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ONE-STEP EXTRAPOLATION METHOD USING CHEBYSHEV RECURRENCE
RELATION APPLIED TO SEISMIC MODELING

Laura Lara Ortiz1 and Reynam C. Pestana2

ABSTRACT. In this work we show that the solution of the first-order differential wave equation for an analytical wavefield, using a finite-difference scheme in time,
follows exactly the same recursion of modified Chebyshev polynomials. Based on this, we proposed a numerical algorithm for seismic modeling using the Chebyshev

polynomial recursion applied on a pseudo-differential operator which can take care of any velocity variation. Exploiting the connection between the finite-difference
scheme in time and the Chebyshev polynomial recursion, and considering the Fourier method to compute the spatial derivatives, we get the stability condition for this

method taking into consideration only the range of validity of the Chebyshev polynomials. Thus, the proposed method can be used to march seismic wavefields in time
generating a stable propagation of seismic waves free of numerical dispersion. To validate the obtained results with the one-step extrapolation method using Chebyshev

polynomials, we compared the seismic responses of a two-layer model and a salt velocity model with the results of the rapid expansion method (REM) and also with the

conventional finite-difference method. The results show that the quality of the seismic sections obtained using the proposed method is comparable to the results obtained
with the aforementioned methods. Comparison of computational times shows that the one-step extrapolation method using Chebyshev polynomials takes a propagation

time comparable with the recursive REM and finite-difference methods. The method proposed here was applied only for 2D seismic modeling but it can easily extend to
3D seismic modeling problems too.

Keywords: seismic modeling, acoustic wave equation, analytical wavefield, Chebyshev polynomials.

RESUMO. Neste trabalho, mostra-se que a solução da equação de onda de primeira ordem com um campo de onda anaĺıtico, usando um esquema de diferenças-

finitas no tempo, segue exatamente a relação de recorrência dos polinômios modificados de Chebyshev. O algoritmo numérico proposto, ao ser aplicado à modelagem
sı́smica, utilizando a relação de recorrência dos polinômios de Chebyshev aplicada sobre um operador pseudodiferencial pode lidar com qualquer variação de velocidade.

Explorando a conexão entre o esquema de diferenças-finitas no tempo, com a relação de recorrência dos polinômios de Chebyshev e o método de Fourier, para calcular

as derivadas espaciais, foi possı́vel encontrar a condição de estabilidade deste novo método levando em consideração apenas o intervalo de validade dos polinômios de
Chebyshev. O algoritmo proposto pode ser utilizado para o avanço do campo de onda no tempo gerando uma propagação de ondas sı́smicas estável e livre de dispersão

numérica. Para validar os resultados obtidos com o método de extrapolação “One-step”, usando a relação de recorrência dos polinômios de Chebyshev, comparamos
as respostas sı́smicas de um modelo de duas camadas e um modelo de velocidades que apresenta um corpo de sal com os resultados obtidos mediante o método

de expansão rápida (REM) e o método das diferenças-finitas convencional. Os resultados mostram que a qualidade das seções sı́smicas obtidas usando o método

proposto é comparável com os resultados obtidos com os métodos de diferenças-finitas e o REM. A comparação dos tempos computacionais mostra que o método de
extrapolação “One-step”, com a relação de recorrência dos polinômios de Chebyshev, leva um tempo de propagação comparável com o tempo gasto pelo REM recursivo

e o método de diferenças-finitas. Vale ainda ressaltar que o método proposto foi aplicado apenas para modelos sı́smicos 2D, mas ele pode ser naturalmente estendido
para a modelagem de dados sı́smicos 3D.

