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DELINEATION OF ANISOTROPIC LAYERS THROUGH 1D INVERSION OF MARINE CSEM DATA

Cı́cero R. Teixeira Régis1,2, Edelson da Cruz Luz1,3 and Walleson Gomes dos Santos1

ABSTRACT. This paper describes a method to invert marine CSEM data from anisotropic layered media. The method uses two types of constraints to generate stable
solutions that improve the positioning of interfaces in anisotropic layers: applying the L1 norm equality constraints of the Total Variation method to parameters in adjacent

layers, and imposing L2 norm equality constraints between the different components of the conductivity tensor in each layer. The solutions are compared favorably with
those from previously published smoothing methods. The results show that the simultaneous application of the two constraints is able to improve the delineation of the

anisotropic layers, including the resistive target commonly sought in the inversion of marine CSEM data. As an example, the method was applied to real data from an
offshore Brazilian basin.
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RESUMO. Este artigo descreve um método para inverter dados do método marinho de fonte controlada CSEM de meios anisotrópicos estratificados. O método usa

dois tipos de vı́nculos para gerar soluções estáveis que melhoram o posicionamento de interfaces entre camadas anisotrópicas: aplicando os vı́nculos de norma L1 do

método de Variação Total a parâmetros de camadas adjacentes, e impondo vı́nculos de igualdade de norma L2 entre as componentes do tensor de impedância em cada
camada. As soluções obtidas mostraram-se melhores do que as soluções encontradas na literatura com apenas o método de suavidade. Os resultados indicam que a

aplicação simultânea dos dois vı́nculos é capaz de melhorar o delineamento de camadas anisotrópicas, incluindo as camadas-alvo resistivas normalmente buscadas na
inversão de dados CSEM. O método foi aplicado a um conjunto de dados reais de uma bacia marinha brasileira.
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544 DELINEATION OF ANISOTROPIC LAYERS THROUGH 1D INVERSION OF MARINE CSEM DATA

INTRODUCTION

Inversion of marine CSEM data is a challenging task, because
of the inherently low resolution in the data. The use of extremely
low frequencies (Key, 2009), in a diffusive regime, contributes to
this low resolution. This implies a high level of ambiguity in the
data and generally low sensitivities. The situation is worse when
anisotropy exists in the electrical conductivity of the media, be-
cause not only the ambiguity is increased but also the inversion
seeks to extract even more information from the data than when
isotropy is assumed.

Usually, the data misfit function includes the difference be-
tween the estimated and the observed data, and this difference is
normalized by an estimate of the uncertainty of each observation,
based on the standard deviation of the data error (Tarantola, 2005).
This normalization weighs the influence of each observation on
the misfit according to their uncertainty (Key, 2009).

Fitting marine CSEM data is difficult for any inversion al-
gorithm because the fields show a very wide dynamic range,
spanning several orders of magnitude, depending on the source-
receiver offset. In such cases, in addition to weighing by the data
uncertainty, a common practice is defining the data misfit function
with the logarithms of the electric field amplitudes, which drasti-
cally shortens its possible range of values (Crepaldi et al., 2011).
In this work, we use the misfit function suggested by Almeida &
Rijo (2011), which employs the normalization of each estimated
data fit by the corresponding observation at the same spatial po-
sition. This measure of the relative difference between estimated
and observed data leads to a well balanced data set, meaning that,
in principle, if all observations had the same level of uncertainty
they would all have the same level of influence on the misfit.

A popular method to generate stable solutions in geophys-
ical inversion is to apply global smoothness constraints to the
inversion parameters, like in the ubiquitous Occam’s Inversion al-
gorithm (Constable et al., 1987). This method introduces con-
straints which enforce equality between pairs of spatially adjacent
parameters in a least squares sense, and it leads to smooth so-
lutions. Traditionally, the L2 norm is used to measure how well
the model structures conform to the imposed constraints, but that
is not the only possibility, as demonstrated by Farquharson &
Oldenburg (1998), who presented an extensive analysis of the ef-
fects of using general measures of misfit (of data, as well as of
model adjustment) in the inversion of electromagnetic data. Total
Variation regularization, developed in the area of image process-
ing (Rudin et al., 1992; Vogel & Oman, 1998), has been applied
in the inversion of geophysical data (Martins et al., 2011; Lima
et al., 2011) to estimate non-smooth basement relief in a sedi-

mentary basin from gravity data. The method minimizes the dif-
ferences between pairs of adjacent parameters in a L1 norm misfit
estimator. The sum of the absolute values of these differences is
the discrete equivalent of the mathematical concept of the total
variation of a function (Acar & Vogel, 1994). The method allows
for sharp variations to account for discontinuities in the distribu-
tion of the physical properties.

