Evaluation of the Dix Scaling Factor During Geomagnetically Disturbed Periods Over South America

Paulo França Barbosa Neto, Giorgio Arlan da Silva Picanço, Clezio Marcos De Nardin, Paulo Alexandre Bronzato Nogueira, Laysa Cristina Araújo Resende, Juliano Moro

Abstract


In this work, we present a study of the Total Electronic Content (TEC) spatiotemporal variability during geomagnetically disturbed periods over South America. For this, we evaluated the Disturbance Ionosphere indeX (DIX) scaling factor (β coefficient) for different magnetic dip angles and seasons. In this context, the β values are given in TEC units (TECU) and correspond to a latitudinal-dependent factor used to normalize the DIX output into a scale from 0 to 5. Thus, we selected thirteen magnetic storm events between 2013 and 2017, subdivided into seven moderate, four intense, and two extreme magnetic storms. The results showed that the β coefficient latitudinal variation is characterized by two asymmetric crests concerning the magnetic equator. This suggests the presence of transequatorial thermospheric wind's effects on the ionosphere's plasma distribution. Additionally, we have observed that the crests occur close to the magnetic equator during the winter and autumn and at higher latitudes during summer and spring. Additionally, we have noticed a drastic decrease in the daily highest β-values before the Storm Sudden Commencement (SSC) stage of the studied events and during the magnetic storm recovery phase. This behavior highlights the expected scenario of quiet conditions with no TEC disturbance.



Keywords


Ionosphere; Total Electron Content (TEC); Disturbance Ionosphere indeX (DIX); magnetic storms; GNSS

Full Text:

PDF

References


Abdu, M. A. (1997). Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions. Journal of Atmospheric and Solar-Terrestrial Physics, 59(13), 1505–1519. doi:10.1016/s1364-6826(96)00152-6.

Batista, I. S., Diogo, E. M., Souza, J. R., Abdu, M. A., and Bailey, G. J. (2011). Equatorial Ionization Anomaly: The Role of Thermospheric Winds and the Effects of the Geomagnetic Field Secular Variation. Aeronomy of the Earth’s Atmosphere and Ionosphere, 317–328. doi:10.1007/978-94-007-0326-1_23.

Borries, C., Wilken, V., Jacobsen, K. S., García-Rigo, A., Dziak-Jankowska, B., Kervalishvili, G., Jakowski, N., Tsagouri, I., Hernández-Pajares, M., Ferreira, A. A., and Hoque, M. M. (2020). Assessment of the capabilities and applicability of ionospheric perturbation indices provided in Europe, Adv. Space Res., 66, 546–562, https://doi.org/10.1016/j.asr.2020.04.013.

Christensen, A. B. (2003). Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. Journal of Geophysical Research, 108(A12). doi:10.1029/2003ja009918.

Denardini, C. M., Picanço, G. A. S., Barbosa Neto, P. F., Nogueira, P. A. B., Carmo, C. S., Resende, L. C. A., Moro, J., Chen, S. S., Romero-Hernandez, E., Silva, R. P., and Bilibio, A. V. (2020a). Ionospheric Scale Index Map Based on TEC Data for Space Weather Studies and Applications. Space Weather, 18(9). doi:10.1029/2019sw002328

Denardini, C. M., Picanço, G. A. S., Barbosa Neto, P. F., Nogueira, P. A. B., Carmo, C. S., Resende, L. C. A., Moro, J., Chen, S. S., Romero-Hernandez, E., Silva, R. P., and Bilibio, A. V. (2020b). Ionospheric Scale Index Map Based on TEC Data during the Saint Patrick Magnetic Storm and EPBs. Space Weather, 18(9). doi:10.1029/2019sw002330.

England, S. L., Immel, T. J., Huba, J. D., Hagan, M. E., Maute, A., and DeMajistre, R. (2010). Modeling of multiple effects of atmospheric tides on the ionosphere: An examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. Journal of Geophysical Research: Space Physics, 115(A5), A05308. doi:10.1029/2009ja014894.