Palavras-chave: modelagem sı́smica, equação da onda acústica, campo anaĺıtico, polinômios de Chebyshev.
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INTRODUCTION

Numerical modeling of wave equation has been widely used for
the simulation of seismic data, inverting parameters of subsur-
face and reverse time migration. There has been a lot of efforts
to produce stable numerical algorithms which are also free of
dispersion noise. In practice, they are implemented by solving
the acoustic wave equation using a finite-difference (FD) scheme.
The explicit FD schemes are stable only when a limit on the size
of the marching time is imposed. They also suffer from disper-
sion problems. Even in an isotropic medium, finite-difference ap-
proximations to the wave equation have a numerical phase and
group velocities that are different from those of the true medium
and vary with spatial frequency or wavenumber. As propagation
proceeds in time and distance, the error in those velocities may
accumulate to an unacceptable amount that results in the distor-
tion of the resonances in the frequency domain. Traditionally, this
error is called numerical dispersion and can be suppressed by
using either higher-order temporal and spatial schemes or by in-
creasing temporal or spatial resolution. Any of the cases leads to
an increase in computational cost (Zhang & Zhang, 2009) and
therefore, methods that remain stable and free of dispersion noise
are needed.

Pseudospectral methods, where the spatial derivatives are
evaluated in Fourier domain, can help reduce these numerical
problems because they provide optimal accuracy for the given grid
size. Pseudospectral methods implemented in the Fourier domain
provide computational efficiency and a high degree of accuracy
(Kosloff & Baysal, 1982; Reshef et al., 1988).

Another very efficient solution, initially presented by Kosloff
et al. (1989), is the rapid expansion method (REM), which has
been applied with success in seismic modeling and reverse time
migration. This method is essentially a variation of the method
proposed by Tal-Ezer (1986). In REM, modified Chebyshev poly-
nomials are incorporated to expand the cosine operator that ap-
pears on the wave equation solution, and is the base for a time
stepping scheme for both small and large time step (Pestana &
Stoffa, 2010). Another highlight of this method is that, it is sta-
ble and free of dispersion numerical noise when implemented
together with the Fourier method.

A recent method introduced in the geophysical literature to
solve the acoustic wave equation is the one-extrapolation method
(OSE) (Zhang & Zhang, 2009). In the OSE a complex wavefield is
introduced and a square-root operator is defined. By this way, the
two-way wave equation can be formulated as a first-order partial
differential equation in time, which is similar to the one-way wave
equation in depth. To solve the new first-order differential wave

equation, (Zhang & Zhang, 2009) used a stable explicit extrapo-
lation method in time based on an optimized separable approxi-
mation (OSA) proposed by Song (2001).

In the REM approach, Pestana & Stoffa (2010) show that the
result of expanding the cosine function using Chebyshev poly-
nomials has the same form of a Taylor-series expansion when a
specific analytical expression for the Bessel function is consid-
ered. Besides that, they also showed that if only two terms in the
Chebyshev expansion is used, the expression is reduced to a
second-order finite-difference time approximation.

Starting from this relation between REM and FD method, we
show in this paper that the FD approximation in time of the first-
order differential equation follows the recursion of the Chebyshev
polynomials when applied on a square-root pseudo-differential
operator. Using the pseudospectral method for spatial derivatives
and the connection between Chebyshev recurrence relation and
finite-difference approximation in time, we find the stability con-
dition exploring only the range of validity of the Chebyshev poly-
nomials. The stability condition is exactly the same one obtained
for the conventional pseudospectral method recommended by
Baysal et al. (1983).

Thus, we obtain a finite-difference scheme for the one-step
extrapolation method using the Chebyshev polynomial recurrence
and the proposed numerical algorithm can be used to march the
complex wavefield in time generating the stable propagation of
seismic waves free of numerical dispersion.

To demonstrate the relation between the FD approximation
in time and the modified Chebyshev Polynomial recursion, two
models are used and the impulse response and time-sections are
compared with the conventional REM and with the conventional
FD for the full-wave equation. The results obtained are equivalent
to the results obtained with these cited methods, stable and free
of dispersion for a time step limited by the stability condition. The
method here proposed was only tested on 2D models but it can be
naturally extended and applied to 3D seismic modeling problems.

