx − PH , horizontal deviatory hydrostatic pressure field

19 PZH = σzz − PH , vertical deviatory hydrostatic pressure field

20 PT =
1

2
(σzz − σxx), tangential stress, as a deviatory pressure field

21 kxz(x, z), dimensionless stress ratio, as a full section

22 kxz =
σxx

σzz
, dimensionless stress ratio, as depth profiles for details

Table 4 – Pressure field discontinuity.

Figure Description

23 ΔPz, vertical pressure discontinuity across interfaces

Table 5 – Spatial derivatives.

Figure Description

24
∂Pz

∂z
, vertical variation of the vertical pressure field

25
∂Px
∂x

, horizontal variation of the horizontal pressure field
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Figure 2 – Old geological concept known as Heim’s rule for the stress variation in the crust. SV stands for

the vertical stress, SH for the maximum horizontal stress, Sh for the minimum horizontal stress, and where

these quantities equalize as depth increases. This figure was redrawn based on Zang & Stephansson (2010).

Figure 3 – Geological description of the Marmousi according to Martin et al. (2006) with the oil and gas reservoir targets pointed to. We underlined the target in the

bottom sequence related to the classical anticline structure.

Based on theorectical aspects, different figures can be con-
structed as criteria for the analysis of the subsurface stress and
pressure conditions. Here, we present some selected figures to
focus at details and correlation with the low pressure areas below
specific interfaces pointed as potential fluid accumulation zones.

It should be clear that the analysis is basically lithostrati-
graphical, and that we are not concerned with chronological con-
cepts; even though, the smoothing process, that eliminates the
high frequency content in the input data, can suggest a chronolog-

ical and stratigraphical analysis, that is more complex and needs
more constraints.

Figures 4, 5 and 6 show the input vP , vS and ρ data, where
the main aspects (low frequency) are still recognized, but the de-
tails (high frequency) have been very much attenuated with the
smoothing process. Figures 7 and 8 show the impedances for the
P and S waves.

As we look for contrast informations to be able to point out
the presence of a reservoir, Figure 9 show the P-S impedance

Revista Brasileira de Geof́ısica, Vol. 34(1), 2016
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(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 4 – Velocity, vP(x, z).

(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 5 – Velocity, vS(x, z).
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(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 6 – Density, ρ(x, z).

(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 7 – P wave impedance, IP(x, z).
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(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 8 – S wave impedance, IS(x, z).

contrast, Figure 10 the normalized vertical impedance contrast
coefficient between P and S waves defined as RPS = IP−IS

IP+IS
.

Figure 9 keeps a good correlation with 23, and Figure 10 with Fig-
ure 21, characterized by a linear oscillatory increasing behavior.

Figures 11, 12, 13 and 14 show the γ, μ and λ parameters
calculated directly from the correspondent vP , vS and ρ data.
These figures also show similar characteristics, where the main
aspects (low frequency content) are still recognized, but the de-
tails (high frequency content) have been attenuated. The Poisson
ratio, σ = 1−2γ2

2−2γ2 , in Figure 14, presents only positive values
between 0.3 and 0.5.

One goal, based on description for this model by Versteeg &
Grau (1991), is marked with a rectangular window defined along
the x-axis with the coordinates of 10.000 − 11.000 meters,
and in the z-axis by the coordinates of 2.800− 3.200 meters.
That is, the top of the anticline defined as an oil and gas reser-
voir. Therefore, this spatial window marks a confined low pressure
zone representing the reservoir.

Figure 15 shows the vertical pressure field calculated by
Eq. (22), and it displays a direct visual difficulty to identify reser-
voir structures as the smoothing increases. Figure 16 shows the
horizontal pressure field calculated by Eq. (23). This figure clearly

still shows details of the target reservoir and of the geological
structure as the smoothing increases, and it becomes one main
conclusion of this study.

Figure 17 shows the hydrostatic pressure field calculated by
Eq. (6) adapted to the 2D case as P = PH = 1

2
(σxx + σzz),

and it does not show details of the target reservoir in the geologi-
cal structure as the smoothing increases, but a very smooth field
expression. Figure 18 shows the horizontal deviatory hydrostatic
pressure field, PXH = σxx − PH . Figure 19 shows the ver-
tical deviatory hydrostatic pressure field, PZH = σzz − PH .
Figure 20 shows the deviatory tangential pressure field (average
of the difference between the horizontal and vertical stress fields
calculated by Eq. (26)). This result is built from the results in Fig-
ures 15 and 16, and it also does not show details of the target in
the geological structure as the smoothing process increases.

Figure 21 shows the stress dimensionless ratio section (ra-
tio between the horizontal and vertical stress fields calculated by
Eqs. (23) and (22)), and it does not show details of the target in
the geological structure, but rather a consistent linear behavior of
kxz with z as the smoothing process increases.

To make the section in Figure 21 more visible, Figure 22
shows the stress dimensionless ratio depth profiles, kxz(z), for

Brazilian Journal of Geophysics, Vol. 34(1), 2016
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(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 9 – P-S wave impedance contrast,ΔIPS(x, z).