Application of the Total Variation method to electromagnetic
data inversion has been presented by Schwarzbach & Haber
(2013), who performed a study with 3D synthetic data, but didn’t
find significant advantages in using this kind of constraint. In our
application to 1D layered earth models, however, a stronger influ-
ence of the sharp discontinuities in the models is perceived by the
data than in the case of 3D models, which is determinant to the
success of the method. As we’ll see in our results, in the worst
case the Total Variation constraints lead to solutions that are
equivalent to the ones from traditional smoothness methods.

Examples of 1D inversion of marine CSEM data from
anisotropic layers were studied in Ramananjaona et al. (2011),
with a method based on Occam regularization, with the expected
smooth results. However, in many geological environments there
can exist strong discontinuities in the physical properties of the
media. In such cases, the results obtained by enforcing global
smoothness, exclusively, in least square estimators can be mis-
leading.

In this paper we present an approach to the inversion of
marine CSEM data which addresses the problems of fitting the
data, tackling the difficulty of resolving anisotropic conductivi-
ties and allowing non-smooth solutions. The inversion scheme
implements a Gauss-Newton minimization with iterations of the
Levenberg-Marquardt algorithm (Marquardt, 1963), with the fol-
lowing specifications, which are explained in detail in the follow-
ing sections.

• The data misfit function is defined as the relative difference
between the estimated and the observed data (Almeida &
Rijo, 2011).

• Equality constraints are imposed between the horizontal
and vertical conductivities inside each anisotropic layer to
control the degree of anisotropy imposed to the solutions.

• Total Variation regularization constraints are applied to the
conductivities of adjacent layers (Lima et al., 2011; Mar-
tins et al., 2011; Schwarzbach & Haber, 2013).

The application of these techniques resulted in a stable and
meaningful solution to the problem of inverting marine CSEM data
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from anisotropic 1D models. In comparison with the application
of global smoothness methods, like the Occam algorithm, this
solution resulted in an improved resolution of the anisotropic lay-
ers, including the resistive target layers usually sought in hydro-
carbon exploration. In particular, the results presented here for in-
version of CSEM data exclusively (without adding magnetotelluric
data nor a priori determination of any interfaces) compare quite
favourably with those presented in Ramananjaona et al. (2011).

The simultaneous application of the two constraints has a true
synergetic effect, allowing the method to achieve a good delin-
eation of the target layer, meaning that it improves the identifi-
cation of layer interfaces in comparison with smooth solutions.
This delineation is a much more difficult task than the detection
or location achieved by simply enforcing smooth solutions, as has
been seen in previous works.

MODELING

To model the marine CSEM data, we calculate the electromagnetic
field components from the electric dipole source in transversely
isotropic layered media with a vertical symmetry axis (TIV), in the
frequency domain. In this problem, the anisotropic conductivity is
constant throughout each layer. The detailed derivation and anal-
ysis of the CSEM fields in anisotropic layered media is found in
Santos & Régis (2015).

Start with the frequency domain Maxwell’s equations, using
quasi-static approximation, in a conductive environment:

∇×H − σE = I(ω) ds δ(x)δ(y)δ(z). (1)

∇×E + iωμH = 0, (2)

∇ ·H = 0, (3)

∇ ·E = 0. (4)

The term I(ω) ds δ(x)δ(y)δ(z) represents the current
density function of the dipole source, using Dirac delta functions.
For an x oriented dipole, ds = (dsx, 0, 0). Then I(ω)dsx
represents the dipole moment.