THEORY

Acoustic wave equation
The acoustic wave equation for a 2D media is expressed in terms
of a second-order in time differential partial equation:

1

v2(x)

∂2p(x, t)

∂t2
−∇2p(x, t) = 0 (1)

where (x) = (x, z) is the position vector, p(x, t) is the pres-
sure field, v(x) is the propagation velocity of the acoustic wave
in the medium, and∇2 = ∂2

∂x2
+ ∂2

∂z2
is the Laplacian operator
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in Cartesian coordinates.
Defining an operator −L2, such that

−L2 = v2(x)
(
∂2

∂x2
+
∂2

∂z2

)
. (2)

and introducing a source term S(x, t), equation 1 can be rewrit-
ten as

∂2p(x, t)

∂t2
+ L2p(x, t) = S(x, t). (3)

One-Step extrapolation method
The one-step extrapolation method of Zhang & Zhang (2009)
presents an alternative way to obtain the solution of the wave equa-
tion. First, the full-wave equation is transformed into a first-order
partial differential equation, similar to the one-way wave equation.
In this formulation proposed by Zhang & Zhang (2009), the real
pressure wavefield is replaced by a complex pressure field. Sim-
ilar wave equation was also derived by Gazdag (1981), but with a
real wavefield, and it was first used by Baysal et al. (1983) for time
extrapolation and solved by the pseudospectral method. This new
first-order differential wave equation is equivalent to the two-way
wave equation (Eq. 1) and produces the same traveltime and lead-
ing order amplitude as the conventional wave equation (Zhang &
Zhang, 2009).

For a medium with 2D constant velocity, v(x) = c, Eq. (1)
is transformed to the wave number domain, through a spatial
Fourier transform, resulting:(

∂2

∂t2
+ ϕ2

)
p̂(k, t) = 0 (4)

where ϕ = v
√
k2x + k

2
z and k = (kx, kz) is the spatial

wave number vector.
Instead of using a real wavefield p(x, t), Zhang & Zhang

(2009) uses a complex wavefield P (x, t), such that:

P (x, t) = p(x, t) + iq(x, t) (5)

where q(x, t) is the Hilbert transform of p(x, t), which in the
frequency domain defined as:

q̂(x, ω) = isgn(ω)p̂(x, ω) =
iω

|ω| p̂(x, ω) (6)

Now, using the dispersion relationω2/v2 = k2x+k2z , from wave
equation (Eq. 1), the Hilbert wavefield (Eq. 6) can be expressed as:

ˆ̂q(k, ω) =
iω

v
√
k2x + k

2
z

ˆ̂p(k, ω) =
iω

ϕ
ˆ̂p(k, ω) (7)

and transforming back to the time domain, we obtain:

q̂(k, t) =
1

ϕ

∂p̂(k, t)

∂t
(8)

Thus, Eq. (4) is equivalent to the following system of equations
(Zhang & Zhang, 2009)

∂

∂t

(
p̂

iq̂

)
=

(
0 −iϕ
−iϕ 0

)(
p̂

iq̂

)
(9)

or, in a simpler way:

∂P̂

∂t
=
∂(p̂ + iq̂)

∂t
= −iϕ(p̂ + iq̂) = −iϕP̂ (10)

The complex pressure field P (x, t) satisfies the following first-
order partial differential equation in time domain, i.e.(

∂

∂t
+ iΦ

)
P (x, t) = 0 (11)

where Φ is a pseudo-differential operator, defined in the space
domain as:

Φ = v(x, z)
√
−∇2 (12)

or symbolically given by:

ϕ = v(x, z)
√
k2x + k

2
z (13)

If the velocity is constant, the solution of Eq. (11) can be ex-
pressed as:

P (x, t+Δt) = (F−1 e−iv
√
k2x+k

2
z Δt F ) P (x, t) (14)

where F and F−1 represent the direct and inverse Fourier trans-
forms, respectively.

For a variable velocity, the solution of Eq. (11) can be written
symbolically as:

P (x, t+Δt) = e−iΦΔtP (x, t) (15)

Recall that the solution of the one-way wave equation proposed
by Gazdag (1978), Claerbout (1971), has the following form:

D(z +Δz) = e−iΛΔzD(z) (16)

where Λ is the square-root operator defined:

Λ =

√
ω2

v2(x, z)
− k2x (17)

Comparing Equations (15) and (16) are similar and therefore
different extrapolation methods used to calculate the one-way op-
erator eiΛΔz can be applied in the solution of Eq. (15), taking into
account that in this case, the propagation is performed in time.

