Structure-oriented filtering in Crossplotting and k-means

André Steklain, Francisco Ganacim, Márcio Adames, João Luis Gonçalves, Danian Steinkirch de Oliveira

Abstract


Several authors have proposed new techniques using multi-attribute analysis and machine learning. Studying the influence of different data treatments on such techniques is essential. We analyze the results by applying two clustering techniques, Crossplotting, and k-means, in filtered data. In particular, we use structure-oriented filtered seismic data before calculating seismic attributes. We use a migrated section of the Buzios field from the Brazilian pre-salt in the Santos Basin. We find that combining filtering and clustering techniques can improve salt identification.


Keywords


seismic attributes, machine learning, mass transport complex, salt dome detection

Full Text:

PDF


DOI: http://dx.doi.org/10.22564/brjg.v40i1.2137









>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

 

Creative Commons