The conductivity tensor is

σ =

⎛
⎜⎝
σh 0 0

0 σh 0

0 0 σv

⎞
⎟⎠ . (5)

Define the vector potential A, so that

H = ∇×A. (6)

Then, from Faraday law (Eq. 2):

∇× (E + iωμA) = 0; (7)

E = −iωμA −∇U, (8)

where U is a scalar field.
Following the procedure described in Kaufman & Dashevsky

(2003), a convenient configuration for the vector potential isA =
(Ax, 0, Az). When combining Equations (8) and (1), the gauge
condition

∇ · A = −σh · U (9)

allows us to write the electric field as

E = −iωμA + 1
σh
∇(∇ · A). (10)

The choice of this gauge condition leads to a system of two
coupled differential equations on the components of A:

∇2Ax + k2hAx = −I(ω) dsxδ(x)δ(y)δ(z), (11)

∇2Az + k2v Az =
(
1− σv
σh

)
∂

∂z
∇ · A. (12)

Two wave numbers are defined: one associated with the hor-
izontal conductivity k2h = −iωμσh, and the other associated
with the vertical conductivity k2v = −iωμσv .

These equation are solved in the Fourier domain (kx, ky, z),
where kx and ky are the spectral coordinates corresponding to
the spatial coordinates x and y. The equations are valid inside
each layer, and the solutions are linked via continuity condi-
tions on the interfaces between layers. In this way, the solution
is achieved as an infinite sequence of plane wave solutions in z.
The components of the electric field are calculated by applying
Eq. (10), so we include the necessary derivatives on the solutions
in the Fourier transform. To achieve the final solution in (x, y, z)
we transform the double integral of the Fourier transform of the
function with argument

√
k2x + k

2
y into the single integral of the

Hankel transform, with k2r = k2x + k2y and r2 = x2 + y2

(Arfken, 1985, p. 796):

1

2π

∫ ∞
−∞

∫ ∞
−∞
f(k2x + k

2
y)e
i(kxx+kyy)dkxdky

=

∫ ∞
0

f(kr)J0(krr)krdkr.

(13)

In our problem, f(k2x + k2y) is a frequency dependent function
that carries the information about the source and the model, in the
transform domain, including all reflection and transmission coef-
ficients for the interfaces. The result is a set of two Hankel integrals
for each field component, which are solved numerically, using the
Fast Hankel transform filter presented in Anderson (1979).

Brazilian Journal of Geophysics, Vol. 34(4), 2016
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INVERSION
The set of parameters forms the vector m. In this 1D problem,
for N layers there are 2N parameters, which are the logarithms
of the horizontal and vertical components of the conductivities
(log10 σh and log10 σv). The function to be minimized is

Φ(m) = φd(m) + φp(m), (14)

in which φd represents the misfit between calculated and ob-
served data, and φp(m) is the functional used to introduce stabi-
lizing constraints to the inversion parameters. Each of these func-
tions perform a crucial role in the inversion process and both
should influence the outcome. The estimated model responses
must fit the observed data, but this requirement alone is not
enough to guarantee a stable solution. To reach this goal, we im-
pose that the function φp forces the solution to exhibit a desired
attribute of the true source.

Functions φd and φp are defined as follows:

The data misfit function φd

The amplitude of marine CSEM data spans several orders of mag-
nitude, therefore it is important to work with some form of data
misfit function that promotes a relatively uniform fit throughout
the data set. Here, the function used is the relative difference
between the calculated and the observed data: in each iteration,
the calculated data are normalized by the corresponding observa-
tions, and the inversion will try to fit these ratios to the constant
value of 1 (Almeida & Rijo, 2011).

The functional φd(m) is represented as

φd(m) = ‖ (o− r(m)) ‖2, (15)

where o is a vector whose components are all ones and r(m) is
the vector whose components are the ratios between calculated
data (ycalc) and the observations (yobs):

o =

⎡
⎢⎢⎢⎢⎣

1

1
...
1

⎤
⎥⎥⎥⎥⎦ ; r(m) =

⎡
⎢⎢⎢⎢⎣

r1
r2
...

rN

⎤
⎥⎥⎥⎥⎦ ; ri =

ycalci

yobsi
. (16)

This definition for the data misfit function has the conse-
quence that the entries in each row of the sensitivity matrix will
also be normalized by the respective observation.