(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 10 – Normalized nondimensional, (A), vertical impedance coefficient contrast,RPS(x, z) =
IP−IS
IP+IS

.
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(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 11 – Gamma, γ(x, z).

(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 12 – Mu, μ(x, z).
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(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 13 – Lambda, λ(x, z).

(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 14 – Poisson, σ(x, z).
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(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 15 – Vertical pressure field, Pz(x, z).

(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 16 – Horizontal pressure field, Px(x, z).
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(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 17 – Hydrostatic pressure field,PH(x, z).

(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 18 – Horizontal deviatory hydrostatic pressure field,PXH = σxx − PH .
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(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 19 – Vertical deviatory hydrostatic pressure field, PZH = σzz − PH .

(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 20 – Tangential deviatory pressure field, PT (x, z).
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(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 21 – Horizontal/vertical stress ratio, kxz (x, z).

(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 22 – Horizontal/vertical stress ratio selected profile, kxz (z).
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a randomly chosen CDP at the coordinate of 12.500 m. The top
left figure shows a vertical variation with superimposed strong os-
cillations, that clearly disappear with the smoothing process, and
shows a linear to an exponential trend behavior. The scale shows
the interval variation for 0.2 < kxz(z) < 1, where Heim’s rule
is still being supported as σxx �= σzz .

Figure 23 shows the vertical pressure discontinuities calcu-
lated by Eq. (25). In this special figure, we can identify the geo-
logical sequences of the model, and it also shows clearly details
of the target reservoir as the smoothing increases. This is also
another important conclusion of these numerical experiments.

Figure 24 shows the rate of vertical variation of the vertical
pressure field calculated by a numerical derivative. Following the
analysis for the correspondent vertical pressure field in Figure 15,
this figure also exhibit a difficulty to identify the target reservoir in
the structure as the smoothing process increases.

Figure 25 shows the rate of horizontal variation of horizon-
tal pressure calculated by a numerical derivative. This figure ex-
hibits an interesting behavior, and opposite to the other ones,
since and it recovers aspects of the structure and discontinuities
as the smoothing increases. Therefore, it serves also as a main
conclusion in this work.

CONCLUSIONS

The conclusions are related to the main goal established by the
initial question on how sensitive is the pressure prediction to the
variation of velocity and density distributions, principally around
a geological reservoir zone, with the results presented in the form
of depth sections for the geological domain.

In situ measurement of stress is described to be very impor-
tant in several fields of engineering, geology and geophysics aim-
ing at several applications, and here we are concerned with oil and
gas exploration (Amadei & Stephansson, 1997).

We showed details of the theorectical model, and used an im-
portant example to show how pressure varies in the subsurface
of the synthetic classical Marmousi model. In order words, we
showed that the prediction of pressure does not necessarily in-
creases linearly, but in a complex form. The marked target by a
spatial window identifies a confined low pressure zone represent-
ing the reservoir, but other low pressure areas are also mapped.

As a detail, the present theorectical model imposes the stress
agent as the vertical gravity load of the geological rock formations,
and does not take into account the reflector’s curvatures, faulting
and diagenesis.

Stress and pressure prediction is an important issue for the
analysis of a sedimentary basins, aiming at oil and gas poten-

tially more productive areas. But the prediction needs a 3D model
for its complete meaningful application (Brown, 2011).

The sensitivity analysis to measure the decay in the resolution
of the stress state prediction in this example followed the migra-
tion methodology, and the main conclusions are listed below.

• The horizontal pressure field in Figure 16 exhibits details
of the target reservoir in the geological structure as the
smoothing process increases, and it is one of the main
results obtained here.

• The vertical pressure discontinuities in Figure 23 al-
lows the identification of the geological sequences, and
clearly shows details of the target confined reservoir as the
smoothing process increases. This is also a special result
in this work.

• The horizontal variation of the horizontal pressure field in
Figure 25 exhibits an interesting behavior opposite to the
other figures commented above, and where the structures
and discontinuities become clearer as the smoothing pro-
cess increases. Due to this finding, it serves as a main
conclusion from these numerical experiments.

• In this numerical experiment simulating a real case showed
that all figures and concepts were useful as control tools
in the modeling of sedimentary basins for oil and gas ex-
ploration. Also, following the specialized literature, other
figure constructions can be added, but would make the pa-
per too long.

To end, this paper dealt with a potential application of a
methodology to help the analyses of productive reservoirs, but
the method needs a greater amount of information; namely, the
vP(x), vS(x) and ρ(x), that is based on 3D survey and 3D com-
ponent seismic data, or on alternative techniques like VSP, AVO
and petrophysics.
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(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 23 – Vertical pressure discontinuities,ΔP (x, z), across the interfaces.

(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 24 – Vertical variation, ∂Pz(x,z)
∂z

, of the vertical pressure field given in Figure 15.
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(a) Original model. (b) Smoothing with 41 points.

(c) Smoothing with 81 points. (d) Smoothing with 121 points.

Figure 25 – Vertical variation, ∂Px(x,z)
∂z

, of the horizontal pressure field given in Figure 16.
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