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LEAST-SQUARES REVERSE TIME MIGRATION (LSRTM) IN THE SHOT DOMAIN

Antonio Edson Lima de Oliveira1, Reynam da Cruz Pestana2 and Adriano Wagner Gomes dos Santos3

ABSTRACT. One of the major limitations of imaging methods is, usually, the incomplete recorded seismic data that cause difficulties for the subsurface imaging
techniques. The least-squares migration method (LSM) was proposed in order to reduce migration artifacts caused by incomplete data. The LSM technique has been

shown to be an efficient tool to provide sharp images, especially in critical areas, such as those affected by salt tectonics. However, the complete solution of LSM method
requires the computing and storage of the Hessian matrix, which causes a very low computational efficiency. In order to overcome such challenges, LSM method was

tested with reverse time migration (RTM) algorithm as the adjoint of modeling operator. We implemented two iterative methods where the migrated images are updated
until an arbitrary number of iterations is reached. As a result, we obtained images with a reduction in the error between the modeled and calculated data. The least-squares

reverse time migration (LSRTM) sections showed a better resolution than those obtained with the conventional RTM method.

Keywords: seismic imaging, resolution, modeling, iterative method, computational coast.

RESUMO. Uma das limitações das técnicas de imageamento é que, via de regra, os dados sı́smicos registrados são incompletos. Isso impossibilita uma correta

reconstituição dos refletores em subsuperf́ıcie. O método de migração por mı́nimos quadrados (LSM) foi proposto com o objetivo de reduzir os artefatos de migração
provenientes de dados com uma amostragem irregular. A técnica LSM mostra-se eficiente como ferramenta na obtenção de imagens nı́tidas, especialmente em áreas

tipicamente cŕıticas para o imageamento, a exemplo daquelas afetadas por tectônica saĺıfera. Em contrapartida, por conta da necessidade de cálculo e armazenamento
da matriz Hessiana da solução LSM, a eficiência computacional do método é baixa. Com o objetivo de contornar tais dificuldades, implementou-se neste trabalho o

método LSM tendo como adjunto do operador de modelagem o algoritmo reverso no tempo (RTM). Implementou-se dois métodos iterativos, nos quais as imagens
migradas são atualizadas até um número arbitrário de iterações. Como resultado, obteve-se imagens com redução do erro entre os dados modelados e o de entrada

para diferentes números de iterações. As seções LSRTM (Least-squares reverse time migration ) obtidas mostram uma resolução melhor do que aquelas obtidas com o

método RTM convencional.

Palavras-chave: imageamento sı́smico, resolução, modelagem, método iterativo, custo computacional.
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INTRODUCTION

Sharp and reliable images of the subsurface still remain a chal-
lenge, especially in high geological complexity areas. Some of
these include inconsistency of the modeling equations, irregu-
lar sampling and computational requirements. The least-squares
migration method was proposed in order to reduce migration arti-
facts arising from incomplete data (Nemeth et al., 1999). The dif-
ficulty is that the complete solution of LSM method requires the
computing and storage of the Hessian matrix, generating a very
low computational efficiency. Efforts have been done in order to
find alternatives to their solution, and to minimized the compu-
tational cost associated with LSM method. Chen & Wang (2010)
used a compensation illumination term in reverse time migration
(RTM) in the plane wave domain, which can be regarded as an
approximation of the Hessian matrix. Huang et al. (2011) treated
the image problem as a least-squares inversion problem, and the
LSM algorithm that used was associated with the pre-stack depth
Kirchhoff method. Dai et al. (2012) implemented LSM method
with the standard RTM operator, compounding the least-squares
reverse time migration (LSRTM) method. Dai & Schuster (2013)
presented a formulation of LSRTM method in the plane wave do-
main with the goal of reducing the amount of data and improving
the computational efficiency.