The model objective function φp

The regularizing function φp(m) through which the method in-
troduces a priori information is composed of two parts:

φp(m) = αφRE + γφTV . (17)

The functions φRE and φTV are defined to introduce the
two types of constraints used here. The regularizing parameters
α and γ are used to weigh the influence of the a priori informa-
tion relatively to the data. These parameters should be as small
as possible, while still yielding a stable solution.

The Relative Equality constraint φRE

The function φRE is used to impose relative equality constraints
(Medeiros & Silva, 1996) between the two conductivity values in
each layer of the interpretative model. The motivation for this is to
cope with the fact that the CSEM data have quite distinct sensitiv-
ities to the two different conductivities in anisotropic layers.

A thorough analysis of how the two components of the
anisotropy affect differently the components of the measured
electric field is presented in Ramananjaona et al. (2011). As the
electromagnetic field diffuses through the layered medium, we can
think of it, mathematically, as the composition of two propagation
modes: the transverse electric (TE) mode, in which the electric
field lines are only on the horizontal direction and are, therefore,
affected only by the horizontal conductivity; and the transverse
magnetic (TM) mode, in which the electric field lines cross the
layers in vertical planes, so that they are affected by both conduc-
tivity components. The measured inline electric field component
(Ex) is mostly affected by the TM mode field, so it is influenced by
both vertical and horizontal conductivities, their relative influence
being dependent on geometric parameters, like the layered struc-
ture and the source-receiver offset, as well as on the frequency.
On the other hand, the measured broadside electric field compo-
nent (Ex, at an azimuth of 90◦ in relation to the dipole orienta-
tion) is strongly affected by the TE mode field, therefore it is more
influenced by the horizontal conductivity. The TM mode propaga-
tion is influenced by both inductive and galvanic effects, as the
current lines cross the interfaces between layers. Propagation in
the TE mode is made only of inductive effects, with the current
lines always tangent to the interfaces. This has an important im-
plication to the case of marine CSEM, where most of the medium
is highly conductive and the target layers are comparatively much
more resistive. In this case, the influence of a resistive layer is
felt more strongly in the component that is sensitive to galvanic
effects than in the one that is more influenced by inductive ef-
fects. Furthermore, the inductive influence of the resistive layer
will be week, compared with that of the surrounding medium.
All these effects contribute to the fact that the vertical conductivity
influences the data much strongly than the horizontal conductivity,
which implies a much better resolution of vertical conductivities
by the inversion process.

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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In order to allow the better detected vertical conductivity (σv) to influence the resolution of the horizontal one (σh), the relative
equality constraint (φRE ) will be applied to the components in each layer by making

φRE = ‖D m‖2, (18)

where D is the matrix whose rows are filled with zeroes, except for two positions, corresponding to two parameters whose values are to
be close to each other. The elements of D in these positions will be 1 and -1. For instance, for the ith and jth parameters, the matrix
will have a row of the form [0 0 · · · 1 −1 · · · 0 0]where the numbers 1 and−1 are at the i-th and j-th positions, respectively.

The parametersm1 andm2 are the logarithms of the two conductivities of the first layer;m3 andm4 are the values of the second
layer, and so on. Then forN layers, the function φRE represents the equations

D m = 0, (19)
⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 · · · 0 0

0 0 1 −1 0 0 · · · 0 0

0 0 0 0 1 −1 · · · 0 0
. . .

0 0 0 0 0 0 · · · 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

m1

m2

m3
...
m2N

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (20)

and the equalities are imposed in the least squares sense.
The incorporation of these equality constraints to the conductivities of each layer forces them to change in tandem and prevents

the horizontal components from converging to geologically meaningless values. It also helps to achieve the right convergence to the
parameters associated with isotropic layers. This has also been found to be true in the inversion of magnetotelluric data from anisotropic
media (Régis et al., 2010).

The Total Variation constraint φTV

The function φTV is used to introduce the Total Variation (TV) constraint, to allow for abrupt changes in the parameters. This function
enforces equality between the same conductivity components in every two adjacent layers. For the layers (i) and (i+1), the relations
expressed by this function are

log10 σ
(i)
h − log10 σ(i+1)h = 0, (21)

log10 σ
(i)
v − log10 σ(i+1)v = 0. (22)

These are incorporated in the stabilizing function through the matrix S,

S m = 0, (23)
⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 0 0 · · ·
0 1 0 −1 0 0 · · ·
0 0 1 0 −1 0 · · ·
0 0 0 1 0 −1 · · ·

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

m1

m2

m3
...
m2N

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (24)

but now the deviations from the equalities are measured in the L1 norm (‖ · ‖1), instead of L2 norm:

φTV = ‖S m‖1. (25)

According to the definition of the norm, the function φTV , for N layers in the interpretative model and 2N parameters, is written
as:

φTV =

N−1∑
i=1

(∣∣∣log10 σ(i)h − log10 σ(i+1)h

∣∣∣+ ∣∣∣log10 σ(i)v − log10 σ(i+1)v

∣∣∣) . (26)

Brazilian Journal of Geophysics, Vol. 34(4), 2016



�

�

“main” — 2018/8/14 — 14:22 — page 548 — #6
�

�

�

�

�

�

548 DELINEATION OF ANISOTROPIC LAYERS THROUGH 1D INVERSION OF MARINE CSEM DATA

However, this function is not differentiable whenever the differences are zero. In order to avoid this difficulty and allow the method to
operate with the gradient in each iteration, the function is modified (Acar & Vogel, 1994) by the approximation

∣∣∣log10 σ(i) − log10 σ(i+1)
∣∣∣ ≈
[(
log10 σ

(i) − log10 σ(i+1)
)2
+ β

]1/2
, (27)

whereβ is a small positive number. The detailed derivation of the expressions for the gradient vector g and Hessian matrixH associated
with the modified φTV function is presented in Martins et al. (2011), where it is shown how the value of β affects the behaviour of
these operators, with larger values generating smoother solutions. The solution is sought iteratively, using the Gauss-Newton method,
with the Levenberg-Marquardt strategy (Marquardt, 1963; Pujol, 2007).

The iterative process involves taking the Taylor expansion of Φd(m) about the approximation m̂k, which is obtained in the kth

iteration, and keeping the terms up to second-order. Then, taking the derivative of this function, Φd(m̂k + Δmk), with respect to
Δmk and setting this derivative to zero leads to the normal equation to the estimate ofΔmk:

HkΔmk = −gk. (28)

Define J as the sensitivity (Jacobian) matrix. Each entry in this matrix is the derivative of the fitting functional with respect to one
of the parameters, normalized by the corresponding observed data, to be consistent with the definition of the data misfit function.

According to Martins et al. (2011) the Hessian matrix and the gradient vector of the functional Φ(m) are

HTVk = JT J + αDTD + ST (γR+ I)S, (29)

and
gTVk = −JT (o + r(m)) + αDTDmk + ST d, (30)

where d is a vector with size L equal to the number of pairs of parameters which are to be constrained, and R is a diagonal matrix. At
iteration k, the lth element of vector d and the lth diagonal entry in matrixR are, respectively

dl =
mi −mj[

(mi −mj)2 + β
] 1
2

∣∣∣
m=mk

, (31)

R(l,l) =
β[

(mi −mj)2 + β
] 3
2

∣∣∣
m=mk

. (32)

The k + 1st iteration of the Levenberg-Marquardt method will be:

mk+1 =mk + [JTJ + αDTD + ST (γR+ I)S + λI]−1

× [JT (o − r(m)) − αDTDmk − ST d],
(33)

where I is the identity matrix and λ is a parameter used to control the step size of the variation of vector m, as defined by
Marquardt (1963).

These iterations are repeated, changing the value of λ as nec-
essary, until convergence is achieved. The convergence criterion
consists in reaching a minimum, i.e. a point where the gradient
is zero, or very close to zero, and also fitting the data within a
specified tolerance.

The method will not penalize sharp variations because, in the
L1 norm, the total measure of misfit between all pairs of adjacent
parameters will be the same, regardless of how the parameters

vary: smoothly or otherwise. If the misfit is measured through the
L2 norm, the minimum will be reached by the smoothest spatial
distribution of parameter values. On the other hand, the objective
function must fit the observations, which will prevent the param-
eter distribution from being discontinuous in places where that
discontinuity can not explain the data. These points are nicely il-
lustrated in Lima et al. (2011).

The TV method still enforces proximity between adjacent

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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parameters. Therefore, if the structures that generated the data are
truly smooth, then the solutions will tend to present the same gen-
eral behavior as those from global smoothness methods. How-
ever, if the influence of a discontinuity on the parameter distribu-
tion is felt on the data, the TV constraints allow for abrupt changes
on those parameters without the resulting oscillations that in-
evitably result from smoothing methods. This makes the method a
valid alternative when inverting CSEM data from geological envi-
ronments that are generally smooth, but can have strong discon-
tinuities in places like the interfaces between geoelectric layers,
as in the border of an oil zone or of a salt body, which can be very
resistive zones inside conductive sediments.

RESULTS

We show results for two different sets of synthetic data and one
set of real data from which the inversion tries to identify resistive
target layers. For all cases, the initial guess was a homogeneous
half-space, indicated by the red lines in the figures. All results are
expressed in units of resistivity (Ω ·m).

Synthetic data

The synthetic data were generated with the dipole source at 30 m
from the sea floor. The observations are the horizontal compo-
nents of the electric (Ex) and magnetic (Hy) fields on the sea
bed, which are inverted simultaneously. Starting at a distance of

500 m from the source, the fields were calculated at 20 obser-
vational points at 500 m intervals, up to a maximum of 10 km
for the lowest frequency, on the line parallel to the dipole direc-
tion (inline configuration). Five frequencies were used: 0.125 Hz,
0.50 Hz, 0.75 Hz, 1.00 Hz and 2.00 Hz.

Stability was verified by adding different sequences of random
noise to the data and evaluating the proximities among the corre-
sponding solutions. The zero mean noise sequences have differ-
ent intensities for data in different frequencies (Myer et al., 2012).
In our examples, the data from lower frequencies are contami-
nated with higher noise levels, around 10−15 V/Am2, whereas
data from the higher frequencies are contaminated with a 10−16

V/Am2 noise level. A representation of the noise in the same scale
as the data is shown in Figure 1.

The interpretation model for both examples is formed by
79 horizontal homogeneous anisotropic layers with transversely
isotropic conductivities (σh, σv) and constant thicknesses of
25 m each, over a likewise anisotropic infinite basement. There
are, therefore, 160 parameters to be estimated: two conductivities
for each layer in the interpretative model.

As a base for comparison, we have computed the inversion of
the data set produced by each model using only smoothness con-
straints, in an Occam’s inversion approach, as described in Ra-
mananjaona et al. (2011). We will refer to this method as “global
smoothness”, since its objective is to generate models with over-
all minimum structure.

Figure 1 – Representation of the noise levels contaminating the synthetic data. The absolute values of the zero

mean noise sequences are shown in the same plot as the data.

Brazilian Journal of Geophysics, Vol. 34(4), 2016
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Model 1

The first model is shown in Figure 2. Here, the resistive target
layer is inside a conductive region, above a half-space basement.
The water layer and the basement are isotropic.

Figure 2 – First model used to generate data to be inverted.

Figure 3 shows the geometric representation of a matrix
whose elements are the sensitivities of the electric field in a sin-
gle receiver to variations in the two components of the conduc-
tivity in each layer at the frequency of 0.125 Hz. Each column in
these matrices represents the sensitivities for one receiver posi-
tion relative to every layer of the interpretative model. The influ-
ences of the two components of the conductivity on the observa-
tions produced by the interpretation model are quite different. In
all cases, the influence of the resistive layer is distinct from that of
the background medium: the sensitivities to σv inside the resis-
tive layer are greater than the equivalent sensitivities in the back-
ground, while the sensitivities to σh are smaller than those in the
surrounding medium. The vertical conductivity imparts a stronger
influence on the fields than the horizontal component because of
its effect on the current flow, whereas the inductive effects that
would be dominated by the horizontal component are weakened
by the higher resistivity relative to that of the surrounding layers.
These differences in how the fields respond to the two conductiv-
ity components imply markedly different levels of detectability, so
that the vertical conductivity of the resistive layer is much better
resolved than the horizontal one, as can be observed in the final
results of the inversion. On the other hand, in the low resistivity
parts of the model the situation is reversed: the sensitivity to the
horizontal resistivity is highest.

Figure 4a shows the results obtained with the application of
global smoothness only. In this case, although the solution is sta-
ble, the resulting model does not represent the true discontinuity
present in the original model. By adding equality constraints be-
tween the resistivity components in each layer the process results
in a better convergence to the true value of the isotropic basement,
but there is no significant improvement in the delineation of the
resistive layer, as seen on Figure 4b.