Fagundes, P. R, Sahai, Y., Bittencourt, J. A., and Takahashi, H. (1995). Observations of thermospheric neutral winds and temperatures at Cachoeira Paulista (23°S, 45°W) during a geomagnetic storm. Advances in Space Research, 16(5), 27–30. doi:10.1016/0273-1177(95)00169-F.

Fuller-Rowell, T. J., Codrescu, M. V., Rishbeth, H., Moffett, R. J., and Quegan, S. (1996). On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res.-Space, 101, 2343–2353, https://doi.org/10.1029/95ja01614.

Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M. (1994). What is a geomagnetic storm? Journal of Geophysical Research, 99(A4), 5771. doi:10.1029/93ja02867.

Jakowski, N., Stankov, S. M., Schlueter, S., and Klaehn, D. (2006). On developing a new ionospheric perturbation index for space weather operations. Advances in Space Research, 38(11), 2596–2600. doi:10.1016/j.asr.2005.07.043.

Jakowski, N., Borries, C., and Wilken, V. (2012). Introducing a disturbance ionosphere index. Radio Science, 47(4). doi:10.1029/2011rs004939.

Jakowski, N. and Hoque, M. M. (2019). Estimation of spatial gradients and temporal variations of the total electron content using ground based GNSS measurements, Space Weather, 17, 339–356, https://doi.org/10.1029/2018sw002119.

Kikuchi, T., Lühr, H., Schlegel, K., Tachihara, H., Shinohara, M., and Kitamura, T.-I. (2000). Penetration of auroral electric fields to the equator during a substorm. Journal of Geophysical Research: Space Physics, 105(A10), 23251–23261. doi:10.1029/2000ja900016.

Kelley, M. C. (2009). The Earth's ionosphere: Plasma physics and electrodynamics (2nd ed.). London WC1X 8RR, UK: Elsevier, Academic Press.

Kersley, L., Malan, D., Pryse, S. E., Cander, L. R., Bamford, R. A., Belehaki, A., Leitinger, R., Radicella, S. M., Mitchell, C. N., and Spencer, P. S. J. (2004). Total electron content: a key parameter in propagation: measurement and use in ionospheric imaging, Ann. Geophys., 47, 1067–1091, https://doi.org/10.4401/ag-3286.

Matsushita, S. (1959). A study of the morphology of ionospheric storms. Journal of Geophysical Research, 64(3), 305–321. doi:10.1029/jz064i003p00305.

Mendillo, M., Lin, B., and Aarons, J. (2000). The application of GPS observations to equatorial aeronomy. Radio Science, 35(3), 885–904. doi:10.1029/1999rs002208.

Moro, J., Xu, J., Denardini, C. M., Resende, L. C. A., Barbosa Neto, P. F. B., Da Silva, L. A., Silva, R. P., Chen, S. S., Picanço, G. A. S., Carmo, C. S., Liu, Z., Yan, C., Wang, C., and Schuch, N. J. (2021). First look at a geomagnetic storm with Santa Maria Digisonde data: F region responses and comparisons over the American sector. Journal of Geophysical Research: Space Physics. doi:10.1029/2020ja028663.

Nogueira, P. A. B., Abdu, M. A., Batista, I. S., and De Siqueira, P. M. (2011). Equatorial ionization anomaly and thermospheric meridional winds during two major storms over Brazilian low latitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 73(11-12), 1535–1543. doi:10.1016/j.jastp.2011.02.008.

Otsuka, Y., Ogawa, T., Saito, A., Tsugawa, T., Fukao, S., and Miyazaki, S. (2002). A new technique for mapping of total electron content using GPS network in Japan. Earth, Planets and Space, 54(1), 63–70. doi:10.1186/bf03352422.