Brazilian Journal of Geophysics, Vol. 34(4), 2016
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For OSE method, Zhang & Zhang (2009) implemented it nu-
merically using a solution based on an optimized separable ap-
proximation (OSA), proposed by Song (2001), which approxi-
mates the operator e−iϕΔt as follows:

e−iϕΔt =
N∑
n=1

an(V )bn(k), (18)

where an(V ) and bn(k) are complex functions that depend on
the wave speed and wave number, respectively. These functions
can be determined by computing the left and right eigenvalues of
the two dimension function

e−iV kΔt, where V ∈ [vmin, vmax]

and
k =

√
k2x + k

2
z , ∈ [kmin, kmax].

After obtaining an(V ) and bn(k) by the OSA method, the algo-
rithm proposed by Zhang & Zhang (2009) requires, for every time
step extrapolation, one Fast Fourier Transform (FFT) and N fast
inverse transforms. However, neither the number of FFTs nor the
stability criterion about the OSA method are explicitly determined.

One-step extrapolation method using the Chebyshev
polynomials
An alternative way to solve the full-wave equation, based on the
one-step extrapolation method (Zhang & Zhang, 2009), is given
here, where we use the recurrence relation of the modified Cheby-
shev polynomials to approximate the extrapolation operator in
time in a stable solution.

Using the complex field P (x, z, t) = p(x, z, t) +

iH [p(x, z, t)], as proposed by Zhang & Zhang (2009), where
H [.] is the Hilbert transform operator, we have that the complex
pressure field P (x, t) satisfies the following first-order partial
differential equation in time

∂P (x, z, t)

∂t
= ΦP (x, z, t) (19)

where Φ is a pseudo-differential operator, but now defined as:

φ = −iv(x, y)
√
k2x + k

2
z (20)

Then, according to the finite-difference method for the derivative
of the wavefield P in time, we have:

P (x, z, t+Δt) =

2Δt
∂P (x, z, t)

∂t
+ P (x, z, t−Δt).

(21)

Then, substituting Eq. (19) into Eq. (21) and writing in a simplified
form, we find that:

Pn+1 = 2ΔtΦPn + Pn−1 for n = 1, 2, 3 . . . (22)

Here, we have that P (nΔt)= Pn, whereΔt is the time step.
Thus, from Eqs. (19) and (13), the time derivative of P for

each time step is numerically computed by applying the Fourier
method and then it is approximated using a centered finite-
difference scheme (Eq. 21).

Chebyshev polynomials
Let’s first introduce the Chebyshev polynomials which are used to
solve a wide range of problems in many different areas of physics
and engineering.

The Chebyshev polynomials are defined as:

Tn(x) = cos(nθ), where x = cos(θ) (23)

and they satisfy the following recurrence relation

Tn+1(x) = 2xTn(x)− Tn−1(x) (24)

which is very useful in computing the polynomials from
T0(x) = 1 and T1(x) = x.

When the Chebyshev argument is an imaginary number
z = ix, we have the modified Chebyshev polynomials and they
satisfy the following recurrence

Qn+1(z) = 2zQn(z) +Qn−1(z). (25)

The modified Chebyshev polynomials are defined as Qn(z) =
inTn(x), where Tn(x) are the ordinary Chebyshev polynomi-
als. Again, the recursion is initiated by: Q0(z) = 1 and
Q1(z) = z.

Now, we show that the solution of the first-order wave equa-
tion (Eq. 19), using a finite-difference scheme in time, given by
Eq. (22), has the same similarity with the Chebyshev polynomials
found for the full-wave equation in the rapid expansion method
(REM) as showed by Pestana & Stoffa (2010).

Recalling the recurrence relation for modified Chebyshev
polynomials, Qn+1(z) = 2zQn(z) + Qn−1(z) and com-
paring it with the finite-difference solution in time (Eq. 22), we
note that the finite-difference wave fields are just the Chebyshev
polynomials inΦΔt acting on the initial wavefield Po.

Thus, we can propose the following recursive solution to the
first-order differential wave equation (Eq. 19) as:

Pn+1 = Qn+1(ΦΔt)P0 for n = 1, 2, 3 . . . (26)

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016



�

�

“main” — 2018/9/19 — 0:01 — page 537 — #5
�

�

�

�

�

�

ORTIZ LL & PESTANA RC 537

with the first terms defined as:

Q0(ΦΔt)P0 = P0

Q1(ΦΔt)P0 = (ΦΔt)P0
(27)

These two first terms are calculated following the Chebyshev poly-
nomial recurrence (expression 25), where they are defined as
Q0(z) = 1 and Q1(z) = z, with z = ΦΔt. In general,
all wavefields can be generated using Eq. (26), where the polyno-
mials satisfy the recurrence relation given by expression 25.

The stability of this new method is related to the validity inter-
val of the Chebyshev polynomials. SinceQn(z) is limited to the
interval [−i, i] for all n, so we have that this scheme is stable if
and only if:

Δt <
1

R
(28)

where R is the maximum value associated with Φ, the pseu-
dospectral operator, which for the 2-D case is given by:

R = πvmax

√(
1

Δx

)2
+

(
1

Δz

)2
(29)

Therefore, one-step extrapolation method (OSE) using the modi-
fied Chebyshev polynomials is stable, if the time stepΔt satisfies
the above criteria, i.e., ΔtR < 1. Thus, exploring the relation-
ship between the finite-difference method and the recurrence rela-
tion of Chebyshev polynomials, we can see that on a mesh where
Δx = Δz, the limit of stability is given by:

α =
vmaxΔt

Δx
< 0.2, (30)

which is exactly the stability condition for the pseudospectral
method as recommended by Baysal et al. (1983).

The method present here was derived and tested only for 2D
case as we show in the next section, but it can be easily extend
for 3D case and applied for modeling of 3D complex structural
models.

MODELING EXAMPLES

Two-layer synthetic velocity model
The first synthetic velocity model used is formed by two flat lay-
ers. The velocity in the upper and lower layer is 2000 m/s and
3500 m/s respectively. The numerical grid consists of 260×260
nodes in total. The spatial sampling in the velocity grid is 10 m in
both directions. The source time signal is a 40 Hz Ricker wavelet
applied at the middle of the model in the position xs = 1300 m
and zx = 1300 m. The time step size used was 1 ms with 0.6 s

total propagation time, satisfying the dispersion and stability cri-
teria. The absorbing boundaries of 50-grid points width at the
borders of the numerical grid (Cerjan et al., 1985) were applied.

To show the advantages and disadvantages related with the
efficiency and accuracy of the method presented in this work,
we take an instantaneous of the wavefield (snapshot) at t =
0.30 s. Figure 1(a) shows the snapshot for the one-step extrapola-
tion method using Chebyshev polynomials. For comparison, we
present snapshots, at the same instant of time, but computed by
different methods: Figure 1(b) recursive REM (Pestana & Stoffa,
2010), in Figure 1(c) using the non-recursive REM (Tessmer,
2011) and in Figure 1(d) by the conventional finite-difference.

From these results we can see that there is a great similarity
between them, and all methods display the same seismic events
despite being obtained by different numerical approaches and al-
gorithms. We can also note that the results are stable and free of
numerical dispersion. From Figure 1(a) we can clearly see that
the wave fronts are better defined, showing that modeling using
the one-step extrapolation method with Chebyshev polynomials
provide higher resolution.

Salt synthetic velocity model

In order to verify the accuracy and efficiency of these methods for
modeling complex structures, we tested all methods using a salt
model velocity as shown in Figure 2. This model is defined on a
mesh of 338×210 with a grid spacing of 10 m along the trans-
verse and depth direction. The point source used was a Ricker
wavelet with maximum frequency of 30 Hz, which was injected at
the coordinates 1689 m in horizontal and 1100 m in vertical. The
source was located below the salt body just to have a better view
of wave propagation passing through the salt body. We used a
time step size of 2 ms for a total propagation time of 1.2 s.

Each image shown from Figure 3(a) to Figure 3(d) represents
a wavefield snapshot at t = 0.26 s for the four methods used at
the last section in the same order, respectively. On these snap-
shots we can observe the propagation of the wave front and its
effects due to the high velocity contrast passing across the body
salt. The wavefield travels with greater velocity within the body
salt and interacts with the complex structures inside and outside
thereof. A few reflections inside the salt body is clearly observed
when the wave reaches the edge of the upper body salt.

To make a better comparison of the results, the same spatial
parameters and the total recording time used to implement the
different modeling methods based on REM were used in the one-
step extrapolation method using Chebyshev polynomials. With
respect to the temporal sampling interval in order to guarantee

Brazilian Journal of Geophysics, Vol. 34(4), 2016
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(a) (b)

(c) (d)

Figure 1 – Wavefield snapshots at 0.26 s for a two-layer velocity model computed by different methods. (a) One-step extrapolation method using Chebyshev polyno-

mials; (b) Recursive REM; (c) Non-recursive REM; (d) Finite-difference method.

the method stability, in the OSE with Chebyshev polynomials, the
time step for time extrapolation is calculated based on the input
parameters, that means, the method seeks to ensure that the ar-
gument of the Chebyshev polynomials in the range of [−1, 1],
respecting the stability condition Δt < 1/R, where the value
of R is defined in Eq. (29). In this case, the value of Δt is au-
tomatically calculated by taking into account the initial parame-
ters and results in a value of 0.560 ms. It is also observed that
the results are equivalents: they are stable and free of dispersion

noise, showing the direct connection between the one-step ex-
trapolation method with the REM using the modified Chebyshev
polynomials.

In order to obtain the respective seismogram, the source was
positioned at x = 1690 m and z = 10 m. To generate the time
section, receivers were located in the same horizontal position as
the source. The seismogram from the seismic modeling using the
one-step extrapolation with Chebyshev polynomials for the salt
velocity model is shown in Figure 4(a). Comparing the results

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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Figure 2 – Salt velocity model.

(a) (b)

(c) (d)

Figure 3 – Wavefield snapshots at 0.30 s for a salt model computed by different methods. (a) One-step extrapolation method using Chebyshev polynomials; (b)

Recursive REM; (c) Non-recursive REM; (d) Finite-difference method.

Brazilian Journal of Geophysics, Vol. 34(4), 2016
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(a) (b)

(c) (d)

Figure 4 – Synthetic seismogram for a salt model computed by different methods. (a) One-step extrapolation method using Chebyshev polynomials; (b) Recursive

REM; (c) Non-recursive REM; (d) Finite-difference method.

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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shown in Figures 4(b), 4(c) and 4(d), which represent the seismo-
gram of recursive REM, non-recursive REM and finite-difference
method, respectively, we can notice that they are all equivalents.
Besides that, similarity between them in the presentation of seis-
mic events generated during the propagation wave field is demon-
strated and the OSE method using the Chebyshev polynomials is
validated by this comparison.

By this way, it can be said that all modeling methods imple-
mented propagate the pressure wave field in a precise way and the
methods are stable and free from numerical dispersion, demon-
strating in this way the applicability and efficiency of the proposed
algorithm to seismic modeling purpose in complex media.

From theses synthetics results, we also noticed that the
One-step extrapolation method using the recurrence relation of
the Chebyshev polynomials produced images with a much better
resolution when compared with the other modeling results.

As can be seen, the differences between the quality of im-
ages obtained by the different methods presented is practically
non-existent, therefore, we take into account the running time
between the different modeling methods as another parameter in
the analysis. The computational cost under the same hardware and
software conditions are notable different. For instance, the results
showed that the one-step extrapolation using Chebyshev poly-
nomials method took a similar processing time to the recursive
REM and finite-difference method, but, the non-recursive REM is
the method that has spent most execution time. The numerical
tests also showed that non-recursive REM took almost six times
more that the recursive REM.

CONCLUSION
We present a new method that uses the recurrence relation of
Chebyshev polynomials to solve the final equation presented
by the One-step extrapolation method. The quality of images
obtained by this new method was compared with the results
obtained with the recursive and non-recursive REM and the
finite-difference method. These results showed that the proposed
method is stable and free of numerical dispersion, and can dis-
play the same seismic events presented in the others methods.
By this way, we demonstrated the efficiency and applicability of
this method for modeling seismic data from complex structures,
with strong lateral perturbations of slowness, like the salt body. In
computational terms, the computational time required for model-
ing is also comparable with the others methods. The presented

method was efficient when compared with the modeling time us-
ing the recursive REM and the finite-difference method.
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