Figure 4c shows that applying the TV constraints instead
of global smoothness improves the resolution of the resistive
layer, by admitting a solution with sharper variation in the ver-
tical conductivity. As a consequence, a better determination of the
isotropic conductivity of the basement was achieved. Note that the
horizontal component of the conductivity of the resistive layer is
still undetected.

The best results are obtained with the application of the TV
method with the addition of equality constraints between the two
conductivities in each layer, as shown in Figure 4d. Now, the gen-
eral characteristics of the true conductivity profiles are shown,
especially in the vertical resistivity curve. The resistive layer is
clearly identified, although the true value is approximated only by
the vertical conductivity.

A remarkable difference between the two solutions is that the
TV solution presents much less oscillations than the one obtained
with global smoothness constraints. In the smooth solution, the
effect of the sharp variation on the interfaces of the resistive layer
is spread around that layer. This implies in a greater resistive zone
that does not conform to the behavior of the data. Since the esti-
mated data must fit the observations, the smooth solution tends
to compensate this excess of resistive zones by generating more
conducting zones next to the resistive one. This leads to mod-
els with the observed oscillations about the discontinuities of the
true model. In the case of the TV solution, there are less oscilla-
tions, because the resistive zone is concentrated closer to the true
resistive layer.

Model 2

The second model (Fig. 5) presents a greater challenge to the in-
version. Now there are two resistive layers, which makes their
delineation from the data harder. The first target layer is shallower
than the one in the first model, starting at 500 m from the sea bed,
but it has half the thickness (50 m) and half the resistivities of
that layer. The second target layer has the same thickness and the
same resistivities as that of model 1, but it is deeper, starting at
1500 m from the sea bed.
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Figure 3 – Sensitivity of the electric field data from model 1 with respect to the two components of the conductivity in both inline and broadside configurations at

0.125 Hz.
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(a) – Result obtained with the application of global smoothness only. (b) – Result obtained with the application of global smoothness and equality
between the anisotropic conductivity components in each layer.

(c) – Result obtained with TV constraints only. (d) – Result obtained with TV constraints and equality between the anisotropic
conductivity components in each layer.

Figure 4 – Inversion results for the first model, with one resistive target layer.

The electric field sensitivities for this model are shown in
Figure 6, again at the frequency of 0.125 Hz. They have the same
general characteristics found for the first model, with higher sensi-
tivities associated with the vertical components of the anisotropic
conductivity, which will also lead to better resolution of that
component.

The results for this model are in Figure 7. Due to the smaller
sensitivity values associated with the second layer and the si-
multaneous influence of the two resistive layers on the data, the

delineation of the two targets is not as accurate as in the case of
the first model, although the method still yields better results than
the application of traditional smoothness constraints.

The horizontal components of the conductivity of the target
layers are, again, practically undetected. However, the method is
still able to achieve a better focus on the targets in the vertical
resistivity profile, and a better estimation of the resistivities
of the background medium in comparison with the Occam ap-
proach.
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Figure 5 – Second model used to generate data to be inverted, with two target
layers.

Real data

We have applied the method to a real data set acquired by EMGS in
the offshore Esṕırito Santo basin in southeastern Brazil. The data
are part of a large multiclient acquisition campaign covering sev-
eral Brazilian offshore basins. The particular set to which we have
applied the 1D inversion has already been successfully used by
PETROBRAS in an interpretation workflow (Buonora et al., 2014).

The inversion was performed on the data from a single mea-
surement position, at a southwest–northeast towline over a pre-
viously acquired seismic line. This line crosses a successful well
(referred to as W1), which intercepted a 100 m thick hydrocarbon
layer at a 3720 m depth, with an average resistivity of 70 ohm-m.
The line is laid between two salt structures which appear promi-
nently in the seismic section, as shown in Buonora et al. (2014).
We chose to work with data from the receiver closest to the well,
located approximately at 1.5 km from the flank of the southeast
salt body.