Picanço, G. A. S. (2019). Desenvolvimento e análise de um índice ionosférico baseado em dados de Conteúdo Eletrônico Total. 2019. 190 p. Dissertação (Mestrado em Geofísica Espacial) - Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos.

Picanço, G. A. S., Denardini, C. M., Nogueira, P. A. B., Barbosa-Neto, P. F., Resende, L. C. A., Carmo, C. S., Romero-Hernandez, E., Chen, S. S., Moro, J., and Silva, R. P. (2020). Evaluation of the non-perturbed TEC reference of a new version of the DIX, Braz. J. Geophys., 38, 1–10, https://doi.org/10.22564/rbgf.v38i3.2056.

Picanço, G. A. S., Denardini, C. M., Nogueira, P. A. B., Barbosa-Neto, P. F., Resende, L. C. A., Chen, S. S., Carmo, C. S., Romero-Hernandez, E., and Silva, R. P. (2021). Equatorial ionospheric response to storm-time electric fields during two intense geomagnetic storms over the Brazilian region using a Disturbance Ionosphere indeX. Journal of Atmospheric and Solar-Terrestrial Physics, 223, 105734. doi:10.1016/j.jastp.2021.105734.

Picanço, G. A. S., Denardini, C. M., Nogueira, P. A. B., Resende, L. C. A., Carmo, C. S., Chen, S. S., Barbosa-Neto, P. F., and Romero-Hernandez, E. (2022). Study of the equatorial and low-latitude total electron content response to plasma bubbles during solar cycle 24–25 over the Brazilian region using a Disturbance Ionosphere indeX, Ann. Geophys., 40, 503–517, https://doi.org/10.5194/angeo-40-503-2022.

Prölss, G. W. (1997). Magnetic storm associated perturbations of the upper atmosphere. Geophysical Monograph Series, 227–241. doi:10.1029/gm098p0227.

Rishbeth, H. (1991). F-Region Storms and Thermospheric Dynamics. Journal of Geomagnetism and Geoelectricity, 43, 513–524. doi:10.5636/jgg.43.Supplement1_513.

Richmond, A. D., Ridley, E. C., and Roble, R. G. (1992). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 19(6), 601–604. doi:10.1029/92gl00401

Sanz, J., Juan, J. M., González-Casado, G., Prieto-Cerdeira, R., Schlüter, S., and Orús, R. (2014). Novel Ionospheric Activity Indicator Specifically Tailored for GNSS Users, Proceedings of the 27th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSSC2014), Tampa, Florida, USA, 8–12 September 2014, 1173–1182, Institute of Navigation (ION), https://www.ion.org/publications/abstract.cfm?articleID=12269 (last access: 18 July 2022).

Sreeja, V., Ravindran, S., Pant, T. K., Devasia, C. V., and Paxton, L. J. (2009). Equatorial and low-latitude ionosphere-thermosphere system response to the space weather event of August 2005. Journal of Geophysical Research: Space Physics, 114(A12), A12307. doi:10.1029/2009ja014491.

Takahashi, H., Wrasse, C., Denardini, C. M., Pádua, M., De Paula, E., Costa, S., Otsuka, Y., Shiokawa, K., Monico, J., Ivo, A., and Sant’anna, N. (2016). Ionospheric TEC Weather Map Over South America. Space Weather, 14(11), 937–949. doi:10.1002/2016sw001474.

Titheridge, J. E. (1995). Winds in the ionosphere — A review. Journal of Atmospheric and Terrestrial Physics, 57(14), 1681–1714. doi:10.1016/0021-9169(95)00091-F.

Wilken, V., Kriegel, M., Jakowski, N., & Berdermann, J. (2018). An ionospheric index suitable for estimating the degree of ionospheric perturbations. Journal of Space Weather and Space Climate, 8, A19. doi:10.1051/swsc/2018008.




DOI: http://dx.doi.org/10.22564/brjg.v40i4.2191

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons