INTEGRAÇÃO DE DADOS DE SENSORIAMENTO REMOTO MULTI RESOLUÇÕES PARA A REPRESENTAÇÃO DA COBERTURA DA TERRA UTILIZANDO CAMPOS CONTÃNUOS DE VEGETAÇÃO E CLASSIFICAÇÃO POR ÃRVORES DE DECISÃO

Marcelo Lopes Latorre, Osmar Abílio de Carvalho Júnior, João Roberto dos Santos, Yosio Edemir Shimabukuro

Abstract


Este trabalho objetiva desenvolver uma metodologia de integração de multisensores para um sistema de monitoramento da Amazônia. O sistema proposto baseia-se noVegetation Continuous Fields(VCF) que utiliza um algoritmo de árvore de decisão. O algoritmo utiliza um conjunto de variáveis independentes, no caso métricas multitemporais do MODIS, para recursivamente particionar uma variável dependente, no caso dados de treinamentos provenientes de classes de uso da terra, em subconjuntos, que maximizam a redução do quadrado da soma residual. Os dados de treinamentos são obtidos pela classificação de imagens de alta resolução (Landsat/TM, ETM+ e CBERS 2/CCD). Neste estudo, um algoritmo foi desenvolvido a partir da linguagem IDL, no programa ENVI, e uma rotina estatística do programaS-PLUS. A área de estudo é o Estado do Mato Grosso com uma extensa área de cobertura de Floresta Amazônica. As cenas são classificadas em três classes: floresta, não floresta e água. Comparações do produto final com o mapa regional de uso da terra derivado do PRODES revelam uma concordância geral. Portanto, os resultados desse estudo sugerem que a metodologia é apropriada para a determinação da cobertura da terra na Floresta Amazônica.

Keywords :sensoriamento remoto; processamento digital de imagens; campos contínuos; árvore de regressão; Floresta Amazônica.

ABSTRACT

This paper aims to develop a methodology of multisensor integration for an Amazon monitoring system. The proposed system employs the Vegetation Continuous Fields (VCF) method that uses the decision tree algorithm. The algorithm uses a set of independent variables, in this case MODIS multi-temporal metrics, to recursively split a dependent variable, in this case training data from class memberships, into subsets, which maximize the reduction of squares of sum of the residuals. The training data are obtained by high-resolution imagery classification (Landsat/TM, ETM+ and CBERS 2/CCD). In this study, an automated algorithm was developed from IDL language in the ENVI software and the statistical procedure of the S-PLUS software. The study area is Mato Grosso State with an extensive area of Amazon forest. The scenes are classified in three classes: forest, non-forest, and water. Comparisons of the final product with regional land cover maps derived from PRODES revel general agreement. Therefore, the results of this study suggest that the methodology is appropriate for land cover determination in the Amazon forest.

Keywords :remote sensing; digital image processing; continuous fields; regression trees; Amazon forest.


Keywords


sensoriamento remoto; processamento digital de imagens; campos contínuos; árvore de regressão; floresta amazônica












Revista Brasileira de Geofísica (printed version): ISSN 0102-261X
v.1n.1 (1982) – v.33n.1 (2015)

Revista Brasileira de Geofísica (online version): ISSN 1809-4511
v.15n.1 (1997) – v.29n.4 (2011)

Brazilian Journal of Geophysics (online version
a partir de v.30n.1 (2012)



Brazilian Journal of Geophysics - BrJG

Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br