In this paper, we implemented a solution similar to the one
presented by Dai & Schuster (2013), where the input data in
the migration workflow was modeled from Born’s operator with
the smoothed velocity field and the reflectivity model. We im-
plemented two LSRTM alternatives to update the results, where
the migrated images are updated to an arbitrary number of iter-
ations. The tests were performed on the synthetic dataset of the
Marmousi model. After a few iterations, the imaging using LSRTM
method showed better resolution when comparing with conven-
tional RTM method.

THEORY
The inversion theory deals with the reverse problem. Thus, from
the processing of a data set – and in most case with the intro-
duction of some a priori information – we seek information about
the statistics and the values of the model parameters. The goal of
geophysical inversion is to solve problems like:

d = g(M), (1)

where d is the observed data, M is the unknown model and g
is the forward modeling function.

Equation (1) describes non-linear problems, representing the
majority of geophysical problems. However, locally, they can be

transformed or approximate for linear versions, that can be de-
scribed by the following relationship:

d = Gm, (2)

where d = (d1, d2, . . . , dM)
T is the observation vector,

m = (m1, m2, . . . , mN)
T is the parameters vector and G

is the matrix that relates the space model to the data space. The
correspondent inverse problem is given by:

m = G−1d, (3)

in whichG−1 is the classical inverse.
The existence of the inverse of G in the Eq. (3) would pro-

vide the exact solution for the model m, but is not feasible in
geophysical problems. A common way to solve this problem is to
use the least-squares method that provides an estimated model
(mest), which is best approximated to the true model (mtrue),
as the following expression:

mest = [GTG]−1GTd, (4)

where GT is an adjoint of the modeling operator G. The esti-
mated solution presented in Eq. (4) is named least-squares mi-
gration (LSM).

According to Clearbout (1992), a standard seismic migration
operator can be considered as the adjoint of a seismic forward
modeling operator. In other words, the seismic migration image
problemG andGT represent the modeling and migration oper-
ators, respectively. In this case, considering [GTG]−1 ≈ I in
Eq. (4), we have the standard migration equation. i.e.:

mr =G
Td. (5)

Equation (5) is the matrix equation for the standard migra-
tion method (RTM or Kirchhoff, for instance), where GT repre-
sent migration operator andmr is its result. The comparing be-
tween the results of LSM method (Eq. 4) with the standard method
(Eq. 5) suggests that LSM solution provides better resolution im-
ages. The problem, however, is thatGTG is the Hessian matrix,
and its calculation has a high computational cost and very low
efficiency. Thus, the LSM technique is presented in geophysical
literature with different parameterizations. In this work we used an
iterative solution similar to that one presented by Dai & Schus-
ter (2013), which is shown in the Appendix A.

METHODOLOGY
The processing workflow that was implemented in this work is
illustrated in Figure 1.
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Figure 1 – LSRTM method processing workflow.

The reflectivity model (mtrue) and the smoothed velocity
field (c0) from Marmousi model are inputs to computing the
synthetic data using Born’s modelling operator. The main param-
eters of Marmousi model are shown in Table 1. The velocity field
grid number is 375 and 369 points for the vertical (z) and hori-
zontal (x) directions, respectively. It was smoothed with 12 points
in z(nz = 12) and 8 in x(nx = 8).

Table 1 – Main parameters of Marmousi model.

Receiver interval (m) 25
Source interval (m) 25
Minimum offset (m) 200
Maximum offset (m) 2575
Sample interval (ms) 2
Record time (s) 3
Number of shots 240
Number of channels 96

The synthetic data generated in this process is considered as
the observed data (dobs) in Eq. (6). The next step is the chosen
of the initial model or a priori model (m0), used to compute the
calculated data (dcalc). In this work we did not supply the ini-
tial model, then the error at the first iteration was the observed
data itself. The residual error (ek) is the difference between the
calculated and observed data, i.e.,

ek = [Gmk −Gmtrue] = [dcalc − dobs]. (6)

The error in the Eq. (6) is updated at each iteration. The next
step is to obtain the model to the k + 1 iteration. In the iterative

solution presented by Nemeth et al. (1999), the migration opera-
torGT is applied to residual error to provide the migrated image
correction gk, so that,

gk = G
Tek. (7)

Here we applied the RTM operator to compute the gradient
(gk). The model for the iteration k+1 is given by the following
equation,

mk+1 =mk − αgk, (8)

where the parameter a is the iteration step length shown in
Eq. (9):

α =
gTk gk

[Ggk]
T [Ggk]

. (9)

The step length α in Eq. (9) is calculated analytically at each
iteration.