The data set is composed of amplitudes and phases of the
inline electric field at four frequencies. We have selected data only
from transmitter positions to the right of the receiver, in order to
reduce the influence of the 3D salt structure on the left. Longest
transmitter–receiver offsets varied from 4,101.33 m, at 1.406 Hz,
to 6,900.11 m, at 0.1562 Hz.

The data fit is illustrated in Figure 8. The curves show a com-
parison between the observed data and those from the model
generated by the global smoothness inversion. The real data
curves show variations that can not be fitted by the calculated
layered model fields. However, we still find a good fit, with most

amplitude points within a 10% misfit, and even less for the
phase points.

The results are illustrated in Figures 9 and 10, overlaid on a
section obtained from the inversion method described by Buonora
et al. (2014), which doesn’t take the anisotropy of the medium
into account. Two distinct behaviors can be observed in the re-
sults, in two depth zones:

1- At depths greater than about 4000 m the horizontal resis-
tivities appear higher than the vertical resistivities. This
nonsensical behavior results from the fact that at the low-
est frequencies and biggest offsets, the 3D geometry of
the medium generates data that can not be fit by a layered
model data, particularly in a situation in which the horizon-
tal resistivity has very little influence on the observations,
as indicated by the sensitivity analysis in the synthetic data
section. Note that even with clearly wrong horizontal resis-
tivities in the deeper section of the model, the data fit is not
worse on the largest offsets and lowest frequencies than in
the other parts of the data set, as illustrated in Figure 8.

2- Above 4000 m, the curves show a strong indication of a
resistive zone, approximately in the correct depth as indi-
cated by Buonora et al. (2014). Whereas in the previous
results these resistive regions can be interpreted as being
composed of two distinct zones, in our results only the hor-
izontal resistivity curve of the global smoothness inversion
shows any indication of such division.

A common result in inversion of marine CSEM data is to lo-
cate the resistors in positions above the true positions of the tar-
gets. This error can be reduced by constraining the responses us-
ing a priori information, for example from a well log, as the one
exhibited in Figures 9 and 10. As the study shown here doesn’t
include any such a priori information, the results reproduce the
common behavior, and the maximum resistivity in the resulting
models is located at about 500 m above the peak values found in
Buonora et al. (2014).

CONCLUSION
The presented method proposes the simultaneous use of two
kinds of constraints to the model parameters in the inversion of
marine CSEM data from anisotropic layered media: one is that
of the Total Variation method, defined as L1 norm equality con-
straints, and the other is the enforcing of equality on the two com-
ponents of the conductivity in each layer.

The TV method improved the results by allowing sharp vari-
ations, while still enforcing equality between adjacent parameters
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Figure 6 – Sensitivity of the electric field data from model 2 with respect to the two components of the conductivity in both inline and broadside configurations at

0.125 Hz.
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(a) – Global smoothness.

(b) – TV constraints and equality between the anisotropic conductivity components in each layer.

Figure 7 – Inversion results for the second model, with two resistive target layers.
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Figure 8 – Comparison between observed and calculated data sets.

wherever that is required by the fitting of the observations. The
addition of equality constraints to the components of the conduc-
tivity in each layer improves resolution of the anisotropic layers
by enforcing that both profiles be affected by the same discontinu-
ities. By demanding proximity between the two components, they
also help convergence to the correct resistivity of isotropic layers.
Each of these two constraints has a decisive effect that comple-
ments the other, in a synergetic way, to find the solutions. When
applied alone, neither is capable of generating solutions that are
both stable and close to the true solution, but their combined ef-
fects are able to drive the inversion process to the sought result.

A reliable estimation of the horizontal component of the
anisotropic conductivity is still an unmet challenge because of
the poor sensitivity of the data with respect to that component.
However, the application of the presented method resulted in bet-
ter identification and delineation of the resistive targets in 1D
problems, in comparison with the application of smoothness
constraints in the traditional way.
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Figure 9 – Real data example: results with global smoothness constraints.

Figure 10 – Real data example: results with Total Variation constraints.
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RÉGIS C, LUZ EC & COSTA MD. 2010. Inversion of anisotropic MT
data using approximate equality constrains. SEG Technical Program Ex-
panded Abstracts, 29: 900–904.

RUDIN LI, OSHER S & FATEMI E. 1992. Nonlinear total variation based
noise removal algorithms. Physica D, 60: 259–268.
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