At the final step of each iteration, the current model mk is
updated by that one from iteration k + 1. The final image is
obtained by repeating the process until the desired error or the
pre-set iterations number is reached. A detailed derivation of the
least-squares reverse time migration is shown in the Appendix A.

To summarize, the main steps of the LSRTM method imple-
mented in this work, which are illustrated in the flowchart of the
Figure 1 are:

1. Computing the observed data from the smoothed velocity
field and the reflectivity model using Born’s modelling
operator;

2. Initial model;

3. Modeling of the calculated data from the initial model;

4. Computing of the residual error between calculated and
observed data;

5. Migration of the error employing the RTM operator;

6. Gradient calculation;

7. Step length calculation for each iteration;

8. Current model update; and

9. Repeating the process for an arbitrary number of iterations.

We implemented two iterative methods. First being the image
update method, where the image acquired at the end of the cur-
rent iteration was the input to the following one. In this case, the
update process is repeated for a number of iterations previously
set so that the image obtained in the k-th iteration is the final
section, as shown in Figure 2.
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Figure 2 – Schematic flow of the image update LSRTM method.

The second method is the migrated shot image update
method, in which each image migrated of all shots is updated to
an arbitrary number of iterations is reached. The images migrated
of the i-th shots obtained at k-th iteration are added to compose
the final section, as shown in Figure 3. In this process, the shot
image achieved at current iteration is the input to the next one.
In both methods, the processing flow is the same illustrated in
Figure 1 and previously enumerated. The same workflow was
applied to both methods.

At each iteration of LSRTM method, two modeling and one
migration is required. The first modeling is performed from the
current model in order to provide the calculated data and the sec-
ond modeling is done from the gradient vector providing the iter-
ation step length α. The RTM operator is applied at residual error

providing the gradient vector. This is one of the features respon-
sible for the high computational cost of the method.

There are several criteria to stop iterative process. In this work
we have set a fixed number of iterations. Thus, the process will be
finished upon reaching the number of iterations previously set.

RESULTS

The 2D Marmousi model was used to test the efficiency LSRTM
method implemented. First it was migrated with standard pre-
stack RTM method in the common shot gather domain. The input
data and the smoothed velocity field was the same used in the
LSRTM workflow. The result is shown in Figure 4.

The image update LSRTM method was first tested with in-
complete data. Thus, the input data in the processing workflow,

Figure 3 – Schematic flow of the shot update LSRTM method.
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Figure 4 – Conventional pre-stack RTM section in the shot domain.

originally composed of 240 shots, was reduced to 15 shots
equidistant of 400 m. The objective of this test was to verify
the efficiency of the method when applied over incomplete data.
Figure 5 shows the resulted image after 30 iterations. Although
the data was incomplete, the image resulting is relatively clear.

After that the method was tested with complete data, which
is composed of 240 shots 25 m spaced. Figures 6 and 7 are the
results after 1 and 30 iterations, respectively.

These figures show that the image update LSRTM method
provides sharper images within the first iteration. The images
obtained from the incomplete data show good continuity of re-
flectors, especially those that are deeper. With the complete data,

image sharpness is good throughout the entire section after the
first iteration. The reflectors are continuous and the faults are
well defined.

The residual error is the parameter used to evaluate if the
method tends towards the model that minimizes the difference
between input and calculated data along the iterative process.
Figure 8 shows its evolution as a function of increasing the num-
ber of iterations. The graph indicates the trend error for images
obtained from complete and incomplete data, from the iteration 1
to 45. In both cases, the error decreases quickly from early itera-
tions and from 30 iterations there is no reduction in the error that
justifies the maintenance of the iterative process. However, based

Figure 5 – Image update LSRTM section: 15 shots after 30 iterations.

Brazilian Journal of Geophysics, Vol. 34(3), 2016
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Figure 6 – Image update LSRTM section: 240 shots after 1 iteration.

Figure 7 – Image update LSRTM section: 240 shots after 30 iterations.

Figure 8 – Residual error versus the iteration number: 15 shots (circles) and 240 shots (triangles).

Revista Brasileira de Geof́ısica, Vol. 34(3), 2016
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Figure 9 – Shot update LSRTM section: 240 shots after 1 iteration.

on a simple qualitative evaluation, the process could be stopped
from the early iterations – fifth for example – without significant
image quality losses.

The test with the shot update LSRTM method was initially
performed with the original data (240 shots). The Figure 9 shows
its result after 1 iteration. In this image, the faults and reflectors
are well delineated. However, when compared with those obtained
from the image update LSRTM method, the image sharpness is
lower, especially in the central part of the model, where higher
angle reflectors are present.

One of the reasons why the LSM method has been widely

studied recently is its efficiency when applied to incomplete data.
LSM process helps reduce artifacts in a natural way by generating
the model that predicts the observed data in a least-squares sense
(Nemeth et al., 1999). Thus, we excluded 30 shots of the Mar-
mousi model, by simulating a 775 m gap. This data was migrated
with both LSRTM methods and with standard RTM algorithm.
The resultant sections are shown from Figures 10 to 12.

In these images, there is a shadow zone that affects espe-
cially the shallower part of the sections, between the horizontal
distances from 5.5 km to 6.5 km, which is the range of the gap,
and until approximately 1 km of depth. Although it spreads

Figure 10 – Image update LSRTM section after 30 iterations. Data with 30 shots gap.
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Figure 11 – Shot update LSRTM section after 30 iterations. Data with 30 shots gap.

Figure 12 – Conventional RTM section. Data with 30 shots gap.

throughout the section, its effect is attenuated with the depth.
This result confirms the efficiency of the method when applied
to incomplete data. Comparing with the conventional RTM re-
sult, one realizes that the resolution of LSRTM images are better.
In the gap area, the imaging of reflectors is more efficient, espe-
cially in the deepest parts of the model.

The processing time is one of the critical factors for the imag-
ing techniques. In order to get information about the compu-
tational cost, we performed the test of processing time using
a cluster with 120 units with the same performance. Figure 13
shows a chart, in decimal time, with computing time that was re-

quired by conventional RTM method and LSRTM method after 1
and 30 iterations. It is clear that the LSRTM computational cost
is high when compared with the RTM computational cost. The
time processing required for the RTM method was approximately
7 minutes, amount which corresponds to approximately 30% of
that one spent on a single iteration of LSRTM method.

CONCLUSIONS

The tests performed on synthetic data form 2D Marmousi model
with image update LSRTM method and migrated shot image up-
date LSRTM method provided sharp images from first iteration.

Revista Brasileira de Geof́ısica, Vol. 34(3), 2016
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Figure 13 – Processing time: conventional RTM and LSRTM after 1 and 30 iterations.

In this image, the faults and reflectors are well delineated. The
differences between the reflectors from the two LSRTM methods
implemented are small. However, those obtained with the image
update LSRTM processing flow are qualitatively better. The sec-
tions from incomplete data show good reflectors continuity, es-
pecially from the deepest ones. This result confirms the efficiency
of the method when applied to data with acquisition gaps.

The residual error decreases quickly from early iterations.
The trend shows that from 30th iteration there is no reduction in
its value that justifies the maintenance of the iterative process.
However, based on a simple qualitative evaluation, the process
could be stopped from the early iterations, without significant
image quality losses.

The computational processing cost of LSRTM method is high
compared with the RTM method. The processing time required
for the RTM was about 30% of that used to run a single LSRTM
iteration. Therefore, the main challenge for the use of the LSRTM
method in large scale is its computational cost.

Despite the outlined problems, the LSRTM method appears
to be quite promising as a seismic imaging tool. It has attracted a
growing interest in the geophysics field, which explains the large
number of technical papers that presented least-squares migra-
tion with different implementations in early years. Most of these
papers presented results or provide some alternatives to increase
the performance of the method. Some examples are: (1) imple-
mentation of graphics processing unit (GPU) version; the use of
data in the ray parameters domain or (3) the use of optimization
methods that accelerate the iterative search process.

Finally, the LSM method can be thought of as an auxiliary
tool, which can be applied at the imaging of the specific areas
where doubts remain after the imaging with conventional tools.

It can still be used in areas where old data exists, and new
acquisitions face restrictions such as the environmental permit
process, urban occupation, infrastructure works and oil produc-
tion facilities among others.

ACKNOWLEDGEMENTS
The authors thank Petrobras for the opportunity offered to perform
this research in the form of a master’s degree in Geophysics and
to the LAGEP-CPGG-UFBA for the resources available during its
realization.

APPENDIX A
Least-squares reverse time migration

In this paper, we implemented a solution similar to the one pre-
sented by Dai & Schuster (2013), where the input data in the
migration workflow was modeled from Born’s operator with the
smoothed velocity field and the reflectivity model. Thus, assum-
ing the constant density acoustic wave equation

1

c0

∂2p0
∂t2

−∇2p0 − s = 0, (A1)

where c0 = c0(x) is a background velocity model, and
p0 = p0(x, t;xs) is the pressure field associated with the
source term s = s(x, t). A perturbation in the velocity model
c = c0 + δc produce a wavefield

p = p0 + δp, (A2)

which satisfy the following acoustic-wave equation

1

c2
∂2p

∂t2
−∇2p = s. (A3)
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Figure A1 – Source and receiver wavefields propagation scheme.

The velocity term can be expanded as follows

1

(c0 + δc)2
≈ 1
c20
− 2δc
c30
. (A4)

Subtracting Eq. (A2) from Eq. (A4) and using Eq. (A1), yields
the wave equation for the wavefield perturbation δp:

1

c20

∂2δp

∂t2
−∇2δp = ∂

2p

∂t2
2δc

c30
+O(c2). (A5)

Applying the Born approximation to the right-hand side
p ≈ p0, neglecting the higher-order terms O(c2) and defining
the reflectivity model asm = 2δc/c0, Eq. (A5) becomes

1

c20

∂2δp

∂t2
−∇2δp =m 1

c20

∂2p0
∂t2

(A6)

wherem = m(x).
The calculation of the reflection data δp requires two finite-

difference extrapolations in order to solve Eq. (A1) to provide the
wavefield p0 and one to solve Eq. (A6) for the reflection data δp.
The migration operation of a shot gather d = d(xg , t;xs), rep-
resenting the wavefield recorded at the receiver position xg , re-
quires two finite-difference extrapolation, as shown in Eq. (A7)
and Eq. (A8):

1

c20

∂2p0

∂t2
−∇2p0 = s (A7)

and,
1

c20

∂2p

∂t2
−∇2q = d. (A8)

The source wavefield p0 propagates forward in time while
the receiver wavefield q propagates backward in time, as shown
by Figure A1 including the imaging condition.

The migrated image associated with the shot at xs is gener-
ated by applying the imaging condition

m =
∑

t

1

c20

∂2p0
∂t2

· q. (A9)

In the context of least-squares migration, the solution to
Eq. (A6) can be represent as the following matrix operation

di = Gim, (A10)

where di represent the reflection data vector for the ith shot,m
represents the migration image which in this case is related to
the perturbation in velocity, and Gi represents the Born model-
ing operator related with the ith shot. In the same way, the RTM
operator can be written

mmig,i = G
T
i di, (A11)

where mmig,i represent the migration image for the ith shot
andGTi represent the migration operator associated with the ith
shot. Thus, for a dataset with Ns shots, the final image is the
stack of migrated images from all of the individual shots, as
shown in Eq. (A12):

mmig =

Ns∑

i=1

GTi di. (A12)
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